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Hamiltonian strong-coupling expansions for (2+1)-dimensional quantum electrodynamics
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Linked cluster expansions are applied to calculate strong-coupling series for lattice quantum

electrodynamics in (2+1) dimensions. Series expansions are calculated for the ground-state energy
and chiral condensate to O(g '

) in the dimensionless coupling and for the symmetric and an-

tisymmetric "photon-ball" mass gaps to 0 (g '
) for various values of the fermion mass. The

series do not extend well enough into the weak-coupling regime to allow an accurate matching
with the expected weak-coupling behavior, though the correct qualitative behavior is observed for
the ground-state energy and chiral condensate.

I. INTRODUCTION

A major problem facing lattice gauge theory at
present is how to deal with dynamical fermions. Follow-
ing the success of Monte Carlo algorithms in the
quenched approximation, the main thrust so far has been
towards extending the Monte Carlo method. Some lim-
ited success has been obtained, though the methods tend
to be expensive in computer time, generally requiring the
power of an array processor. A possible alternative is to
revive the Hamiltonian formalism of Kogut, Susskind,
and co-workers. ' In the past, Hamiltonian strong-
coupling expansions have been largely neglected; the ear-
ly hand calculations for QCD quickly became impracti-
cal due to the rapid proliferation of diagrams. However,
the subsequent development of linked cluster expan-
sions, ' making it possible to automate the procedure in
the computer, has rekindled some interest in strong-
coupling expansions.

To date, linked cluster expansions have been applied
with varying degrees of success to pure gauge theories in
(2 + 1) and (3 + 1) dimensions. More recently,
rnatter fields have been included in a study of the Z2
Abelian Higgs model in (2+ 1) dimensions. This paper
is a first attempt to extend the method of cluster expan-
sions to include fermions. As a test case, we have
chosen to study quantum electrodynamics in (2+ 1) di-

mensions. This is the simplest confining lattice theory
with independent gauge field degrees of freedom, and
dynamical fermions. To describe the fermions, we use
the four-component spinor theory of Pisarski, since
four-component spinors arise naturally as a consequence
of fermion doubling on the lattice in (2+ 1) dimensions.
The theory has important qualitative features in com-
mon with (3+ 1)-dimensional QCD: it is believed to be
confining at large distances, while in the massless limit it
displays a chiral-like symmetry which is thought to be
spontaneously broken. ' It is a super-renormalizable
theory, " so that we may expect simple dimensional scal-
ing of physical quantities in the continuum limit, as
functions of either the bare fermion mass or the coupling
constant.

In this paper we generate strong-coupling series ex-
pansions for the ground-state energy and chiral conden-
sate to 0 (g ) and for the "photon-ball" mass to
O(g ' ). We find, unfortunately, that approximants to
these series do not converge well in the weak-coupling
regime, and that we are unable to make reliable extrapo-
lations to the continuum limit. Without some further
technical breakthrough, it seems unlikely that strong-
coupling series expansions will be very useful in the
treatment of dynamical fermions in QCD.

The layout of the paper is as follows: The Hamiltoni-
an formalism of (2+ 1)-dimensional QED is summarized
in the next section, while details of the cluster expansion
method are given in Sec. III. Section IV is devoted to
an analysis of our series expansions. In Sec. V we exam-
ine potential improvements as more terms are added to
the series expansions, and our conclusions are summa-
rized in Sec. VI.

II. (2+ I)-DIMENSIONAL LATTICE QED

While Hamiltonian lattice gauge theory has been es-
tablished for some time, there seems to be practically no
application in the literature to gauge theories with fer-
mions in an odd number of space-time dimensions. The
only case known to the authors is a paper by Semenoff'
dealing with valence electrons in an hexagonal graphite
lattice. This section is therefore devoted to a summary
of the (2 + 1)-dimensional lattice Hamiltonian.

We begin with the Hamiltonian

H= 8',
2a

W= Wo+yW, +y W~ (y =1/g ),

(la)

(lb)

Wo= W, + W„= +Et +p g ( —1) ' 'X (r)X(r), (lc)

W, = —g(U, ,+U,, ),
P

(le)

W& ——g g, (r)[X (r)U, (r)X(r +ai )+H c], .

ri, (r) =( —1) ', g~(r) = 1, (ld)
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where r =(r„r2) labels the sites, I the links, p the pla-
quettes and i = 1,2 the directions on a square two-
dimensional spatial lattice with spacing a. The dimen-
sionless coupling g and dimensionless fermion mass p are
defined in terms of their continuum counterparts e and
m by

I'2

Jl

2am
g =ea, p= (2)

The bosonic operators E, U and single-component-per-
site fermion operators X satisfy

[E„U,]=U(fin

[E(,U, ]=—U(5((

[X (r),X(r')I =5„,, ,

[E(,X(r)]=[E(,X (r)]=[U(,X(r)]=[U(,Xt(r)]=0 .

(3)

U&~ means the product

U, (r}U2(r +a1)U((r +a2)U2(r)

around the plaquette p.
In the naive continuum limit, Eq. (1} becomes the

(2 + 1}-dimensional @ED Hamiltonian

fd x[ 2(E„„,+—B } if a (—V+ie A)P+mP yog],

(4)

where P is a single four-component Dirac spinor and

a; =yoy;, with yo, y&, and y2 4&4 Dirac matrices. The
pure gauge part is easily obtained from the appropriate
terms in (1) using the replacements E(~ae 'E'„„,(r)
and U( ——exp[ieaA, (r)]. The fermion part involves
Kogut-Susskind staggered fermions. Consider the pure
fermion Hamiltonian

FIG. 1. Sublattices supporting the staggered fermion fields
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where r; =2R, or 2R, + 1 for r; even or odd, respective-
ly, we obtain

Hf —— 4a i —gQ (a,b, +a2&2)p .
R

In obtaining Eq. (7) we have used the Dirac representa-
tion

Hf —— g ri;(r)[X (r)X(r +ai )+X (r +ai )X(r)]2a,. „

+m g( —1)"X (r)X(r) .

