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We study overrelaxation algorithms for the thermalization of lattice field theories with multi-

quadratic and more general actions. Overrelaxation algorithms are one-parameter generalizations
of the heat-bath algorithm which satisfy the detailed-balance condition; the parameter is the relax-
ation parameter co, 0&co ~2, with co=1 corresponding to the heat bath. First, we show that the
co~0 (extreme underrelaxation) limit of the overrelaxation algorithm is equivalent to the Langevin
equation approach. We analyze the thermalization of a free-field action, and show that for co-2
an overrelaxed Gauss-Seidel algorithm yields a critical slowing down which is independent of
wavelength, and has a correlation time which is a factor N smaller than that for an unaccelerated
Jacobi iteration, with N the linear dimension of the lattice in lattice units. For a general nonmulti-

quadratic action, we give a generalized overrelaxation algorithm which satisfies detailed balance
with respect to an effective action which is explicitly computable in terms of the original action.
In the case of SU(n) lattice gauge theory we use this construction to formulate an overrelaxed al-

gorithm which has exact lattice gauge invariance, and which satisfies detailed balance with respect
to an effective action differing from the Wilson action only by terms of relative order a in the
continuum limit, with a the lattice spacing.

I. OVERRELAXATION AND ITS RELATION
TO THE LANGEVIN APPROACH

The generic lattice field-theory problem is that of
evaluating the Euclidean partition function

Z= f d[P]e (1)

with S the Euclidean action on a lattice and with

f d [P] an integration over discretized lattice variables.

In the Monte Carlo method for evaluating this integral,
one generates a Markov chain of configurations {P;I,
i =1,2, . . . by application of a transition probability
W[{P]~{/']],which is chosen to satisfy the detailed-
balance condition

Conversely, we may expect that by generalizing methods
which have been useful in solving the minimization
problem, we can get useful algorithms for the thermali-
zation problem.

Following this line of reasoning, a number of years
ago I showed that for the special case of multiqusdratic
actions (which includes the classical Yang-Mills action),
the standard Gauss-Seidel overrelaxation algorithm for
the minimization problem can be generalized to an over-
relaxation algorithm for the thermalization problem.
Since this earlier work forms the starting point for the
analysis of the present paper, I proceed now to briefly
summarize it. A multiquadratic action is one which, for
any node variable Pk, can be decomposed as

S [{/]]=$[{pI~k,pk]= Ak(pk —Ck ) +Bk, A/( )0,
(4)

$[{PI ] =0 . (3)

as well as normalization and erogodicity conditions. '

These conditions guarantee that in the limit i ~ ao, the
ensemble of configurations {P, I is distributed according
to the equilibrium probability density exp( —PS[{/)]).
In what follows, I will refer to the problem of generating
such an equilibrium distribution of configurations as the
thermalization problem If we now. consider the P~oo
(zero-temperature) limit, only the configuration which
minimizes S contributes to Eq. ( 1 ). Hence the zero-
temperature limit of a thermalization algorithm will be
an algorithm for the minimization problem of finding
configurations {P I which satisfy

with Ak, 8k, and Ck functions of the remaining node
variables

{NI~t:—{4
A Gauss-Seidel iteration for the minimization problem
consists of the successive replacement of each node vari-
able Pk by the value Ck which minimize the action as a
function of that single variable, with the other variables

held fixed. Although this procedure gives the
largest single step reduction in S, it is in fact not the
most efficient procedure when coherent effects over the
entire lattice are taken into account. A better minimiza-
tion algorithm, which is no more demanding computa-
tionally, is the overrelaxed Gauss-Seidel algorithm

P„~Pk =coC„+(1—co)P„,
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p 2 2
Ak(4» 4k )

CO

giving the restriction

0(co(2 . (8)

When co= 1, Eq. (6) reduces to the Gauss-Seidel prescrip-

with cu the "relaxation parameter. " Convergence is
guaranteed provided that S remains nonincreasing at
each step, which requires

0 & s [[pl«,yk] s—[l y j ~„y'k)

tion /)/i'k =Ck, in which the new value p'k has no memory
of the old value pk. In practice, optimum convergence
is obtained by doing several iterations with co=1, and
then doing many iterations with a value of co close to 2.

Let us now turn to the thermalization problem for the
action of Eq. (4). The thermalization analog of the
Gauss-Seidel iteration is the heat-bath algorithm, in
which a heat bath of temperature P ' is touched in suc-
cession to each node variable pk, with the other vari-
ables [pl~» held fixed. In Ref. 2, I showed that the
heat-bath algorithm for Eq. (4) admits a one-parameter
generalization, analogous to Eq. (6), in which the nor-
malized transition probability W is given by

PA»
~[[4j~k 0k Nkl =

1/2
PA»

exp [P'k —mC» —( 1 —n )P» ]
co(2 —cd )

(9)

When co= 1, Eq. (9) reduces to the heat-bath algorithm, since the new values /I)'k are distributed according to the equi-
librium action and are independent of the old values pk. To see that Eq. (9) satisfies detailed balance for general co, let
us introduce a hyperbolic angle 8 defined by

1 1 —co
cu —1 =tanh8, =coshO, , /2

———sinhO,
[co(2—co)]'~ [co(2—co)]'

in terms of which Eq. (9) takes the form

W[[/)//j«, pk~/)I/'k]=(pA„cosh 8/ir)' exp[ pA»[cosh—8(/)//'k —C„)+sinh8(/)//k —Ck)] j .

Detailed balance now immediately follows from the fact that

(/I)k —Ck ) +[cosh8(pk C)k+si hn—8(p k Ck )] =co—sh 8[(/I)k Ck } +(p'k —Ck } ]—
+2 cosh8»nh8(yk —Ck )(y'k —C/, )

=symmetric in 4k /)//k .

