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Lanczos calculation of the spectrum of Hamiltonian lattice gauge theory
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The use of a generalized Lanczos technique for the accurate diagonalization of lattice-gauge-

theory Hamiltonians is explored. The starting ansatz wave function is a Gaussian one which

solves the theory exactly in the weak-coupling limit. Results are given for compact U(1) lattice

gauge theory in 3+1 dimensions, on 4' and 6' spatial lattices, and for a range of couplings in the

continuum region. With 8 Lanczos states the precision for ground-state energies obtained ranges

(depending on lattice size and coupling) from 1 part in 10 to 1 part in 10'.

I. INTRODUCTION

Variational methods have long found a wide range of
applications in a variety of areas of quantum physics,
especially atomic and nuclear physics. More recently, a
spate of publications' attest to the increasing interest in

applying these methods to nonperturbative issues in
quantum field theory. Another powerful technique
which has been found to be useful in studying field
theories is the Lanczos algorithm for diag onalizing
complicated eigensystems. In fact, the variational and
Lanczos methods are intimately related —they can both
be regarded as techniques for searching a subspace of the
full quantum state space for the "closest" state to some
desired exact eigenstate of the Hamiltonian. As we shall
see below, the advantage of the Lanczos algorithm (suit-
ably generalized) is simply that it is completely systemat-
ic: at zeroth order it coincides with the usual variational
technique, but, when carried to higher order, the result-
ing spectral estimates are rigorously known to converge
to the exact eigenvalues.

The Lanczos method has been successfully apphed to
various two-dimensional field theories, such as the O(3)
0 model and the Gross-Neveu model; sufficient accura-
cy was attained in the computation of the spectra of the
corresponding lattice Hamiltonians to demonstrate clear-
ly the perturbative scaling of the mass gap in the contin-
uum region of the theory. In all cases it is crucial to
choose a starting ansatz for the ground-state wave func-
tion which is qualitatively correct in the continuum re-
gion of coupling. Such a choice is not particularly prob-
lematic for the two-dimensional theories mentioned
above, but for four-dimensional gauge theory the choice
of an exponential single-plaquette ansatz (p labels pla-
quettes)
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——exp A,gtr(U )

~

0) (1.1)
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(where
~

0) is the strong-coupling vacuum), which
would naturally generalize the ansatz used in Refs. 3 and
4, leads to difficulties. Technically, the matrix elements
of typical operators with fo lead in 3+ 1 dimensions to
integrals which cannot be evaluated analytically. More-
over, even in 2 + 1 dimensions (where the integrals may

be evaluated in terms of Mathieu functions) the conver-
gence based on any single-plaquette functional is too
sluggish to be useful. In this paper we show that a
Gaussian ansatz, which exactly solves the lattice gauge
Hamiltonian in the extreme weak-coupling region, leads
to rapid convergence of the Lanczos eigenvalues in a
range of weak to moderate coupling. Such an ansatz
necessarily contains long-range plaquette-plaquette in-
teractions (albeit of Coulomb type). But, as we shall see,
the Lanczos algorithm builds in systematically all the
relevant nonperturbative physics.

Our results are presented as follows. In Sec. II we
give a brief, but essentially self-contained, review of the
Lanczos procedure as we wish to apply it here. In Sec.
III we discuss the problem of boundary conditions and
nongauge-removable zero modes, which leads to some
technical difficulties in the evaluation of matrix elements
in the weak-coupling limit. Section IV describes the
derivation of the weak-coupling ansatz. Finally, in Sec.
V we explain how the Lanczos basis states are obtained
and matrix elements evaluated, and give the results for
compact 3+ 1 U(1) lattice gauge theory. In particular,
we show that at least six-place accuracy in the ground-
state energy of a 6 lattice is obtainable over a range of
couplings in the continuum region using only eight
Lanczos basis states. Calculations for non-Abelian
gauge theories are in progress.

II. REVIEW OF THE LANCZOS PROCEDURE

The Lanczos procedure is often regarded as a tech-
nique for tridiagonalizing a large eigensystem. From our
point of view, however, the procedure can provide (when
suitably generalized) a rapidly convergent series of ap-
proximants to the spectrum of a complicated Hamiltoni-
an in terms of a fairly small subspace of the full state
space, so that the problems implicit in the diagonaliza-
tion of very large eigensystems simply do not arise. The
crucial precondition for the success of this approach is
the choice of a physically appropriate ansatz as an ap-
proximate lowest-energy state in each sector of given
conserved quantum numbers.