Hf"'" i g (g,gzg44)——

0 0 b, 2

'

0 b~ 0

0

Following Susskind' we define

((r)=i "X(r),

and further define g&, . . . , g& to be equal to g on the
respective sublattices of Fig. 1, and zero otherwise. The
first term in the Hamiltonian (5) becomes

y2=l

Since the fields are defined on sublattices of spacing 2a,
we use the replacement 4a g(( ~ J d x to retrieve the
kinetic term in the continuum Hamiltonian (4). The
mass term is obtained in a similar way. An equivalent
continuum limit in terms of two flavors of two-
component spinors of opposite mass was obtained by
Semeno6' for the hexagonal lattice, while the equivalent
Lagrangian formalism is dealt with in Ref. 9.

The continuum four-component Dirac Hamiltonian (4)
enjoys a global U(2) "chiral" symmetry in the zero-mass
limit. ' The Lie algebra of this symmetry is spanned
by the 4X4 matrices:

0 I 0'r4=I 0

where and

6;g(, (r)=[gk(r+ai ) gk(r ai )]/2a —. —

Now introducing a four-component spinor field t/r(R) on
a lattice of spacing 2a:

y45 = —'V4'Y S ~

As in the (3+ 1)-dimensional case, ' the lattice breaks
this down to a discrete symmetry generated by shifts of
one lattice spacing. The x and y shifts defined by
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X(r)~X' '(r)= —X(r+a 1),
X(r)~X' (r)=( —1) 'X(r+a2)

leave the kinetic term in the Hamiltonian (5) invariant,
but not the mass term. The corresponding continuum
field transformations, obtained by a straightforward ap-
plication of (6}, are

(g) i (m/2)y'4=iyA=e
( Y) . i (m/2)y5

) sy=e

Clearly, composing both shifts to produce a shift along
the lattice diagonal gives a discrete y45 rotation in the
continuum fields.

Pisarski and others' ' have studied the large-Nflg p,
limit of continuum QED in (2+ 1) dimensions. Their
analyses of the Schwinger-Dyson equations show a
dynamical breakdown of chiral symmetry. In the lattice
Hamiltonian formalism this should show up as
a nonzero value of the chir al condensate
(2a) g„(—1)"X (r)X(r) per unit lattice site as the con-
tinuum limit is approached.

The Hamiltonian (1) acts on a Fock space spanned by
the usual strong-coupling basis. With each link is asso-
ciated an integer flux

~
n, ) such that E,

~
n, ) =n,

~
n, ).

The operators Ut and UI increase and decrease the flux
on link I by one unit, respectively. Each site of the lat-
tice can be in one of two states

~
+ ) or

~

—) satisfying

x'i —&=i+&, x" i+&=0,
x -)=o, x~+)=~ —).

We consider first the strong-coupling expansion of the
massless theory (@=0). To zeroth order in the expan-
sion variable y, only W, is important. The zeroth-order
ground state is highly degenerate, having flux ni ——0 on
each link, while the fermionic site states are totally arbi-
trary. This arbitrariness is broken down at the next or-
der by the kinetic term Eq. (ld) to two states

~

A ) and

~

8 ) whose fermionic content is defined by

~
+ ) on odd sites,

A
~

—) on even sites,

~

—) on odd sites,)a)=
~
+ ) on even sites .

("Odd" and "even" refer to the sign of r, +r2. ) The
chiral shifts (8) clearly map these states into each other.
When the mass term 8'„ is included, chiral symmetry is
explicitly broken and state

~

A ) is energetically favored.
In the following analysis we shall take

~

A ) as the un-
perturbed strong-coupling ground state for both the
massive and massless theories. This is interpreted as the
state with no fermions present. When the sign on a par-
ticular even (odd) site differs from the sign in the unper-
turbed site, the site is occupied by a positively (negative-
ly} charged fermion. The exclusion principle prohibits
more than one fermion occupying any site.

The first-order perturbation 8'& creates or destroys an
electron-positron pair on neighboring sites joined by a
link of flux. Applying 8'& to a particular link only gives
a nonzero state if the sites at the ends of the links are ei-
ther both empty or both occupied by fermions. The
second-order perturbation F2 creates or destroys a pla-
quette of flux. Gauge invariance ensures that, for any
state produced from the unperturbed vacuum by appli-
cation of 8', and 8'2, the net flux from any site is equal
to the charge of the fermion at that site.

III. LINKED CLUSTER EXPANSIONS

The strong-coupling expansion of any physical quanti-
ty now proceeds via Rayleigh-Schrodinger perturbation
theory. Each term in the series can be envisaged as a set
of diagrams. ' the physical extent of the diagrams
across the lattice increasing with the order of perturba-
tion theory. It is this property of the diagrammatic ex-
pansion that allows the procedure to be handled numeri-
cally via linked cluster expansions. This method was
proposed by Nickel and applied successfully to Z2 and
U(1) pure gauge models by Hamer and Irving. 4

A. Ground-state energy

(y) g I e(2 )(y)+0(y2N+2) (10}

The number l is the lattice constant for the cluster a,
that is, the number of ways a can be embedded in the
infinite lattice per unit site. The set of clusters involved
in Eq. (10) is determined by the extent of the connected
diagrams occurring in the Rayleigh-Schrodinger expan-
sion of the dimensionless Hamiltonian W [Eq. (Ib)]. We
define a connected cluster a to have order 8(a)=N if
the first diagram in the perturbation expansion to span
the cluster occurs at order y (see Fig. 2). Since the
first-order perturbation 8', and second-order perturba-
tion W2 involve links and plaquettes, respectively, a
lower bound on 8(a) is given by

8(a ) )2n (a )+ ni(a),

where n is the number of plaquettes in a, and ni the
number of links not contained in plaquettes (see Fig. 3).
The sum in Eq. (10) is over all clusters a with 8(a) (N.

The quantities e' '(y) in Eq. (10) are polynomials of
degree 2N representing the contributions to the ground-
state energy series expansion from diagrams spanning
the cluster a. They are evaluated from the result analo-
gous to (10}for a finite cluster:

The simplest application of the linked cluster method
is to the series expansion for the ground-state energy
coo(y). The proof of the validity of the method when fer-
mions are present is much the same as for the pure
gauge case, and the reader is referred to Ref. 4 for de-
tails. The main ingredients of the argument run as fol-
lows. The series expansion of coo(y) to order yz can be
decomposed as a sum over a particular finite set of con-
nected sublattices or clusters:
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one site in common with p, and may see the link as being
disconnected from the plaquette. We have therefore
been able to use the more radical cutoff

2n if nI ——0,
6(a) & n( if n =0,

2n~ +nI + 1 otherwise,

(13)

FIG. 2. A cluster of order 3 and the order-y diagram span-
ning it arising from the term (0

I
W) [(P()/E() —W())W, ]'

I g&

in the perturbation expansion.