(10)

(12)

Since the transition probability of Eq. (9) is a Gauss-
ian, it can be conveniently represented as a stochastic
difference equation. Let n by a fictitious "time" index
which increases by one for each update of the entire lat-
tice, and let g„k be a set of Gaussian noise variables dis-
tributed according to

I

sition probability of Eq. (9) to each node of the lattice, in
some specified sweep order. ] Let us now rewrite Eq. (15)
by using the fact that pk —Ck is proportional to
as/ay„,

2PA»(kk Ck } ~ a [l4'/(k j IW )k j]=I
ak k

2 4w[Igj]= g —e
1

and hence which obey

(13)

and by defining ek according to

(16)

( )n»9n', k'~g , ~, '~k, k' (14)
2/8A»

~»[[4'i k l [4'iok j]=~k (17)

Writing pk =—pk, /t/'k = /1/k
+ ', Eq. (9)—is evidently

equivalent to giving

4k 0k ~(4k k )

1/2
co(2 —cd)

4pA
'ink ~

n+1 n BS co—4k = &»P—
a4'k

1/2
1/2

~k Qn, k (18)

with Ck and Ak functions of the p,
"+' for those nodes

which precede pk, and of /)//,
" for those nodes which fol-

low pk, in the sweep of the lattice. [This just corre-
sponds to the fact that an updating of the whole lattice
is accomplished by the successive application of the tran-

Apart from the extra factor of (1—co/2)', which ap-
proaches unity as co~o, Eq. (18) is just the discrete form
of the Langevin equation with variable step size ek and a
Gauss-Seidel interpretation of as/ap, and approaches
the corresponding Langevin stochastic differential equa-
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tion as e& ~co~o. Hence the Langevin equation ap-
proach corresponds to the extreme underrelaxation lim-
it of the overrelaxation algorithm of Eq. (9). 1' ' ' 'ld 1

—'[(b —(b )2~ & l)+1~l2t . ~ . sly l],l2, ~ &lg

II. CRITICAL SLOWING DOWN
FOR A FREE-FIELD ACTION

In this section we give a detailed theoretical analysis
of the performance of the overrelaxed minimization and
thermalization algorithms, motivated by the fact that
numerical studies by Whitmer, Creutz, and Brown and
Woch suggest that overrelaxation can improve the
correlation time, as well as the speed of thermalization,
in Monte Carlo simulations. We consider for simplicity
the case of a single massless scalar free field (t) in d di-
mensions; the inclusion of interaction and mass terms is
not expected to change the qualitative conclusions
reached below. The node variable is thus

(20)

with homogeneous (Dirichlet or Neumann) boundary
conditions applied at the edges of the lattice. Introduc-
ing the notation

(21)

we can now write the dependence of S on a given node

d

S = —,
' g [ [(t((i„+1 ) (t(I ] +—[P(iq

—1 ) PI ] j +—S,
S independent of pI . (22)

~ ~

and the action is taken as

(19) From Eqs. (4) and (ll) of Sec. I, we see that an overre-
laxed transition probability for the update pI~pI can
be constructed as

d

W [pI pI ]=JV exp ——,
' p g ( [ cosh8[(t((i„+ 1)—(}(II]+sinh8[p(i„+ 1)—pI ] j

2

+ [ cosh8[p( i„—1 ) pI ]+sinh8—[(t((i„—1 } (t(I ] j )— (23)

with the normalization constant A independent of pI and pI. Rewriting the pI dependence by completing the square,
and then substituting Eq. (10), Eq. (23) can be reexpressed as

W[(t(I ~pI ]=JVexp ~ — cosh8 2d(t(I —g [p(i&+1)+p(i„—1)]
@=1

d
+sinh8 2d(t(I —g [(b(i„+1)+p(i„—1)]

'2

+ (t(I, pI-independent

1 4P
4 d I(I(2—((I )

dpI —(1 I(I)d(t(I ——,
'—u g [(t((i„+1)+(t((i„—1)] p+, It((iIdnepe dne tn

(24)

Applying the procedure of Eqs. (13}—(18), Eq. (24) can be rewritten as a Gauss-Seidel stochastic difference equation

d
dPI+' —(1 co)dPI —,'cu g [(}(("(i„+—1)—+()(("+'(i„—1)]=—o.gI „,

@=1
' 1/2 (25)

ll, n )I', n' ~(( 2~I, I'~n, n'(
d((I(2 —I(I )

4p

It will be informative, in what follows, to also analyze the corresponding Jacobi stochastic difference equation, in
which the old values ())"(i„—1}are used for the earlier nodes in the sweep, instead of the updated values (}(("+'(i& —1),

d
dPI+' —(1 co)dPI ——

—,'cu g [P"(i„+1)+P"+'(i„—1)]=—o gI „, (26)
@=1

Although Eq. (26) is not equivalent to the iteration of an algorithm which satisfies detailed balance with the action of
Eq. (20), it has been extensively studied by Batrouni et al. , and so furnishes a useful point of comparison.

To solve Eqs. (25) and (26), we proceed by introducing a Green's function
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Gn, n' Gn, n'

alt ~ ~ t&gtt lt . tip

which satisfies the stochastic difference equation,
Gauss-Seidel case:

d

dGr r+'" —(1 ~)dGrr" ——,'~ g [Gr"'" (i„+I)+Gr"+'" (i„—I )]=5r r 5n n )

JM, =1

Jacobi case:
d

dGr r+'" —(1 to)—dGrr" —
—,'co g [Gr"'" (i„+1)+Gr"'"(i„—1)]=5rr 5„„

p=l

(27)

(28a)

(28b)

and the boundary condition

GI', I" =0 (29)

Then the solution of Eqs. (25) and (26) can be written as

4r = —X Gr, 'r' rr'9r, +4 r
I', n'

(30)

Jacobi case:

+P "+'(i„—1)]=0, (31a)

d
der"+' —(1 co)der" —

—,
'—at g [Q "(i„+1)

p=l

+(() "(i„—1)]=0 (31b)

with the initial condition P r ——Pr. Since Eq. (30) implies
that

where P r is the solution of the o =0 (noise-free, or zero
temperature) iteration,

Gauss-Seidel case:
d

dP r+' —(1 co)dP—r ,'co g——[P"(i„+1)
@=1

while the correlation time (the number of updates re-
quired to evolve from one thermalized configuration to
an independent one) is determined by the rate of decay
of GI I" with n. For a general Monte Carlo calculation
the therm alization and the correlation times are
different, but they will turn out to be equal for the over-
relaxed quadratic action case studied in this section.