The basic idea of the Lanczos approach is simply stat-
ed: if

~ 1bo ) is any approximate trial state with a
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nonzero overlap with the exact ground state
~ P, ) of a

Hamiltonian H (bounded below), then the states

~ g„)=H"
~
1(o), n =0, 1, . . . (2.1)

span a subspace containing
~ g, ), so that if

(2.2)

the E„converge monotonically to the exact ground-state
energy E, from above. After much experimentation
with a variety of quantum-mechanical and field-theory
models, the following general features emerge.

(a) The Lanczos procedure can be tuned by including
one or more variational paraineters A, in

~
1(0). In fact,

the choice of A, is crucial for rapid convergence. Use of
a strong-coupling wave function in the weak-coupling re-
gion, for example, leads to disastrously slow conver-
gence. It should also be noted that the optimal values
of A, may change considerably in higher order.

(b) In field theory especially, it is important ' to fur-
ther tune the Lanczos procedure by "dissecting" the
states H"

~
$0) to obtain a larger list of basis states.

This is done by treating each independent structure aris-
ing after the application of H as a new basis state pro-
vided it is separately compatible with the invariance
(translation, rotational, gauge, etc.) of the system.

How may we apply this approach to a lattice gauge
Hamiltonian in the weak-coupljng region appropriate for
the continuum limit? Here we are dealing with a Hamil-
tonian of the form [for U(N) theory]

(2.3}

where the form of the kinetic energy E is not relevant
for the present discussion. Evidently, for g~0, the po-
tential energy forces the plaquette variable Uz ~1 for all
plaquettes p. After full gauge fixing (see Sec. IV for a
potential trap here) this will imply that the link angles
8t (l labels links, a group generators) appearing in each
link variable Ut ——exp(it 8t ) are also forced to zero so
that effectively H becomes harmonic. So we should ex-
pect that a suitable starting point for the Lanczos pro-
cedure in the weak-coupling region is to pick for

~
1(o)

the exact ground state of the quadratic Hamiltonian ob-
tained by taking the small-angle limit in (2.3). (A varia-
tional extension of this ansatz will be introduced in Sec.
V.)

It should be strongly emphasized that although the
proposed zeroth-order wave function

~ po) is just the
one which we would use as the starting point of a
Rayleigh-Schrodinger perturbation calculation, there is a
profound difference in the two approaches. Anharmonic
terms in the full Hamiltonian render weak-coupling per-
turbation theory divergent, whereas the Lanczos calcula-
tion always yields a monotone, rigorously convergent se-
quence of approximants to the exact spectrum. The in-
gredients of both Rayleigh-Schrodinger and Lanczos
computations are similar: matrix elements of powers of
the (kinetic and potential parts of the) Hamiltonian, but

the resulting estimates lead in the former case to a diver-
gent sequence of numbers. In the case of QCD, weak-
coupling asymptotic expansions of the sort yielded by
the Rayleigh-Schrodinger theory are useless as the low-
energy spectrum is determined by self-consistent gap
equations in which the effective coupling is driven to or-
der unity in the physically important momentum regions
(there is no external large mass to fix the effective cou-
pling at a reasonably small value, as would be the case in
toponium spectrum calculations, say}. The calculation
of the hadron spectrum in QCD requires a rigorously
convergent, not merely asymptotic, expansion technique.

We close this section by giving a simple but striking
illustration of the point raised in the last paragraph.
Consider a one-dimensional anharmonic oscillator
specified by the Hamiltonian

H= —— +—x +gx
d' 1, 4

8x 2
(2.4)

TABLE I. Comparison of Rayleigh-Schrodinger and Lanc-
zos spectral convergence for an anharmonic oscillator.