E(2N) ~ Ca~(2N)
a = ~ P&a

P
(12)

FIG. 3. Topologically equivalent clusters with n~ =2, nI ——3.

The sum is over the subclusters p which embed into a
(including a itself), while C& is the (weak) embedding
constant of p in a (Ref. 15), that is, the number of ways
cluster p can be embedded in cluster a. E( ' is the
ground-state energy of the Hamiltonian 8' restricted to
the cluster a evaluated to order 2N. For the minimal
one-link cluster (a= 1, say) we define e') '=E)

Algorithms for generating clusters and their embed-
ding and lattice constants exist' and can be adapted to
handle a search for all clusters satisfying the cutoff (11).
We used a tree search which at each stage added new
links or plaquettes to sites of clusters in the existing list
to generate new clusters. Having generated a list of
clusters and embedding constants, we employed a
modified version of an algorithm due to Hornby and
Barber' to obtain a series expansion for E' ' on each
cluster. The e' 's are then calculated iteratively from
(12), and finally substituted into the formula (10) to pro-
duce the required result.

A couple of remarks regarding the set of clusters are
in order. First, we note that the above algorithm is not
invalidated if the cluster list contains unnecessary clus-
ters. The algorithm will automatically give e' '=0 for
any cluster with 8(a)&N. However, it is in the in-
terests of efficiency both in computer time and in reduc-
ing roundoff errors to make the cutoff as low as possible,
especially since it is the larger clusters which are most
expensive in computer time. It turns out that the cutoff
(11) is particularly conservative and contains many clus-
ters which are effectively disconnected at order X. This
is because the operator 8'2 acting on a plaquette p does
not feel the action of the link operator 8', sharing only

(1(t(()'"""= g ( —1) ' '[y (r),X(r)], (14)

or —,
' (average number of fermions per site), since the un-

perturbed vacuum state
I

A ) contains no fermions. N,
is the number of sites in the lattice. The physical chiral
condensate in the continuum limit is related to this
quantity by

( yq )physical (2 )
—2 ( qy ) lattice

4 2 ( yq ) lattice
4 (15)

The series expansion for (1(l(t)"'"" can once again be
written in diagrammatic form and the linked cluster
method is applicable.

Analogous to Eqs. (10) and (12) we have

(qq}lattice ( y I ~(2N)( )+0( 2N+2) (16)

J(2N) ~ gag (2N)
a ~ P a

P

In Eq. (17), J' ' is the series expansion to order 2N of

(O, a
I
J Io,a)

(O,a IO, a)
where

I
O, a } is the ground state of the Hamiltonian re-

stricted to the cluster a, and J is the operator which
counts the number of fermions present (i.e., electrons
plus positrons). Writing

IO, ~)= lo)+z
I
I)+y2I2)+

N
J(2N) y ~

~
2n

n=1

which we admit is still not optimal. Second, we note
that it is sufficient to reduce the list of clusters to those
which are topologically inequivalent. Clusters are topo-
logically equivalent if they can be transformed into one
another by deformations and reflections which do not
make breaks or joins between links, such as in Fig. 3.
To see that this reduced list is sufficient, define U&' ——gI UI
in the Hamiltonian (1) and note that rI( and U( can be el-
iminated from (ld) and (le) in favor of Ut. [The product
of rI('s around any plaquette is —1, so (le) loses its
minus sign. ] Topological deformations of clusters leave
plaquettes intact, and therefore leave E' ' invariant.
The embedding and lattice constants must of course now
count embeddings which involve topological deforma-
tions.

B. Chiral condensate

We next consider the strong-coupling series expansion
for the chiral condensate per lattice site, defined by
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we have

n —1

2 g (k
I
I I2n —k)+("

I

J In &

k=0
J2n =

2 g (k I2n —k)+(n ln)
k=0

(18)

The algorithm from Ref. 17 used to evaluate E' ' in the
ground-state energy calculation involves an iterative
evaluation of IO,a) only to order y" in terms of the
strong-coupling basis. However, J is diagonal in the
strong-coupling basis, and the iterative procedure can be
extended to produce the required components of

I
n +1),

I
n +2), .. . ,

I
2n ) without generating extra

strong-coupling basis states. The matrix elements in (18)
can then be evaluated, and finally (16) and (17) are used
to generate the required series expansion for ( $1( )""'".

C. Mass gaps

gp, (r)ri, (r)[X (r)U(r)X(r +ai )+H c. ] I
A ) . .

We note in passing, however, that the link-dependent p
factors distinguishing states with different symmetry
properties cause extra problems. A typical diagram will
include a factor p,'pf to take account of the links occu-
pied by the initial and final states, and this factor may
feel the effects, not only of topological deformations of
clusters, but also rotations and translations. This will

A somewhat trickier expansion for handling mass gaps
involving disconnected clusters is described in Refs. 18
and 5. The presence of first- and second-order perturba-
tions in our Hamiltonian causes no serious new prob-
lems, and the arguments set out in Sec. 3.1 of Ref. 18 ap-
ply, without modification, to the perturbation
V=yW&+y 8'2. We have evaluated series expansions
for the masses mz and m~ of the symmetric and an-
tisymmetric pure gauge states whose unperturbed eigen-
state forms are

y ( U„+U,'„)
I

W & . (19)

Series expansions to order y require a set of discon-
nected clusters to order N. Defining the order of a clus-
ter in this context is more complicated than for the
ground-state energy, though we found it adequate to use

g(discoo)(

connected

components P

where 6(13) satisfies the inequality (11). Once again it is
sufficient to consider only topologically inequivalent
clusters. Any particular diagram in the mass gap series
expansion starts and ends with a single plaquette of flux,
and introducing once again the link operators UI' ——gI U&,

it is clear that the value of the diagram is unaltered by
deformation of the cluster it spans.

We have not evaluated series expansions for mesonlike
states, i.e., those with a generic unperturbed eigenstate
of the form

extend considerably the list of independent clusters need-
ed at each order.