Since we are really interested only in the asymptotic
limit of small mesh spacings or large lattices, we do not
attempt to solve the difference equations (28) and (31)
directly. (An alternative method, working directly from
the iteration matrix for the difference equations, and
yielding similar conclusions, has been given by Goodman
and Sokal. '

) Instead we follow the method of Gara-
bedian" and convert the discrete equations to an
equivalent continuum problem, for which the corre-
sponding partial differential equations can be solved by
standard methods. Let us denote the mesh spacing by a
and introduce continuum variables x„,t by the
correspondence

x„~ai„, f dx„~ g, dldx„~ 'b, ;

(32)
t~an, J dt~ g, dldt~a (33)

we see that introduction of the Green's function has per-
mitted us to separate Pr" into a mean value term and in-
dividual noise contributions. The rapidity of thermaliza-
tion is determined by the rate of decay of P r with n,

I

a +'5(xi —x', ) 5(x~ —xq)5(t t')~ 5r r„5„—
with b the finite difference operator. Treating first the
Jacobi iteration case, we rewrite Eqs. (28b) and (31b) as

d
I I I I I

(Grr' ' Gr'r' ) 2a g [Gr' (it +1)+Gr' (it 1) 2Gr r' ]=a 'a 5r r'5nn'
p=l

d

a 'da '(Pr+' —Pr")——,'boa g [P "(i„+I)+P "(i„—1)—2$r]=0 .
p=l

Making the correspondence

Gr"r" G (x,x'; t, t '), P r~P(x, t)

(34)

(35)

21 c)

, G (x,x', t, t') =—a 5(x, —x ', ) . . 5(x~ —x~ )5(t t'), —

2d a- a'
P(x, t) gg—(x, t)=O-,cta Bt p= 1 p

(36)

and referring to Eq. (33), we see that Eqs. (34) are the discrete analogs of the continuum parabolic partial differential
equations
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with the initial conditions

G(x,x';O, t')=0, t'&0, P(x,O)= smooth interpolation of Pr . (37)

Turning next to the Gauss-Seidel iteration case, we follow the Garabedian analysis and anticipate the fact that the op-
timum co is related to the mesh spacing a by

2

1+Ca

with C a constant of order unity. Substituting Eq. (38) into Eqs. (28a) and (31a), these can be rewritten in the form

(38)

d

(Gr r+'
'" Gr r"—' ) a g [Gr"'" ('i +1)+Gr"'" ('i 1) 2Gr", 'r"' ]

@=1
d

I I I d —1 —d —1+a X [Gr' ' ('p ) Gr' '" (i„—1) [Gr' —('i, ) Gr' (i„—1)]}=—a 'a " 5r r'5, '
~

(39)d d
dCa '(Pr+' —Pr) —a g [P "(i„+1)+P"(i„—1)—2gr]+a g IP "+'(i„)—P "+'(i„—1)

—[y "(ip) —y "(ip —1)]]=0 .

Again making the correspondence of Eq. (35), we see that Eqs. (39) are the discrete analogs of the continuum hyper-
bolic partial differential equations:

(40)

d g2 d 52
dC—G(x,x', t, t') —g G(x,x', t, t'}+ g G(x,x';t, t')= —a '5(x, —x'i ) 5(xz —xz)5(t t'), —

at i Bx '
i Btax

dC P(x, t) —g—, P(x, t)+ g P(x, t )=0,8 — " 8

p 1 ~Xp p 1 p

with initial conditions' as in Eq. (37). Now making the change of variable

d
s =t+ —,

' g x„,
@=1

some straightforward algebra shows that Eq. (40) is transformed into the canonical hyperbolic form

(41)

dC—G (x,x', s,s')+ — G (x,x';s, s') —g G (x,x', s,s') =—a '5(x, —x i ) 5(x& —x& )5(s —s'),
s

P

dC P(x,s)+ — P(x, s) —g z P(x, s)=0,8 — d 8 — 8
4 Bs 1 Bx

(42)

with the boundary conditions

G (x,x';s, s') =0,
P(x,s) =smooth interpolation of iI)z

(43a)

We assume that the boundary conditions are such that
there are no normalizable zero modes. (This implies that
the corresponding Laplace equation with inhomogeneous
boundary conditions has a unique solution. ) Then we
have

imposed on the surface
d

s= —,
' gx„.

@=1
(43b}

V il( = k—
5(x, —x', } 5(xz —xz}=gP (x)g" (x'),

(45)

Let us proceed now to solve Eqs. (36) and (42) by sep-
aration of variables. Let g (x) be a complete set of
eigenfunctions of the d-dimensional Laplace operator

with the minimum eigenvalue k, of order l. '. In the
Jacobi iteration case, we expand

G(x,x';t, t')= g G (x', t, t')g (x),
a'

V2

p ] BXp
(44) P(x, t)= gP (t}itr (x),

m

(46)

subject to homogeneous boundary conditions on the
edge of the cube 0(x„(L which bounds the lattice.

with the coefficients G and P obeying the diff'erential
equations
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2d d t t—G (x', t, t')+k G (x';t, t')
cuba dt

Continuity across s =s' requires

G ~ (x', s', s') =G ~ (x',s', s'), (56)
=—a" 'P' (x')fi(t t—'),

(47)
while the 5 function on the right-hand side of Eq. (51)
requires the first derivative discontinuity to be

(t)+k 'P (t)=0.
boa dt

Expanding the initial condition on P as

$(x,0)= gP 'g (x), (48)

[G ~(x', s,s') —G ~(x', s,s')]
4 ds

To solve these, let us make the ansatz

d —ly» ( i)d —1

N

(57)

P(x, t)= gP' 'P (x)e
soak

2d

We turn next to the Gauss-Seidel iteration case. We
now expand

G(x,x';s, s')= QG (x';s, s')P (x),
(50)