Lanczos Optimized Lanczos
Order Rayleigh-Schrodinger (A, = 1.0) (A. =2.0)

0.575
0.548 75
0.570 39
0.544 76
0.583 12
0.51448
0.656 83
0.321 50
1.206 23

0.575
0.562 968 8
0.560 620 5
0.559 802 1

0.559 459 1

0.559 3040
0.559 229 9
0.559 192 8

0.559 173 2

0.643 750 00
0.566 007 19
0.559 605 50
0.559 172 16
0.559 147 61
0.559 146 39
0.559 146 33
0.559 146 33
0.559 146 33

We shall take g =0.1, moderately weak coupling, and
compare the results of the Rayleigh-Schrodinger and
Lanczos calculations up to ninth order. In both cases,
the starting point is the weak-coupling Gaussian ansatz

go(x) =e (2.5)

The results are presented in Table I. It is evident that
whereas the Rayleigh-Schrodinger values oscillate
around the correct result for a few orders (giving us a re-
sult correct to at most two significant digits) before
diverging badly, the Lanczos numbers converge steadily,
with geometrical increase of accuracy with order. After
nine orders the ground-state energy is given to five

significant digits. With an optimized coefficient in the
Gaussian ansatz [see (5.15)], the Lanczos convergence is
to eight digits after only six orders.

To summarize, the Lanczos approach allows us to cir-
cumvent neatly many well-known difficulties arising in
the reconstruction of the full nonperturbative informa-
tion available in lattice Feynman diagrams. To the ex-
tent that we can compute sufficiently far in the algo-
rithm, all of the nonperturbative information is automat-
ically inserted. There is no need, for example, to carry
out an explicit Borel resummation procedure (even if
such a procedure were justified).
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III. BOUNDARY CONDITIONS AND ZERO MODES

In this section we shall discuss the significance of an
appropriate choice of boundary conditions on the spatial
lattice of a Hamiltonian gauge theory in relation to the
analytic calculation of matrix elements. As we shall see,
zero modes present an obstacle for the evaluation of
these matrix elements in the weak-coupling region —a
removable obstacle in the event that all zero modes
represent gauge degrees of freedom. However, it turns
out that with some choices of boundary conditions on
the gauge-link fields, not all zero modes may be removed
simply by a choice of gauge, and we are forced to alter
the physics of the model —albeit to a degree which
should be ignorable in the continuum limit of many de-
grees of freedom.

The basic difficulty is illustrated by noting that we
shall be dealing with a wave function of Gaussian form
[I labels links, 8& link angles in a U(1) gauge theory ]

) (87

„e,
2

FIG. 1. A 2&(2 spatial lattice for an Abelian lattice theory
in 2+ 1 dimensions.

coupling region is proportional to

V= —,'(8, +86—83—8, ) + —,'(82+e85 —84 —8s)

+ 2(83+8s E8] 87} + p(84+ s87 s82 8s)

1
4(8, ) =exp —,8,M)( 8, .

2g
(3.1)

invariant under the gauge symmetry

(3.3)

where matrix elements will be obtained by integrating
with various gauge-invariant combinations of the

8& over the range —~ & 8& (m. To perform these calcu-
lations we diagonalize the quadratic form Mg in (3.1) by
a change of variables (8„=Q) O„&8—

&
)

l((8„)=exp — gp„8„
2g n

(3.2)

and, for small g, replace the finite range of the 8„'s by
—oo &8„&+ac to obtain explicitly computable Gauss-
ian integrals. This is correct to exponential accuracy

—~ )'2g ml&~P„l—e ", but we are evidently in trouble if any
of the p„'s are zero. In fact, in these directions the wave
function is flat, and we should really perform the in-
tegration first over these zero modes, leading to a com-
plicated multinomial expression in the remaining
nonzero modes. The expression is complicated because
the original hypercubical integration range of the 8& s
has been replaced, after the orthogonal rotation to the
8„'s, by a much more complicated set of range restric-
tions.

The appearance of zero modes in (3.1) is, in fact, to be
expected in any gauge theory where there are necessarily
gauge directions in configuration space where the
potential-energy function and, hence, the ground-state
wave function is flat. One might at first expect that a
complete gauge fixing (in which as many as possible of
the 8&'s are set to zero, say} would eliminate all such
zero modes. In fact, with the most common choice of
boundary conditions for the lattice, toroidal (or period-
ic), this turns out not to be the case.