IV. SERIES RESULTS AND ANALYSIS

We have employed Pade and Shafer approximants' '

to analytically continue our strong-coupling expansions
past their radius of convergence, towards the physically
meaningful weak-coupling regime. The [N/M] Pade ap-
proximant f(~&~)(z) to a function f (z) is defined in
terms of the polynomials P~(z) and QM(z), of order N
and M, respectively, satisfying

Q~(z)f (z) Pv(z)—=O(z + +'), Q~(0)=1,
as

P~(z)
f[ivIM)(z)=

Q

The [p/q/r] Shafer approximant to f(z) is similarly
defined in terms of polynomials P(z), Q(z), and R (z) of
order p, q, and r satisfying

P(z)f (z)+Q(z)f(z)+R(z)=O(z~+~+"+ ),
P(0)=1,

as

—Q(z)+[Q (z) —4P(z)R (z)]'~f(v ~a ~') 2P (z)

In general, one believes that series approximants will
better approximate the global analytic structure of the
function in question than the original truncated series
expansion. For instance, Shafer approximants are better
able to approximate square-root singularities which may
be present in the complex plane. In our analysis we
have calculated diagonal and near diagonal Fade and
Shafer approximants to the highest available orders and
assume that these give an accurate analytical continua-
tion in the range over which they agree. In all cases
belo~, the Pade and Shafer approximants are calculated
from series expansions in the variable y, so that an
[N/M] Pade approximant, for instance, is calculated
from a series expansion to 0 (y ' + ').

Table I shows series-expansion coefficients to order y
'

(or N=8) for the ground-state energy per site coo and
chiral condensate (PP)"""'at @=0.0, 0.3, 0.5, and 2.0.
Generation of clusters to this order and determination of
embedding constants took approximately 15 h of VAX
11/780 CPU time, while calculating the series expan-
sions took an initial 7 h to generate the Fock-space basis
states plus a further 6 h CPU time for each value of p.
These times increase by a factor of about 10 for each or-
der iny .

For small p, the coefficients oscillate in sign and grow
rapidly in magnitude with increasing order. This behav-
ior can be traced to a pole on the negative y axis near
the origin. Pade analysis of the logarithmic derivative
of the specific heat ' x (d coo/dx'), where x =y', re-
veals a pole in the specific heat at x, = —0.026 when
p=0. This pole moves out along the negative x axis as

p increases, and approaches the origin as p~ —
—,', at
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TABLE I. Coefficients of y in strong-coupling series expansions of the ground-state energy mo and chiral condensate
( yy ) lattice

0.0 0.3 0.5 2.0

—2
13.5

—225.809 523 809 52
4740.493 349 632

—114533.212 040 4
3 019 112.271 99

—84 460 458.641
2 467 210478

Vacuum energy
—1.25

2.917968 75
—22.396 199 187 340
189.079 301 861 7

—1837.104 137250
19480.975 330 8

—219229.954 97
2 575 975.521

—1

1.25
—7.5625
41.681 901 041 666 7

—264. 139377 467 47
1828.909 211 780

—13439.617 345 3
103 118.307 24

—0.4
—0.388
—0.105 716 363 636 36

0.144041 348 151 27
—0.119637 218 0167

0.152 872 543 487 3
—0.214 626 482 088

0.307 575 436 66

0.5
4

84
—2231.056 689 342 40
65 341.586 385 919

—2025 737.847 176 5
65 182 947.676 79

—2 153 203 741.63
72 529 772 978

Chiral condensate
0.5

—1.5625
12.817 382 812 5

—136.790 952 483 222
1609.059 360 91492

—20049.480 611 731
259 376.164 876 1

—3 445 179.746 68
46 665 251.05

0.5
—1

5.25
—36.617 187 5

280.949 001 736 111
—2284 382 049 422 6
19290.131015 10

—167 267.625 734 6
1479158.2050

0.5
—0.16

0.1344
—0.185 604 533 648 17

0.263 245 277 851 37
—0.392 104 857 244 5

0.616529 824 9176
—0.997 819596 80

1.648 612 396 8

which point the lightest unperturbed mesonlike state be-
comes degenerate with the unperturbed vacuum. %e
have been unable to find any singular behavior in the
specific heat in the physical region y &0 and assume the
theory remains analytic out to the continuum limit

y —+~.
We list in Table II estimates of the quantities cop and

(gg)"""' obtained by fitting Pade and Shafer approxi-
mants to the strong-coupling series. Approximants to cop

for the case @=0.5 together with examples of the weak-

coupling curve (A9) are plotted in Fig. 4. The transition
to weak coupling seems to take place between y=1.0
and 1.5, which is outside the region of convergence of
the series approximants. A qualitatively similar picture
is obtained for other values of p, with the transition to
weak coupling moving to higher values of y as p in-

creases, but always remaining just outside the region of
convergence of the Pade and Shafer approximants. At

TABLE II. Estimates of vacuum energy per site coo and chiral condensate

(peal"""

as functions of
y at @=0.0, 0.3, 0.5, and 2.0. Estimated errors in the final figures are given in parentheses.

0.0 0.3 0.5 2.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

—0.066 527
—0.2117(2)
—0.42(1)
—0.69(3)
—1 ~ 1(5)

Vacuum energy
—0.046 413
—0.1668(2)
—0.34(2)
—0.60(5)
—1.0(3)

—0.038 399
—0.145 06{1)
—0.327(2)
—0.63(2)
—1.1(1)
—1.8(4)

—0.016627
—0.074282
—0.197 30
—0.4258(1)
—0.806(2)
—1.36(2)
—2.0(1)
—2.9(4)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.5
0.407 31(1)
0.312(1)
0.25(1)
0.15(5)

Chiral condensate
0.5
0.452 01
0.377 56( 8)
0.3133(10)
0.25(1)
0.21{3)

0.5
0.466 60
0.405 63(3)
0.3472(4)
0.293(3)
0.24(1)
0.19(3)

0.5
0.493 80
0.477 22
0.454 06
0.4268{1 }
0.3970(4)
0.366(4}
0.33(1)
0.31(2)
0.26(3)
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—4( yq )physical 0 05 (20)

We next turn to the finite mass theory, in which chiral
symmetry is explicitly broken. Considering only the
pure fermion Hamiltonian, Eq. (5},one can derive an ex-
act expression for the chiral condensate, as outlined in
the Appendix. The result is

( yy ) lattice

2
]/2

m/2 n /2I dp f dq cos p +cos q + ~
m. y 4V'

(21)

y~ i'
const/y . (22)

p=0 we estimate the weak-coupling transition to be be-
tween 0.5 and 1.0, and for p=2 to be between y=1.4
and 2.0.