P(x, s) = g P (s)g (x),
m

with the coefficients G and P obeying the differential
equations

dC G (x', s, s')+ — G (x', s,s')d, , d d

+k G (x';s, s')= —a 'P' (x')5(s —s'),
(51)

d d
dC P (s)+ —

P (s)+k P (s)=0.
ds 4

Eqs. (47} are readily integrated to give

d

G(x,x';t, t')= g g (x)P' (x')e 8(t t')—,
m

(49)

6~=0
m (58)

as can be verified by inspection. Hence G(x,x';s, s') is
given by

G (x,x', s,s') =——a
4 2

CO

X g P (x)P' (x')

&m[' —'] &m ' —'
e —e

X
9'm Pm

8(s —s '
) (60)

and corresponds to taking a solution to the hyperbolic
equation Eq. (42) which has support only inside the for-
ward light cone:

and then show that this does in fact satisfy the boundary
condition of Eq. (43). Assuming Eq. (58), a little algebra
shows that Eqs. (56) and (57) are satisfied by

G'(x';s, s')= ——a" 'g" (x')
Cm Pm

(59)

The general solution for P~(s) has the form first given
by Garabedian:"

d 1/2

g (x„—x„')
, q~

(s —s') .
2

—
d 1/2 (61)

(s)=a e +b e

p =2[C —(C —k /d)'i ],
q =2[C+(C —k ~/d)'~ ],

(52)

Now the Schwartz inequality implies

d 1/2

+ g (x„—x„')& g 1 g (x„—x„')
@=1 p=l

' 1/2

exp[ t min (Rep, Re—q }] .

To solve the equation for G, we write

(53)

with the coefficients a, b implicitly (but not explicitly)
determined by matching to the initial condition on P of
Eq. (43). The values of a, b in fact do not matter; all
we need for what follows is that P decays as a function
of time at least as fast as

d
=d'~ g (x„—x„')

@=1

' 1/2

(62)

and combining the inequalities of Eqs. (61) and (62), we
see that inside the forward light cone we have the ine-
qualities'

G (x';s, s') = G (x';s, s'), s ~s',
G ~(x';s, s'), s &s', (54)

d
0&s —s'+ —,

' g (x„—x„')= .
@=1

d
t —t+ g(x —x ).

p=1

(63)

with
—p s &mSG ' (x';s, s')=a ' (x';s')e +b ' (x',s')e

(55)

Thus for t'&0, the surface t=0 lies entirely outside the
forward light cone, and hence the initial condition that
G vanish at t=0 is satisfied by Eq. (60), even though the
differential equation is not separable in the x, t coordi-
nate system. From Eq. (60) we learn that G also decays
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as a function of time at least as fast as Eq. (53).
Let us now determine (following again Ref. 7) the

value of C which maximizes the decay exponent

A,os ——min (Rep, Req ),
where GS denotes Gauss-Seidel. For k large enough
so that k /d & C, we have

(64)

Rep =Req =2C . (65)

Hence

min (Rep, Req )

=min{2C, 2[C —Re(C —k, /d)'~ ]j, (67)

and this expression is maximized for

C, , =k, /d'i

At the optimum C we have

A,os=Rep =Req =2C, , =2k, /d'~

(68)

(69)

and all modes have the same time decay exponent. By
contrast, for the Jacobi iteration the decay exponent [Eq.
(49)] varies quadratically with wave number

a =~,ak 'gd (70)

and becomes very small at the largest wavelengths, giv-
ing for the most slowly decaying mode

A,g =cogQk ) /d

Coinparing Eqs. (69) and (71) we have

~GS

A J

(71)

(72a)

Since k, -L ' and L/a =N, with N the dimension of
the lattice in lattice units, we get our fundamental result

Gs 2
d J/2N

AJ coJ

Hence the overrelaxed Gauss-Seidel algorithm dramati-
cally improves both the rapidity of thermalization and
the correlation time as compared with the Jacobi algo-
rithm, and makes critical slowing down independent of
wave length. This improvement becomes even more pro-
nounced when compared with Langevin-Jacobi pro-
cedures, for which (as shown in Sec. I) one has coJ &&1.

We conclude this section with two checks on the
analysis given above. First, the Jacobi case analyzed
above is just a continuum version of the model for the
correlation length studied by Batrouni et al. In units
with a=1, they find

2 2

1
(73)

F(p +m )

On the other hand, for values of k small enough so
that (C —k /d)'~ is real, we have

min(Rep, Req )=p &p, =2[C —(C —k, /d)'~ ] .

(66)

which with the correspondences e-coJ (cf. Sec. I) and

p +I -k becomes

N — -A, (74)
cog km

and so our result agrees with theirs. Second, as a check
on the reasoning leading to Eq. (60), we have explicitly
evaluated the time dependence of the Gauss-Seidel
Green s function for the L ~ oo limit in which the g
are infinite-space mode functions. Details of this calcu-
lation are given in the Appendix; the result is

ad —1

G(x,x', t, t')= ——
d f d 1 e"" "'g(l, t t')—,

d co (2~r)
(75)

g (1 II, I', t) =
4( C +i 1 " /d '

)

(1 II )2+ (1l)2
)& exp —t

(1II)2+C'd

&((C ilI'—/d' ) 8(t),

with 1" and 1 the components of 1 parallel and perpen-
dicular to the fixed vector (1,1, . . . , 1). The presence of
the factor 8(t —t') implies that G(x,x';t, t') vanishes at
t=0 for t' & 0, and so Eq. (60) does indeed satisfy the ini-
tial condition of Eq. (37). For C =k~/d', Eq. (75) im-

plies that the decay exponent is —k
&

for wave numbers

~1
~

larger than k„ in agreement with Eq. (69). [For
wave numbers

~

I
~

smaller than ki Eq. (75) is no longer
relevant, since the difference between infinite space and
finite box mode functions becomes significant. ]

N~ N~

d) = II f « II f « (76a)

and with the general (nonmultiquadratic) action

S =S,[{pj,{ lj]i+S [{2lj]i.
For this theory, consider an updating {P j ~ {P' j in
which only the {P j variables (or some subset of them) is
changed, and let S[ {P j, {P' j, {P j;8] be any auxiliary i
functional of the indicated field variables and the relaxa-
tion parameter 0 which is symmetrical under the inter-
change {Pj~{P'j.For this updating, we take the tran-
sition probability to be