We shall illustrate the difficulty on a very simple ex-
ample, a 2X2 lattice for a (2+ 1)-dimensional U(1)
gauge theory (Fig. 1). (A completely general analysis of
the zero modes will be given in Sec. IV.) With the links
labeled as in Fig. 1, the potential energy in the weak-

8)~8) + A, 2
—A, ], 82~ 82+ eA, ]

—A,2,

83 + 83 +k4 k3 84~84 + 'EA, 3
—A,4, etc.

(3 4)

8 =8 =8,=0, (3.5)

In (3.3), e= + 1 ( —1) corresponds to periodic (an-
tiperiodic) boundary conditions on the fields. In both
cases (3.3) is exactly invariant under (3.4). However, if
e= —1, the gauge symmetries (3.4) can be used to set,
say, 8,=86——87 =8S=0, leaving a positive-definite quad-
ratic form in 8, , 82, 83, 84. If @=+1,on the other hand,
at most three link angles can be set to zero, leaving two
zero modes in V. The two remaining zero modes are
readily understood as globally nontrivial connections—
constant fields wrapping the torus in either the x or y
directions but not removable by any local gauge trans-
formation. In the language of differential forms, such a
field evidently satisfies d A =0 without A =d A, and is,
hence, in one-to-one correspondence with the elements
of the first cohomology group of the torus (RR ) (Ref.
7). The antiperiodic case e= —1 is analogous (though
not precisely equivalent) to the case of the projec-
tive plane RP, known to be trivial at the level of first
deRham cohomology.

In general, in d spatial dimensions, toroidal boundary
conditions will lead to d zero modes which may not sim-
ply be gauged away. On an L" lattice, there will in addi-
tion be (d —1)(L —1) nonzero modes which evidently
dominate the local physics as L~op. So it is entirely
reasonable that a modification of the original theory to a
gauge-invariantly constrained one in which the trouble-
some zero modes are eliminated at the outset should
leave the essential physics unaltered in the interesting
limit of large L. In the Abelian case, the sum of all x
links (=—8„} is evidently gauge invariant (similarly for
y, z), so by taking as our theory the usual gauge-theory
action together with the gauge- (and translation-) invari-
ant constraint
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]ia, )ia, i(a,

theory, obtained by taking the small-angle limit of the
compact version. It will be convenient to derive this
Hamiltonian by a transfer-matrix technique, starting
from the contribution to the total Euclidean action aris-
ing from two adjacent spacelike planes

)ia,

FIG. 2. Projective-plane boundary identification for an
Abelian lattice theory in 2+ 1 dimensions.

we can completely eliminate all zero modes after gauge
fixing in the toroidal case. Alternatively, one may elect
antiperiodic or free boundary conditions in which the
problem does not arise.

In the non-Abelian case, the constraint (3.5) on link
angles [e.g. , the Euler angles for each link in SU(2) gauge
theory] would clearly not be gauge invariant. Setting a
given spatial Wilson line to unity would represent a
gauge-invariant constraint eliminating a zero mode in
the linearized limit, but it would clearly spoil translation
invariance. It might be thought that by setting up the
theory on a projective manifold with trivial first coho-
mology the zero mode could be eliminated without loss
of translation invariance. For example, in 2+ 1 dimen-
sions, one might identify boundary lattice points as in
Fig. 2 to produce a spatial manifold with the topology of
RP~ (the projective plane). The reader may easily verify
that there are no zero modes in the potential energy
after gauge fixing. Unfortunately, a conventional hyper-
cubic lattice with projective plane (antipodal)
identifications again seems to lead to a loss of discrete
translational invariance: for example, in Fig. 2 site 3 has
three independent nearest neighbors while site 1 has only
two. Again, with free boundary conditions, all zero
modes are eliminated by gauge fixing, but one loses the
discrete translational invariance present with toroidal
boundary conditions. For the time being, free boundary
conditions would nevertheless seem the most palatable
choice in the non-Abelian case. In Lanczos calculations
of the O(3) o model in two space-time dimensions, for
example, asymptotic scaling of the mass gap was clearly
demonstrated with just such boundary conditions.