Plots of Pade and Shafer approximants to the chiral
condensate for the massless theory are shown in Fig. 5.
From the analysis of Pisarski and others' ' we expect
a nonzero chiral condensate in the continuum limit

yahoo. If we further assume naive dimensional scaling
consistent with Eq. (15), one expects ( t/t t/t )""'"-ky
for large y. Our strong-coupling series approximants do
not converge well enough to exhibit this behavior explic-
itly, but are not inconsistent with the weak-coupling
dashed curve shown, which has k=0.2. This corre-
sponds to a physical chiral condensate

The addition of the gauge field in the full theory is only
expected to introduce corrections 0 (y }—see the Ap-
pendix. So from Eq. (15) we see that the physical chiral
condensate should diverge in the continuum limit for
massive fermions, proportionally to y.

In Fig. 6 are plotted series approximants for
y (t/tt/t)"'"" at p=2, the factor of y being included to ex-
hibit the asymptotic behavior at large y. The lower of
the two dashed curves is the pure fermion theory con-
densate (21). By arbitrarily adding O. ly to (ltd()f'""'
to allow for the next-order weak-coupling corrections,
we obtain a more convincing fit to the strong-coupling
curves, the changeover to weak couping occurring once
again just outside the reach of the series approximants.
Convergence of the series approximant at p=0.3 and 0.5
is unfortunately somewhat worse, and analogous plots
for these cases fail to offer a convincing match with
weak-coupling curves.

In Table III we list the strong-coupling series expan-
sions to 0 (y ) for the mass gaps ms and m „ofthe pho-
tonballs obtained by perturbing the strong-coupling mass
eigenstates (19}. Evaluation of the required disconnected
cluster embedding constants is computationally slow, the
CPU time to this order being about 20 h on a VAX
11/780. This CPU time increases by a factor of about
15 for each extra order of y . The subsequent calcula-
tion of the series expansions took about 1 h of CPU time
for each value of p.

Figure 7 shows the spread of the [1/2], [2/1], and
[2/2] Pade and [1/1/1] Shafer approximants to the an-
tisymmetric state mass gap series for several values of p.
Numerical estimates of both m~ and mz in dimension-

0.0 0.5 1.0 1.5 20 0.5

-1.0— OA

-2.0— 0.3

-3.0—
2/2/3]

[2/3/2] 0.2
/4]

2/3/2]

-4.0— 0.1—

FIG. 4. Series approximants to the ground-state energy coo

at @=0.5. The dashed curves are the O(1) weak-coupling form
Eq. (A9); coo ——2y +0.9581y+C where C=0.2 in curve A and
C= —0.2 in curve B. Pade approximants are labeled [p/q]
and Shafer approximants [p /q /r].

0.0
I

0.5
I

1.0

Y

I

1.5 2.0

FIG. 5. Graph of series approximants to the chiral conden-
sate ( t(tt/t)""'" at @=0,and the weak-coupling fit 0.2y
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less units are listed in Table IV. The approximants fail
to converge much past y=0.5 in most cases and give lit-
tle indication of their continuum-limit behavior. From
Eqs. (1) and (2) we expect

EPhysical

where Ep""'"" is an eigenvalue of the Hamiltonian H in

(1) and co, is the corresponding mass gap calculated from
the dimensionless Hamiltonian 8'. At fixed p we there-
fore expect the curves in Fig. 7 to become constant in

the continuum limit y ~~.
At p =0, —,', and —,

' there exist mesonlike strong-

coupling eigenstates mass degenerate with the pure
gauge states (19). Close to these values of p, singulari-
ties near to zero on the negative y axis cause the
coefficients to oscillate in sign and grow rapidly in mag-
nitude with increasing order of perturbation. The
coefficients become infinite as p approaches these values.
At IM&

——0 and —,
' there seems to be no particular prob-

lem, at least to order y, in approaching the limit p~pc
from above or below. Calculations at p=+0.01, for in-

TABLE III. Coefficients of y in the strong-coupling series expansions of the antisymmetric and

symmetric photon-ball mass gaps m & and m& of the dimensionless Hamiltonian 8'.

—0.01

0.01

0.1

0.4

0.6

0.8

1.6

2.0

2.4

Antisymmetric state

4.0
5.371 276 027 18940

—45.898 824 904 633
1001.907 620 040

—23 566.584449 2
4.0
5.300 133 298 352 45

—40.439 926 334 044
822.428 509 055 6

—21 513.425 812 2
4.0
5.206 333 333 333 33

—23.567 292 390046
368.489 225 438 0

—6414.418 696 77
4.0

11.695 906 432 748 5
—134.437 726 877 92
5645.960 797 986

—308 460.430 890
4.0

—8.658 008 658 008 66
369.027 983 474 64

—22 591.681 729 48
1 646 709.672 02

4.0
—2.229 654 403 45
18.845 653 555 031

—212.456 655 306 3
2408.879 749 86

4.0
—0.279 290 601 871 25
—1.078 016 175 469 4
—1.184 612 894 106

3.801 587 760 64
4.0

—0.152 380 952 380 95
—1.401 913616240 2
—0.347 320 851 264

1.695 152 914 87
4.0

—9.307 087 347 014 74E-02
—1.504 104 257 967 9
—0.143 439 779 690

1.323 460 521 64

Symmetric state

4.0
5.371 276 027 18940

—44.732 158 237 966
989.867 945 340 9

—23 298.944 008 0
4.0
5.300 133298 352 45

—39.273 259 667 377
810.465 043 629 0

—21 278.811 256 5
4.0
5.208 333 333 333 33

—22.400 625 723 380
354.283 857 961 1

—6258.332 01030
4.0

11.695 906 432 748 5
—133.271 060 211 26
4172.876 167 315

—157 304.631 067
4.0

—8.658 008 658 008 66
370.194 650 141 31

—23 538.725 234 72
1 848 123.710904

4.0
—2.229 654 403 567 45
20.012 320 221 698

—210.621 782 708 4
2567.634 462 35

4.0
—0.279 290 601 871 25

8.865 049 119721 8E-02
—3.723 629 359 264
60.545 334 540 6
4.0

—0.152 380 952 380 95
—0.235 246 949 573 5
—0.489 055 293 189

2.073 466 005 65
4.0

—9.307 087 347 014 74E-02
—0.337437 591 301 2
—0.154 278 244 536

0.787 266 61972
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.6—

~ 5

A

[i/a/s]

s/4]