III. A GENERALIZED OVERRKLAXATION
ALGORITHM, AND APPLICATION TO SU(5 )

LATTICE FIELD AND GAUGE THEORY

The results of Sec. II indicate that overrelaxation
should be of computational value for the thermalization
problem, and so we proceed next to construct overrelax-
ation algorithms for the Yang-Mills action (which, as
noted above, is multiquadratic in the components of the
gauge potential), and for the Wilson lattice gauge action
(which is not multiquadratic). The construction employs
the following generalization of the overrelaxation algo-
rithm of Sec. I: Consider a field theory with field vari-
ables which can be divided into two disjoint classes

{P j, {g j, with functional integration measure



37 OVERRELAXATION ALGORITHMS FOR LATTICE FIELD THEORIES 465

a[{y j {y'} ) =W {y},{q};8]exp( —P cosh OS, [{P'},{P})

—P»nh'OSi[{4} {4})—PS[{4}{4'} {4};Ol)

with the normalization ~ {$1,{$1;8]given by

N~~ '[{4}{4}8)= II f d4' p( —& o h'OS [{4'}{0}]—& h'OS [{@}{0}l—&S[{4}{4'} {P}Ol) .

(77a)

(77b)

Then 8'satisfies detailed balance with respect to the effective action

S, [{y},{q};8)=S[{((},{y}]+P 'ln(W{y}, {q};Olx&{4};8)),
N~ N

%{4}'Ol=P f d0W{0} {0}'8) g f dO

(7g)

The proof follows directly from the fact that

II'[{4} {0'})exp(—%[{4}{0}l—»(%{0}{0}'8)~%{4}'Ol»
=%{4};8)exp(—&cosh'8(S, [{4'},{0})+S,[{y},{4}])—&S[{4},{0'},{0};8)—&S,[{4}])
= symmetrical in {$1, {P'1 .

The multiquadratic case of the generalized algorithm is recovered by taking

Si[{y},{qj]=gL;[{yj {q}]a;,[{f})L,[{y},{fl)

(79)

(80)

with the L, linear functionals of the subset of variables {$1. The overrelaxation algorithm of Secs. I and II then cor-
responds to the choice of auxiliary functional

S[{gj,{P'}, {t)jj; 8]=sinh Oc osh 8+ ( L[ P{' }{+}]A,[{ltj]L,[{P},{l(}]

(81)

for which the transition probability 8'of Eq. (77a) becomes

W [ {P }~ {P' }]= %exp —P g (coshOL; [ {P' },{g }]+sinhOL, [ {P },{g }] )

X A,, [ {lt j ](coshOL, [ {p' j, {p j ]+sinhOL, [ {p },{@j ] ) '; (82a)

in terms of a relaxation parameter co related to 8 as in Eq. (10), this can also be written as

~[{4}~{0'}]=~exp—
2

g(L;[{0'}{4}l—(1—)L;[{4} {4}))
1J

(82b)

Since by the linearity of l. we have

coshOL;[{p'1, {@}]+sinhOL;[{p},{gj]=L;[{coshOcb'+sinhOQ}, {l(}],
the normalization is now given by

N~

JV '= g f dP'exp( PL, [{csh8o$'+si —h8n$}, {g}]A,"[{@}]L[{cosh8$'+sinh8$}, {g}])
1

W~

=(coshO) ~ P f dP'exp( PL, [{P'},{P}]A,,—[{g}]L[{P'},{g}])=independent of {P},

(83)

(84)

and so the second term on the right-hand side of Eq. (78) vanishes, giving in the multiquadratic case
S ff[ {p },{p 1;8]=S [ {p 1, {lt 1 ]. In the application of the generalized algorithm to the Wilson lattice gauge theory
given below, the second term on the right-hand side of Eq. (78) will be nonzero, but is arranged to be a higher-order
correction in the continuum limit as compared with the original action S.
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Let us now apply this algorithm to the Yang-Mills action

PS = f d x ,'Tr—(F„„F„,}, F„„=F~„TJ, Tr(T'TJ)= ,'fi,—,

with the field-strength F„„related to the potential A„by

A„= A'„T~, F„„=B„A—B„A„+igo[A„, A „] .

(85}

(86)

To formulate a discrete version of Eq. (85), we set up a cubic lattice with unit cell of side a, and associate the potential
variables with the centers of the links. Then for a plaquette in the x&-x„plane with center (x,„,x,„), as shown in Fig.
1, we have, for the field-strength component F„„atthe center of the plaquette,

Fp =F„„—(x,„,x,„)=a '[A „(x,„+—,'a, x,„)—A „(x,„——,'a, x„)—A„(x,&,x,„+—,'a)+ A„(x,&,x„——,'a)]

+igo ,' [ A—„(x,„,x„——,'a), A, (x,„+—,'a, x,„)]

+igo ,'[A—„(x,„,x,„+—,'a), A (x,„——,'a, x,„)]+O(a ), (87)

where the dependence on coordinates other than x„and x„ is not shown explicitly. Summing over plaquettes, and
noting that each plaquette is shared between two unit cells, we have for the discretized action

PS = ga Tr(F& ) .
P

(88)

Consider now an update in which the potential AI on a single link / is changed. By Eq. (87), for each plaquette P Dl,
the field strength F~ is a linear functional of A1, while for all other plaquettes the field strength has no dependence on
AI. Hence if we let IPJ be the set of potential components A(, and [g] be all other potential components, then in
terms of these variables the action of Eq. (88) has precisely the form of Eqs. (76b) and (80). Moreover, if we choose
any canonical gauge fixing (or if we do not gauge fix), then the integration measure has the form

(89)

required by Eq. (76a). Thus the conditions for validity of the algorithm of Eq. (82) are satisfied, and so an overrelaxed
algorithm for the update A1~ A1' is

W[AI~AI]=JVexp —g a Tr(cosh8FJ, +sinhHFP) =JVexp g a Tr[FJ, —(1 m)F~]—
PD1 co(2—co )

p p I g I I

(90)

Although Eq. (90) exactly satisfies detailed balance with respect to the discretized action of Eq. (88) it is not exactly
gauge invariant, and this limits its usefulness in simulations where maintaining exact gauge invariance is important.
To get a computationally useful algorithm, we must construct an analog of Eq. (90) within the framework of wilson s
lattice gauge theory. ' Because the lattice gauge theory action is not a multiquadratic form, it is not possible to con-
struct an overrelaxed algorithm which exactly satisfies detailed balance with respect to the Wilson lattice action.