S= g(68„+Q„—Q„-) + ~ +8~ . (4.1)

In (4.1) ao, a labels timelike and spacelike lattice spac-
ings, respectively, n runs over lattice sites, p over d
spacelike directions, and p labels spacelike plaquettes.
68„„is the discrete time derivative of the spacelike link

8„„,and g„ labels the timelike link connecting the two
adjacent spacelike planes. The transfer matrix is ob-
tained by integrating out these latter variables, a process
simplified by going to lattice momentum space (L" lat-
tice)

where

ye 2ni p n/Ly1

P

(4.2)

(4.3)

where

2nip /L
c„(p)=1—e (4.4)

J gdP exp
p&0

X~, I 4p I'+2&p,"Pr
2aog'

p
' '

p

where we have introduced

~, =-X lc„(p)l'

2a,g' p~o ~p
(4.5)

(4.6)

and

(4.7)pp
——gc„'(p)b, 8 „.

P

The kinetic contribution to the transfer matrix is thus

In the integral over timelike links a single zero mode ap-
pears, corresponding to the zero-momentum mode p=0.
This mode is clearly removable by gauge fixing (since a
gauge transformation constant on spacelike surfaces
leaves all O„„unchanged and shifts precisely the mode

0). Thus we drop it when doing the P integrations
and obtain

IV. THE %'EAK-COUPLING ANSATZ

In this section we shall provide a more careful discus-
sion of the zero-mode question discussed above in the
process of devising a suitable starting ansatz for the
Lanczos procedure. The ansatz we shall use is deter-
mined by the requirement that it agree with the exact
wave function in the g ~0 limit. In particular, it is sim-

ply the exact ground state of the Hamiltonian corre-
sponding to the noncompact version of the U(1) lattice

with

g T„,, (p)b, 8 „68*„
g

(4.&)

l —6„o
T„„(p)=5„„— c„*(p)c„(p).pv (4.9)

, 2 X I»p, I' —(1—~po) Ii p
I'

2aog' p p
'" ' dp
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The potential-energy contribution arises directly from
the second term on the right-hand side of (4.1):

over, say, those with p»0). The ground state of (4.15)
1S

n, p&v
go=exp — gQb, 8"

g
(4.16)

with

ao
2 + P PP P"

2Qg p p, v

(4.10)

U„(P)=&P T„„(P) (4.11)

8 „= (8'„+i8'„), c„(p)=y „+tri „.PP 2 PP

Then the potential energy may be written (in d =3)

(4.12}

4

QU„„(p)8 „Hp„———2(hp g Hp" (4.13)

The four nonzero modes 8" (in d =3) are an orthogonal
rotation of the original momentum-space modes and cor-
respond to the transverse degrees of polarization for lat-
tice photons of momentum p and —p. Thus

6

(4.14)
a=1

For each p&0 there are also two real zero modes (longi-
tudinal polarization) arising from the single complex
zero mode

Now, fix attention on a particular value of p (+0). So
far, we have avoided specifying boundary conditions
(i.e., a=+1 as in Sec. III). In the event e= —1, all al-
lowed values of p are half-integral and the Op„are com-
plex. If a=+1, the p=0 mode is to be removed by the
explicit constraint (3.5). In this case we also assume for
the time being that at least one component p„&0 or
L l2, so that again 8P„ is complex (the purely real modes
are easily handled by an analogous procedure). We wish
to choose a basis in which the quadratic forms U„„,T„„
[which are proportional, from (4.11)]are diagonal. Let

This wave function will be the starting point of the
Lanczos procedure used below to compute the spectrum
of the compact U(1) lattice Hamiltonian.

Before proceeding to the Lanczos calculations of Sec.
V, it will be convenient to introduce a more schematic (if
somewhat less explicit) notation for the link variables.
Thus, the pair (p, a ) labeling each independent real mode
will be replaced by the single index n, and the ansatz
(4.16) will be written more sitnply as

go ——exp ——,'gP 8 P„—:
2 V gp .=2 (4.17)

which will appear in transformed form as V „defined by

HP
——g VP„H„.

n

(4.19)

Explicit analytic formulas for V „are easily obtained us-
ing the matrix OP" introduced in (4.14), and will not be
given here.