4 ky

ky 3+2p

with some arbitrary coupling k between the states. Set-
ting e=p ——,', the mass eigenstates are

4 +e+(e2+k2y2)1 /2

.4

.3

~ 2

1.0 2.0
Y

I

3.0 4.0

FIG. 6. Graph of y(t/P)"'"" against y at @=2, together
with curve A the pure fermion case, and curve B the same
curve with 0.1y added to allow for the 0 (y ') weak-
coupling corrections.

5.0 =0.1

4.5

stance, give almost identical series approximants. On
the other hand, as p pass through the value —,', we ob-

serve a violent jump in the behavior of the mass gaps.
To see what is happening here, consider an effective
two-state Hamiltonian restricted to the relevant pure
gauge and mesonlike states:

As e passes through zero, the eigenvalue relevant to the
pure gauge state jumps from the negative square root to
the positive square root. This level-crossing

phenomenon is a lattice artifact and has nothing to do
with the continuum limit. Although the upward tenden-
cy of the mass gap curves for p & —,

' may indicate a high
photon-ball mass for small p in the continuum limit, the
erratic behavior of the curves around p= —,

' precludes a
definite interpretation.

Finally we compare mass differences between the sym-
metric and antisyrnmetric photon-balls, a few examples
being plotted in Fig. 8. For pS —,

' series approximants
for the two states give almost identical results. The be-
havior at small y values is principally driven by the
strong-coupling mass degeneracy at p= —,', and we be-
lieve no reliable conclusions can be drawn about
mz/mz in the continuum limit. For p~0.8 the curves
begin to show definite splitting between the symmetric
and antisymmetric states indicating that the symmetric
state is more massive, and that a rapid falloff' in mass
sets in at larger y. This is to be expected since in the
limit p~ao the glueball spectrum will decouple and
behave as in the pure gauge theory, where mz/m~ =2
in the continuum limit, and the glueball mass drops ex-
ponentia]ly at large y (Refs. 22 and 5).

Before completing this section, we mention that Horn
et al. , found it advantageous to fit Pade approximants
to derivatives of functions, rather than the original func-
tions, when dealing with their t expansions. We tried
similar techniques for the chiral condensate curves
above, [e.g., fitting Pade approximants to
d(gl/)"'""/d(y ) and then integrating], but found no
significant improvement in the domain of convergence of
the series approximants.

5.0 I
I

I I

m„

4.0

4.5
@=0.01

SYMMETRIC
STATE.

ANTI SY~TRIC

STATE.

3.5 ]Tl, IT]
5 A

4.0 2.4

3.0
0.0 0.5 1.0

3.5—
@=0.8

FIG. '7. Graphs of the antisymmetric photon-ball mass gap
m~ (eigenvalues of the dimensionless Hamiltonian 8'), for
various values of p. The shaded areas exhibit the spread of the
[t/2], [2/1], and [2/2] Pade and [t/1/t] Shafer approximants
excluding obvious outliers.

0.0
I

0.5

FIG. 8. The same as Fig. 7 for both the symmetric and an-
tisymmetric photon-ball mass gaps.
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TABLE IV. Estimates of antisymmetric and symmetric photon-ball mass gaps m~ and m& as func-
tions of y. Estimated errors in the final figures are given in parentheses.

0.01 0.1 0.4

0.1

0.2
0.3
0.4
0.5
0.6

4.0496
4.175(2)
4.34(2)
4.58( 8)
4.8(2)
5.2(4)
5.6{9)

0.6

4.0497
4.177{3)
4.36(2)
4.59(7)
4.9(2)
5.2(4)
5.8(8)

4.0500( 1 )

4.185( 1)
4.39( 1)
4.67(4)
5.0(1)
5.6(4)
6.3(6)

0.8

4.0500( 1 )

4.186( 1)
4.39( 1)
4.68(4)
5.1(2)
5.6(4)
6.3(7)

4.1074(2)
4.38(2)
4.8( 1)
5.4(5)
6(1)

2.4

4.1068
4.37(2)
4.75{8)
5.3(3)
6(1)

0.1

0.2
0.3
0.4
0.5
0.7
0.8
0.9

3.9367(4)
3.84{1)
3.73(6)
3.6(2)
3.5(3)

3.9365( 5 )

3.84(2)
3.73(7)
3.6(2)
3.4(4)

3.9794
3.9316
3.8752( 1)
3.8159(6)
3.753(2)
3.61(1)
3.52(2)
3.44(4)

3.9795
3.9335(2)
3.884(2)
3.840(6)
3.80(2)
3.73(5)
3.70(8)
3.7(1)

3.9989
3.9937( 1)
3.9793( 1)
3.9465(5)
3.883(3)
3.60(4)
3.4(1)
3.0(3)

3.9990
3.9957
3.9888
3.9760(5)
3.953(4)
3.8(2)

V. POSSIBLE IMPROVEMENTS WITH EXACT TERMS

It is important to estimate the likely improvements to
the series extrapolations as extra terms are added to our
series. With this knowledge, we can critically evaluate
the future usefulness of our method in dealing with
dynamical fermions. As an example, we examine the
e6'ect on our chiral condensate results for the massless
theory when the last few terms in the strong-coupling
series are truncated.