Zcy, Zcv +

Av Zcg 1 a, Zcv
Z +g0 Z +gO

Zcgjs Zcv

tl Av Zcp + g +s Zcv
1 Uv t& Uv~

Jll Zv
Xepy Zcv 'f C1

FIG. 1. Plaquette and potential variables in the x„-x„plane
used to formulate Yang-Mills lattice field theory.

FIG. 2. Unitary matrices associated with the links of the
plaquette of Fig. 1, which are used to formulate SU(n) lattice
gauge theory.
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However, this is a stronger requirement than is needed, since the lattice action is in any case only an order-a approx-
imation to the continuum action, and any member of the equivalence class of local, gauge-invariant lattice actions
which differ from the Wilson action by relative order-a terms in the continuum limit is equally suitable as a lattice
action. We will show that it is possible to construct an exactly gauge-invariant lattice gauge theory transition proba-
bility by the procedure of Eqs. (76)—(78) above, which satisfies detailed balance with respect to an explicitly comput-
able effective action differing from the Wilson action only by terms of relative order a in the continuum limit.

To carry out this construction we rewrite Eq. (90) as

W[AI~A&']=JVexp —sinh8cosh8 g a Tr(Fp+Fp) —(cosh 8—sinh8cosh8) g a Tr(Fp)
Pal PD1

—(sinh 8—sinh8cosh8) g a Tr(Fp) (91)
PDl

and look for lattice gauge theory realizations of a Tr(Fp), a Tr(Fp ), and a Tr(Fp+Fp) . Consider the plaquette P
drawn in Fig. 1; in Fig. 2 we have redrawn this plaquette with the links labeled by the SU(n) matrices to which they
correspond in lattice gauge theory. Let us assume that the link potential being updated is Al ——A„(x,„,x,„——,a), or in

terms of lattice gauge theory variables, Ul ——U„. We de6ne

Up ——U„U,+ U„+ U„, Up =U„' U„+ U„+ U„=Up
~

(92}

Then the lattice gauge theory analog of Eq. (91) is

W[U&~U&']=JVexp —sinh8cosh8 g Po 1 — Re —Tr(UpUp)
p~U n

—(cosh 8—sinh8cosh8) g Po 1 ——Re TrUp
P~U n

—(sinh 8—sinh8cosh8) g Po 1 ——Re TrUp2 1

n

1 —N 1 1 1
=iVexp g Po 1 ——Re Tr(UpUp} ——g Po 1 ——Re TrUp

co(2 —co) p~U n n

1 —a) 1
Po 1 ——Re TrUp

co P~U n
I

(93)

with Re denoting the real part, with A' fixed by the re-
quirement

f d [U/] W [ Ui —+ U('] = 1, (94)

and with the parameter Po fixed in terms of n and the
bare coupling go by the usual relation'

&@0'

2n

We note that Eq. (93) is independent of the cyclic order-
ing of the link factors in Up, as long as Up and Up are
ordered in the same way; in other words, by cyclic in-
variance of the trace we have

Tr[(U„U„+U„+ U„)(U„' U„+ U„+ U )]

=Tr[( U, U„U„+U„+ )( U„U„' U, + U„+ )]

=Tr[(U„+U„U„U„+)(U„+ U U„' U + )]

(96)

The gauge invariance of Eq. (93) follows from the fact
that since Ul and Ul' have the same behavior under
gauge transformation, so do Up and Up:

Up ~ug Upug Up ~ug Upug (97)

and hence again by cyclic invariance of the trace the
quantities Tr(Up Up) Ti Up and TrUp are exactly gauge
invariant. Finally, since the U&' dependence of Eq. (93) is
of the form Tr(UI'U), with U a linear combination of
SU(n) matrices, in the case n =2 the efficient SU(2} algo-
rithm of Creutz' can be applied to the generation of
links Ul' distributed according to W[UI ~U/].

The argument that Eq. (93) is an acceptable algorithm
now runs as follows: Comparing with Eqs. (76)—(78), we
see that Eq. (93) has precisely the form of the general-
ized algorithm, with IP] corresponding to Ut, with Ig)
corresponding to the other links in the plaquettes
P D Ul, and with S, corresponding to those terms in the
Wilson action involving plaquettes PDUl. Hence Eq.
(93) exactly satisfies detailed balance with respect to an
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effective action, which differs from the Wilson action by
a term proportional to ln( JV[ UI, I g j;8]/JV[ [ p j,8]),
with JV the average of JV[U&, [1(tj;8] over UI. Since Eq.
(93}only involves couplings of the link I to links in pla-
quettes P containing I, and since the entire construction
is manifestly lattice gauge invariant, the effective action
is local and lattice gauge invariant. Suppose that we can
show that Eq. (93) differs from Eq. (91) by terms of rela-
tive order a (absolute order a ) in the continuum limit;
then to leading order (absolute order a ) the normaliza-
tion factor JV[U&, [gj;8] is independent of UI, since by
translation invariance JV in Eq. (91) is independent of
AI. It then follows that in(JV[U&, [gj; 8] /JV[[ litj; 8]) is
of order a in the continuum limit, and the equilibrium
effective action for the algorithm of Eq. (93) is a member

of the equivalence class of acceptable lattice actions.
To verify that in the continuum limit Eq. (93) reduces

to Eq. (91) up to an error of order a, we start from the
continuum limit of the individual link variables,