V. LANCZOS CALCULATION FOR
U(1) LATTICE GAUGE THEORY

The calculation of the matrix elements required for
the Lanczos procedure is completely straightforward in
the Abelian case, once all zero modes have been re-
moved by gauge fixing and, if necessary, by gauge-
invariant subsidiary conditions. Using the simplified no-
tation introduced at the end of Sec. IV, the compact
U(1) Hamiltonian may be written

It will also be useful to introduce a matrix VpI relating
plaquette and link variables,

(4.18)

gU„„(P)C„'(P)=g(&P5„, C„'C„)C„"— aH= —
—,'g g 2 +,g(1 —cosHP)

() 1

„()H„g
with 8 =g„V„8„.The starting ansatz is

(5.1)

g a2 2
(a)2

(o)2+2 p, BO' 2g p,
(4.15}

These modes are eliminated by gauge fixing, in both the
periodic and antiperiodic cases. The columns of the
transformation matrix 0"are simply the real and imag-
inary parts of the two (in d =3) independent complex
vectors perpendicular to c„* [e.g., eXc„', c„*X(&Xc„')
suitably normalized, with e an arbitrary polarization
vector], and will not be written down explicitly here.

The lattice Hamiltonian is obtained from the transfer
matrix by standard techniques, taking a0~0. After
gauge fixing, we find

@=exp ——.'XV.8.' (5.2)

By applying the kinetic and potential parts of H to fo
separately, we obtain two additional states:

q) =icos(8 )qo,
P

6—=X(V'. 8'. )0o .

(5.3)

(5.4)

Thus, at 0 (H) in the Lanczos scheme, the Hamiltonian
will be diagonalized in a three-dimensional subspace,
spanned by the states (5.2) and (3.4). A further applica-
tion of H leads to the following five independent states:

In (4.15} each independent mode is included once (thus,
for e= —1, only one-half of the p values are summed

gcos8 (5.5)
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TABLE II. Lanczos estimates for ground-state energies of compact Abelian lattice theory in 3+ 1

dimensions (periodic boundary conditions).

Basis
dimensio g

2 0.2

149.3958
149.2893
149.2694
149.2673
149.2664
149.2628
149.2624
149.2623

4)&4X4 lattice
0.3

147.9812
147.7557
147.7045
147.6945
147.6896
147.6820
147.6806
147.6801

0.4

146.6031
146.2296
146.1298
146.1020
146.0856
146.0735
146.0703
146.0682

0.2

505.448
505.103
505.041
505.025
505.017
505.006
505.004
504.997

6g6y6 lattice
0.3

500.651
499.951
499.805
499.722
499.709
499.689
499.687
499.651

0.4

495.977
494.869
494.610
494.403
494.368
494.343
494.338
494.251

g4—=g(lu„8„)icos(8 )Po,
n P

$5
—=+sin(8& ) Vz„p„8„$0,

pn

it 6=&(v.'8')00
n

(5.6)

(5.7)

(5.8) K/2=2 gp,„p ,'gp„p—2—2/6+,'—p7 . —
n

(5.10)

from the eight states given above, i.e., through 0 (H').
The next step is to work out the action of the Hamil-

tonian on each of the Lanczos basis states defined above.
For example, defining K —=Q„B !88„,one easily finds

6—= Xv'. 8'. '40 (5.9)
n

At 0(H ) a further 12 states appear, bringing the total
dimensionality of the Lanczos subspace to 20. In this
paper we will present the spectral estimates obtained

I

(g
~ P ) =C J d8„+cos8 exp ,'gp, „82——

. P

The only quantities appearing as coeScients in these ex-
pressions are the explicitly known eigenvalues p„and
the transformed plaquette coeScients V „. Finally, we

must evaluate the Gaussian integrals arising in matrix
elements such as

1
exp —

2 g ( V~„+Vz „) +exp ——,'g ( V „—V,„)
PP n Pn n Pn

(5.11)

(with C=—(1to
~
$0) '). Then, defining (0&i,j &7)

I

tion of the matrix elements involves sum such as

and

(5.12)
+exp

1
V „V.„

Pn

H„.—= (1(,. ~H ~q, ),
one solves the generalized eigenvalue problem

Hv =AGv

(5.13)

(5.14)

In the worst case we have considered, we deal with sums
over five plaquettes, such as

PPP P P
with the 8)& 8 real symmetric matrices G,H to obtain the
spectrum Ik;) of H. As we see in (5.11), the coinputa- Using translation invariance we can fix one of the pla-

TABLE III. Lanczos estimates for ground-state energies of compact Abelian lattice theory in 3 + 1

dimensions 4;antiperiodic boundary conditions).