Figure 9 shows the highest order available [N/N ~ 1],
[N/N], and [N —1/N] Pade approximants to the chiral
condensate series taken to order y, y ', and y

' . If we
arbitrarily decide that a variation of 2% either side of
the mean of the [N/N —1], [N/N], and [N —1/N] ap-
proxirnants is tolerable, then the truncated series con-
verge out to the points indicated by the arrows. For
series to 0 (y ), 0 (y

'
), and 0 (y

'
), we have reliable re-

sults out to y=0.28, 0.42, and 0.54, respectively.
A rough extrapolation of these figures indicates that a

series of 0(y ) may converge out to about y=0.7S or
0.8, which is perhaps far enough to begin making serious
quantitative predictions about the matching to the
weak-coupling behavior (see, for example, Fig. S). This
would require an extra four terms of the series expan-
sion, or, without significant changes to the computer
codes, an increase by a factor of 10 in CPU time. A
certain amount of streamlining is further possible in the
computer codes by removing unnecessary clusters from
the cluster list, and by avoiding unnecessary strong-
coupling basis states in the individual cluster perturba-
tion expansions. It is difficult to say whether or not the
resulting calculation would be accessible to a supercom-
puter.

If we examine Fig. 9 further, we see evidence that the

.4

.3

.2 4/4l

/4]

0.0
I

0.2
I

0.4
I

0.6
I

0.8 1.0

FIG. 9. The [N/N —I j, [N/Nj, and [N —I/Nj Fade ap-
proximants to (gg)"'"" calculated from strong-coupling series
expansions to O(y') (dotted curve), O(y' ) {dashed curve), and
O(y' ) (solid curve). The arrows indicate approximately the
values of y at which the three approximants at each order
differ from their mean by +2%.

[N —1/N] Pade approximants are converging more rap-
idly than the other Fade approxirnants as N increases,
the [2/3] and [3/4] approximants agreeing to within 4%%uo

out to y=0.7. Recalling that the Fade approximants are
calculated as rational functions of y, we see this as

.5
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evidence for the assumed asymptotic behavior
(gg)'"""-ky as y~ oo. As more terms are added to
the series, it will become apparent whether the conver-
gence of the [2/3] and [3/4] Pade approximants is fortui-
tous, or continues to hold for higher [N —1/N] Pade
approximants, in which case two more [N —1/N] Fade
approximants could well be sufficient to match the
weak-coupling behavior. This would require only three
extra terms in the strong-coupling series, which could
well be a feasible project for a supercomputer.

Similar predictions should hold for the vacuum energy
and massive chiral condensate series. The outlook is
considerably less promising, however, for the photon-
ball mass gap series, which still have a long way to go
before any quantitatively useful results emerge. While
we have not attempted mass gap calculations for rneson-
like states, it is unlikely that cluster expansions for these
would do significantly better.

VI. CONCLUSIONS

As a first attempt at applying linked cluster expan-
sions to a gauge theory with ferrnions we have used the
method to study (2+ 1)-dimensional quantum electro-
dynamics. Hamiltonian strong-coupling expansions of
the ground-state energy and chiral condensate to O(y '

)

[or 0(g ) in terms of the dimensionless coupling]
have been generated numerically for various fermion
masses. Extrapolations towards weak coupling using
Pade and Shafer approximants fall short of an accurate
quantitative matching onto weak-coupling expansions,
though the correct qualitative behavior has been ob-
served. Our rough estimate of the dynamically generat-
ed chiral condensate is given by (20). Convergence of
the series approximants is worst for small fermion mass

p, where the series coefficients feel the effects of a singu-
larity close to the origin on the negative y axis, caused
by an unphysical vacuum degeneracy in the strong-
coupling limit at @=——,'.

Strong-coupling expansions of the antisymmetric and
syrnrnetric photon-ball mass gaps have also been generat-
ed, but only to 0(y ) (or g

' ). Convergence of the
Pade and Shafer approxirnants is poor, partly due to a
mass degeneracy in the strong-coupling limit at p= —,',
and it is difficult to draw confident conclusions about the
continuum limit. The inequality ms & m~ seems to hold
at least for p&0.8, and there is evidence to suggest a
photon-ball mass large compared with the bare electron
mass for p & 0.5.

The strong-coupling expansion technique has previ-
ously been applied to the pure U(1) gauge theory with
good results. In the present theory, we have found that
the case with the dynamical fermions is much more
difficult. According to our analysis in Sec. V, it is con-
ceivable that the vacuum energy and chiral condensate
expansions could be extended far enough to reach the
weak-coupling region using a supercomputer. One
drawback of the cluster expansion method, as with most
numerical lattice calculations, is that the calculation

only spans a finite number of lattice spacings. However,
an accurate determination of nonperturbative chiral
symmetry breaking, for instance, requires consideration
of large fermion loops. Our chiral condensate calcula-
tions have included fermion loops spanning up to 8 lat-
tice spacings, while our estimates of Sec. V suggest that
calculations involving diagrams up to 11 or 12 lattice
spacings may be sufficient to provide a reasonable
matching onto weak-coupling behavior. This may be
compared with recent finite-temperature Monte Carlo
simulations on lattices stretching to 8 or 10 spatial lat-
tice sites, which report asymptotic scaling violations at
the couplings relevant to these lattice sizes. The prob-
lem of long-distance effects is of course more pro-
nounced for the mass gaps, which depend on the rate of
falloff of long-range correlations. It is unlikely that our
mass gap series expansions could be extended far enough
to provide useful results in the foreseeable future.

It is clear that further technical developments will be
necessary before Hamiltonian strong-coupling expan-
sions can compete favorably with Monte Carlo algo-
rithms in the treatment of theories with dynamical fer-
mions. This is particularly so for the current problem,
and for QCD, both of which only become physically in-
teresting in the weak-coupling limit. We have also re-
cently completed a more successful analysis of (3+ 1)-
dimensional QED, for which a phase transition at finite
coupling is expected. Details of this calculation will be
given elsewhere.