U„=exp[igoa A„(x,„,x,„,'—a)—+0(a )],
U, ~ =exp[igoa A „(x,„~—,'a, x, )~0 (a )],
U„+ ——exp[ igo—aA„(x,„,x,„+,'a)+—0(a )],
U„=exp[ —igoa A „(x,„——,'a, x,„)~0 (a 3)],

(98)

with TrO(a )=0 since the U's are all SU(n) matrices
and hence have unit determinant. For the products of
adjacent links which appear in Uz, we have

exp[igoa A„(x,„,x,„—,'a—)]exp[igoa A „(x,„p ,'a, x—,„)]=e + +,

exp[ ig0—a A„(x,„,x,„+,'a) ]e—xp[ igoa A—,(x,„——,'a, x,„)]=e
(99)

with

4+ igoa
——A„(x,„,x,„,'a)+——igoaA, (x,„+—,'a, x,„)

—
—,'go a [A„(x,„,x„——,'a), A„(x,„4--,'a, x,„)],

(100)

igoa A—„(x,„,x,„~,'a) ig—oa—A „(x,„—,'a, x,—„)
—

—,'go a [A„(x,„,x,„+—,'a), A„(x,„——,'a, x„)].

The errors 5+ and 5 satisfy 5+ ——0(a ), 5 =0(a ),

Tr5+ ——Tr5 =0. Moreover, since 5 =5+ (a ~ —a ) and
=4+(a~ —a), we have that 5++5 =0(a ) and

that the commutator [4+,4 ] is odd in a. Hence for
the plaquette product Up we have

Tr U~ =n ——,
'
go a Tr(FP ) +0 (a ),

TrUJ, =n ——,'go a Tr(FP) +0(a ),
(105)

Tr(UPUP)=n ——,'go a Tr(FP+FJ, ) +b, +0(a ),
b.=Tr[(@~y@ ~4'~ y4' )( —,'[4~,4 ]

which when 6=0 can be combined with Eqs. (95) and
(93) to give Eq. (91). ( Because of the identity
Tr(a[a, y])=0, terms analogous to b, do not appear in
TrUp and TrUp. } Since the error term 5 is potentially
of order a, to complete the derivation we must show
that 6=0. Now repeated use of the identity

Up ——U„U ~U„~U Tr(a[P, y])=Tr([y, a]P), (106)

=exp[4++4 + —,'[4+,4 ]+0(a ) j, (101) which follows from cyclic invariance of the trace, shows
that 5 can be reduced to the form

with —,'[4+,4 ]=0(a ), with TrO(a )=0 and [refer-
ring to Eq. (87)] with b, = —,'Tr[[4'~ —4~,4' —4 ](4~+4 ) j . (107)

4++4 =igoa F+ .

For a general altered set of potentials A ' we have

(102)

Up ——U„' U' ~ U„'~ U'

=exp [ 4~ ~4' ~ —,
' [@'~,@' ]~0 (a 4)j, (103)

N'+++' =igoa F~ (104)

From these equations we find

again with —,'[4'+, @' ]=0(a3), with TrO(a4)=0, and
with

In general 6&0, but for the special case in which 3'
differs from A by the change of only the single link vari-
able A„(x,„,x,„——,'a) or equivalently U„, we have

and 6 vanishes. Hence we have verified that
Eq. (93) is a suitable overrelaxed algorithm for lattice
gauge theory, for the case in which a single link at a
time is updated.

To conclude this section, let us compare the small-co
continuum limit of the overrelaxation algorithm of Eq.
(93) with the continuum limit of the lattice Langevin al-
gorithm of Batrouni et al. ; according to our analysis of
Sec. I, these should correspond. Taking the continuum
limit of the overrelaxation algorithm from Eq. (90), we
have
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Tr(Fp —Fp +NFp ) =Tr —
( At —A, ) + —,

' igo[( AI' AI ) A dj t ]+cdFp (108a)

with A,d;„,„, the potential on the leg of the plaquette adjacent to and following Ai. Referring to Eq. (98), we recall
that in the continuum limit goaA is the effective expansion parameter; approximating Eq. (108a} to leading-order ac-
curacy in this expansion gives

2

Tr(F~ Fp—+cuFp) =Tr —(AI —AI )+roF~ =— ( AP AJ—) + —( Al'J A~—)coF)+ Al'-independent . (108b)

In four dimensions there are six plaquettes P containing I, and so

g Tr(Fp Fr+co—F~) =
z

(AI' —A/) + —
( Al'~ —AIJ)co g FP + Al-in depe ndent

PDI a I
PDI

=3 —
( Ai' A&J)+——g F$ + Al'-independent .

a 6 P~l
(109)

Substituting Eq. (109) into Eq. (90), dropping Al'-independent terms and approximating 2 —m=2, we have
'2

&[A& At]= JVexp ——,'a ——
( At' A/)+ ——g Fl,

46 1, co

co a ' ' 6P
(110)

which can be rewritten as the stochastic difference equa-
tion

again showing that the Langevin approach corresponds
to the small-co limit of the overrelaxation algorithm.

' ]/2
—(AP —A/)= ——g Fi—1, ' co co

a ' ' 6 P~l 6
1

(111)
2 J IV. DISCUSSION

F, =iT' e g
PDI

Substituting

Tr[T~(Up —Up)]+e '

igoaAI igoa Fp
2

Ul ——e UP ——e (113)

into Eq. (112) and working to leading order in the ex-
pansion in powers of goad, we get, for the continuum
limit,

—ip
igo~ ( Al'J A)' )T'= iT' —F—g igoa Fl

2n . PDI

Now the lattice Langevin algorithm of Batrouni et al. ,
in the notation used above, takes the form

—FI
UI =e U

(112)