Basis
dimensi g

2 0.2

149.9861
149.8787
149.8584
149.8563
149.8555
149.8515
149.8510
149.8510

4)&4&(4 lattice
0.3

148.5604
148.3333
148.2811
148.2710
148.2660
148.2577
148.2563
148.2557

0.4

147.1717
146.7956
146.6943
146.6661
146.6494
146.6363
146.6328
146.6307

0.2

505.802
505.457
505.395
505.378
505.370
505.359
505.358
505.350

6&(6X6 lattice
0.3

500.998
500.298
500.151
500.067
500.055
500.035
500.032
500.000

0.4

496.318
495.209
494.949
494.742
494.707
494.682
494.678
494.589
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TABLE IV. Variationally optimized estimates (periodic boundary conditions).

Basis
dimensio g

4' lattice
0.2 (X=0.959) 0.4 (A, =0.917)

6' lattice
0.2 (A, =0.959) 0.4 (A, =0.917)

149.275 84
149.275 80
149.261 91
149.261 91
149.261 91
149.261 91
149.261 76
149.261 71

146.1216
146.1209
146.0615
146.0615
146.0614
146.0614
146.0604
146.0596

505.0401
505.0399
504.9929
504.9928
504.9925
504.9925
504.9914
504.9913

495.3400
494.3375
494.1377
494.1377
494.1377
494.1376
494.1343
494.1339

—kx /2
Po ——e (5.15)

for the anharmonic oscillator. Similarly, if we replace

quettes and sum over the remaining four. This opera-
tion is O((3L ) )=O(81L' ). With L =6, this is —10"
operations. We used the Cray XMP at the Pittsburgh
Supercomputing Center to carry out these sums.

The results of the procedure outlined above are
presented in Tables II and III for periodic and an-
tiperiodic boundary conditions of the spatial lattice, re-
spectively. Here we give the ground-state energies, in
lattice units (aEs, ), of the lattice Hamiltonian for 4 and
6 lattices, for a variety of coupling (g ) values. In both
cases, the convergence is better for small coupling (in
this limit our ansatz is exact) and for smaller lattices. In
fact, the accuracy achieved with a 4 lattice and g =0.2
is about 1 part in 10 with the eight states appearing
through O(H ). The relative accuracy achieved at each
stage is roughly the same for periodic and antiperiodic
cases: the precise numbers differ by quantities of order
unity, whereas the energies given are extensive and order
L .

So far, the Gaussian ansatz which we have used as a
starting point for the Lanczos procedure was uniquely
determined by the weak-coupling limit of the compact
theory. So we have not really exploited the variational
freedom available in the Lanczos approach. A glance at
the second and third columns of Table I reveals that a
considerable acceleration of convergence can be achieved
by introducing a variational parameter A, in the ground-
state ansatz,

the ansatz (4.17) by

lbo ——exp ——gp„8„
n

(5.16)

and vary A, , considerable improvement in the conver-
gence rate is achieved. The results (for g =0.2 and 0.4,
periodic boundary conditions), with optimal choices for
A, , are displayed in Table IV. For the 4 lattice, for ex-
ample, comparing Tables II and IV, we see that the re-
sults for g =0.4 achieved at O(H) with A, =0.917 (with
three basis states) are better (i.e., lower) than those
achieved at the 0 (H ) level (eight states) with the origi-
nal ansatz (A, =1.0). The improvement of convergence
for L =6 is even more dramatic —we now obtain a six-
place accuracy for the strongest coupling (g =0.4) with
eight Lanczos states.

We should emphasize that the computational pro-
cedure used must be capable of extracting the spectrum
to an accuracy of a small fraction of unity in lattice
units, as the physically interesting mass gaps will be of
this order of magnitude once the theory is tuned to the
continuum region. For larger lattices (say L =10), the
convergence will be slower, and it may be necessary to
proceed to the O(H ) level with 20 Lanczos states. As
the continuum limit of our compact U(1) lattice theory is
a free Maxwell theory, we have not pressed these calcu-
lations further. Instead, the extension of the above tech-
niques to the non-Abelian case, where one expects a
physically interesting mass gap in the vacuum sector, is
under active investigation.
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