Finally, we note the existence of alternate numerical
algorithms for studying Hamiltonian lattice gauge
theory, such as the t expansion, and the use of varia-
tional wave functions, both of which have produced
good results for pure gauge theories. We are unaware of
any attempt to apply these methods to theories with

dynamical fermions, but feel that the results of the
current investigation could provide a useful check on the
strong-coupling regime of subsequent lattice Harniltoni-
an calculations with fermions.
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APPENDIX: WEAK-COUPLING EXPANSIONS
FOR (2+1)-DIMENSIONAL QED

We extend the pure gauge theory weak-coupling ex-
pansion of Hofsass and Horsley to include fermions.
Writing UI exp(iy '~281—), The Hamiltonian (1) can be
written
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W g g, [(X X), +H. c.]++g ( —1)"X (r)X(r)I I

+iy '"Xgi[(X'X4 H. c ]H.i —y — Qadi[(»)i+H c ]~i +O(y }
I I

=&'+%f+y
'"a—f),+y 'mf—+ (Al)

In (Al), & contains contributions from the pure gauge parts W, and W'2. The analysis of Ref. 29 gives the ground-

state energy per site of y&g as

coI%= —2y +1.9162y +0(1)
with eigenvector

(A2)

~

D ) =exp ——,
' X 8,Da, f)i +O

1, 1'

' && "&+&2"z

e

m 3m (M —1)m
2 M'M' ' M

details of the matrix D being given in Ref. 28.
To determine the ground-state eigenvalue of 80, define Fourier-transformed fermion fields g~ by

' 1/2

XJ.(r) =
S

(A3}

(A4)

where XJ;j=1,2,3,4 is the value of X on each of the four sublattices in Fig. 1 and Ns =M (M even) is the number of
sites in the finite lattice. A straightforward calculation gives

&0=2 g ( [ [ g, (q }—(2(q)+ (4(q)(3(q) ]cosq„+[gt(q)(4(q)+ gz(q}$3(q) ]cosq I +H. c. )
q

+ X [0t(q Ci(q) —4(q 42(q)+03(q) —G(q 44(q) l
3'

q

= gh(q) . (A5)

The operator h (q) acts on a 16-dimensional Fock space spanned by
~
0), @„=g„(q)

~
0), 4,k

——gJgk ~
0},etc. The

vacuum is a "Fermi sea" with half the fermion states filled (those with negative energy), and resides in the 2-particle
subspace spanned by the ordered basis [4,3, @,2, @43 4]4 423 C 24), where h (q) is represented by the matrix

2p Y Y X —X 0
Y 0 —Y

Y
h (q)=

—X
0 —Y

p =, X =2 cosq, , Y =2 cosqz .

0 X
—Y —X X —2p

(A6)

The minimal eigenvalue and eigenstate are

Ao ———2(X + Y +p )'~,

where

(X2+ @2+ 2)l/2

—(X'+ F')
&(p+& )

&(p+& )

~
+,) =2& (p+& ) X(p+ )

—X(p+& )

(p+& )'

(A7)

Summing (%0
~

Ao
~
40) over mornenta and taking the continuum limit [i.e., X ~(4~ ) 'N 1 Odqo f "dq2), gives the

ground-state energy per site of y&of as



37 HAMILTONIAN STRONG-COUPLING EXPANSIONS FOR. . . 491

' 1/2
4y m/2 ~/2 2 P

dq) dq2 cos q]+cos q2+
vr 0 4y

2
(A8)

Adding (A2) and the piece of (A8) proportional to y gives, after a numerical integration, the weak-coupling limit of
the ground-state energy per site:

coo(y ) = —2y 2+0.958 ly +0 ( 1 ) .

The ground-state expectation value of the chiral condensate per site for the pure fermion Hamiltonian %o is

= X &folki&i &2&2+44 04&41&0)

(A9)

2
' —1/2

f dq, f dq2 cos q, +cos q2 + (A10)
my 0 4y 2

We claim that (A10) also gives the chiral condensate (1(tl(t)"""',correct to order y ', for the full Hamiltonian (Al),
that is

( yy ) lattice ( yy ) lattice+ O (y (Al 1)

To see this, consider a Rayleigh-Schrodinger perturbation expansion for (Al) with &r+&fo as the unperturbed Hamil-
tonian. Write the ground state

IGs)= I0&+y ' 'I 1&+y 'I2&+

with I0) =
I
D )

I Q ), where
I
D ) is given by (A3) and

I Q ) is the ground state of &f0. Then

&0
I A I 0)+y '(2(0

I
A'12)+ (ll A I

1 &)

(0
I
0&+y '(2(0

I
2&+(1

I
1&)

(A12)

[Note that the y
' y terms are absent from (A12) be-

cause they contain a factor (D
I 8i

I

D ) =0. ] A
straightforward perturbation expansion yields the results

&0I A'I 2& =&01 A I
2&re. - p- &D

I
8i'ID &

(A13)

where the terms ( )r„;c„,„t are the corresponding
terms appearing in a perturbation expansion of the
Hamiltonian

&fo+iy ' g yli[(X X)i —H. c. ]
l

—2iy P [(X X)i+H. c.]+ . (A14)
I

The 8-dependent factors in (A13) can be accounted for
by rescaling y

' ~By ', e=(D
I
8, I

D ), in
(A14). For the purposes of calculating the chiral con-
densate to O(Y ') it is therefore sufficient to consider
the effective Hamiltonian

g ( —1)"X (r)X(r)
y

+ g r)i[(X X)ie' y +H. c.]+O(y ) . (A15)
I

Introducing Fourier-transformed fields yields once again
the matrix (A6), but this time with

x =2cos(q, +y '8}, Y=2cos(q2+y '8) .

The calculation proceeds as before, requiring only the
change of variables q& 2~q & 2

——q, 2+y 'e in the last
line to recover the form (A8). We note that the equality
between ( 1(1{i)"""' and ( pp )f""' breaks down at
0 (y ) because of a mixture of terms containing
(D

I 8i
I
D ) and (D

I 8i I
D ) prevents factorization

similar to (A13}at the next order.
Finally, we comment briefly on the analogous calcula-

tion for quantum electrodynamics in (1 + 1) dimensions,
i.e., the massive Schwinger model. Assuming the
Kogut-Susskind lattice formulation, a calculation simi-
lar to but simpler than the one above gives the result

( yy)physical f dq(sin2q +~ 2& 2) —1/2

77 0

m——1n(ma),
a~0

(A16)

where m is the fermion mass and a the lattice spacing.
The chiral condensate thus diverges logarithmically in
the continuum limit. This exposes an embarrassing er-
ror in Ref. 29, where extrapolations were made assuming

aconite

chiral condensate in the continuum limit, and an
extensive table of numerical results was presented for
massive fermions. In retrospect, the logarithmic diver-
gence in the massive case is clearly evident in Fig. 6 of
Ref. 28.
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