In closing I comment briefly on the comparison be-
tween the acceleration strategy pursued above and that
proposed by Batrouni et al. Let us adopt as the "figure
of merit" for an acceleration scheme the ratio of its in-
verse correlation time A, to that for an ~= 1 Jacobi itera-
tion. As we have seen in Sec. II, for an optimally over-
relaxed Gauss-Seidel iteration, the figure of merit is then
N, the length of a side of the lattice in lattice units. By
contrast, Batrouni et al. employ a Langevin method
based on the Jacobi algorithm, and propose a method of
Fourier acceleration in which the Langevin step size is
taken to have a momentum dependence which compen-
sates the critical slowing down at long wavelengths. In
principle, their method can yield (up to logarithms) an
inverse correlation time of A@a ', w, i-th a the lattice
spacing and e the small parameter which governs the
Langevin step size. Thus, recalling Eq. (71), for the
method of Batrouni et al. , the figure of merit can be as
large as

+ (
—

)
I /2 (114)

—1

—e(L /a ) =EN
ak

(117}

1,) ~
e—(AP A~)= — g—Fl-

go P~1

1/2
1

g
2 2 1 (115)

Equations (111) and (115) have precisely the same struc-
ture, and give the identification

6
CO = E',

2
go

(116)

which on substituting pago /(2n) =1 and factoring away
the generators TJ becomes

For lattices of moderate size, where e%-1, the overre-
laxation method should be competitive with Fourier ac-
celeration, but for very large lattices the Fourier method
wins out, irrespective of the step size e. Clearly, an op-
timal algorithm would combine the advantages of both,
by permitting a step size of unity, as in the overrelaxed
Gauss-Seidel approach, while replacing the factor
k, -L ' in Eq. (69) by a wave number of order a
One possible way to try to achieve an improved algo-
rithm is to combine overrelaxation with a mesh-doubling
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lattice refinement scheme, as is done in the case of the
minimization problem by the "hyper-overrelaxation" al-
gorithrn of Press' or the mesh-refinement-interpolation
scheme of Adler and Piran. A closely related approach
is the "rnultigrid" Monte Carlo method advocated by
Goodman and Sokal. ' I hope to pursue these issues in
future work.

Note added

In Sec. II we determined an optimum value of co—let
us call it cob-defined as the value of co which minimizes
the correlation time ~. By definition, this value of co

maximizes the asymptotic rate of decay of the correla-
tion between two lattice configurations, as the "time"
separation AT =AMa between the two configurations
becomes infinite (a = lattice spacing, hM =number of
iterations separating the two configurations). However,
in an actual Monte Carlo calculation this asymptotic de-
cay rate is not the quantity which directly governs er-
rors. What one does in a Monte Carlo calculation is to
perform some total number M of iterations, but to only
take every mth iterate as a member of the ensemble of
configurations used for measurements, where m-~/a.
Taking more configurations than this increases the
amount of effort spent in measurement without improv-
ing the statistics, since the additional configurations are
not statistically independent, while taking fewer
configurations than this needlessly dilutes the statistics.
Hence the quantity to be optimized is the absolute corre-
lation between two configurations separated by m itera-
tions, not the asymptotic rate of correlation decay.

This optimization problem also arises in the overrelax-
ation solution of differential equations, and the solution
is as follows: For the iterations i =0, 1, . . . one uses
overrelaxation with a sequence of relaxation parameters
co; with coo ——1 and with co;~cob for large i. In the case
of iterations based on "odd/even" or "checkerboard" or-
dering, as opposed to the "typewriter" ordering used in
Sec. II, the optimum co s can be computed explicitly in
terms of i and cub using Chebyshev polynomials. In the
Monte Carlo application, one would use a "sawtooth"
pattern of ~'s, returning co to 1 for the initial iteration
after each configuration selected for measurement, and

then stepping through the first m members of the Che-
byshev or other optimal sequence. Taking co—:cob for all
iterations can actually make the correlations morse after
a finite number of iterations than simply using co=1,
while the simple expedient of taking ~0= 1 and
co, , =cob already guarantees monotonically decreasing
correlations. For a brief and lucid discussion of these is-
sues see Hockney and Eastwood, ' while for a detailed
theoretical analysis see Vargas. ' A simple, explicit,
"checkerboard" iteration version of the calculation of
Sec. II has recently been given by Neuberger, and the
Chebyshev method is directly applicable to Neuberger's
scheme.
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Seidel Green s function of Eq. (60), in the infinite-space
limit in which the mode functions are
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(x)=
&

e'"", k x= g k„x„.)1/2 (A 1)

Substituting into Eq. (60), and noting that because of
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4 2 d —1a d;~.„e—pt —px n/2 —qt —qx n/2

G(x, O;t, O}=——
&

d k e' —e 8(t+ —'x n),
d to (2m. )" e —p

d

n=(1, 1, . . . , 1}, n x= g x„, p =2[C —(C —k /d)'~ ],
JM=1

d

q =2[C +(C2 k2/d)iy2] k2 y k 2

(A2)

We wish to evaluate the Fourier transform g (I,t) defined by

G(x, O;t, O)= ——
q f d I e' "g(I,t) .

42ad
d co (2~)

(A3)

Taking the inverse Fourier transform of Eq. (A2), the x and k integrations in the d —1 directions perpendicular to n
can be done immediately, leaving [with n=d'~ n, x =x n, I =I n, k =k n, (I ) =I —I ]
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dx
—pt —pd x/2 —qt —qd x/21/2 1/2

g (1 tl r) f e
—ilx f dk eikx 8(t +—,

'd' x)
2m

=2(C+ IC [k +(1 ) ]/d ]
' }

(A4)

To do the x integration, we make the change of variables

t+-,'d'"x =u,
giving

g(11 t}= f dk e "" ' ' I„,
7T

(A5)

(A6)
( —I)zu/'d' ' e

Q
0

1 1 1

q —p p i (k——1)2/d '~
q 1 (k ——1)2/d '~

1

pq —i (k —1)2(p +q)/d'~z 4(k ——1)'/d

Substituting p and q from Eq. (A4), and setting k 1=w, w—e are left with the single integral

g(l, l, t)= 1 I' oo 1/2
dW e

—i'u'2t/d 1

n'd — 4[1 +(I ) +2lw]/d itogC—/d&rz
(A7)

Since the denominator has a single zero in the lower half of the w complex plane, for t ~0 we can close the contour up
to get g=0 while for t &0 we can close the contour down to get the answer quoted in Eq. (75) of the text.
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