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Solvable light-front model of a relativistic bound state in 1+1dimensions
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The bound-state equation at equal light-front time is investigated in the framework of a scalar
field model in one space and one time dimension in the limit of an infinitely massive exchanged bo-
son. Analytic expressions for the bound-state mass and form factor are obtained. In a weak-
binding limit the results for mass and wave function coincide with those based on the nonrelativis-
tic Schrodinger equation with 5-type potential. For weakly bound systems the form factor reduces
to the proper static limit in the whole domain of momentum transfers. In general, the quality of
the static approximation is controlled by a dimensionless parameter (B/m) that characterizes the
strength of the binding.

I. INTRODUCTION

The problem of a two-body bound state in a frame-
work of a scalar field model quantized on the light front
has been studied in various aspects in papers by Feld-
man, Fulton, and Townsend, ' Karmanov, Muller,
Brodsky, Ji, and Sawicki, Sawicki, and Celenza, Ji, and
Shakin. Also studies in one space and one time dimen-
sions attract nowadays a revigorated interest. The mod-
el of fermions interacting by scalar bosons has been stud-
ied by Brooks and Frautschi in the usual space-time
quantization and by Pauli and Brodsky in light-front
quantization. Eller, Pauli, and Brodsky studied quan-
tum electrodynamics in light-front quantization. In this
paper we study a two-body bound state in a scalar field
model quantized on the light front in one space and one
time dimensions, in the limit of an infinitely massive ex-
changed boson. This setup corresponds to a contact in-
teraction and allows for analytic solution for the mass
and wave function of the two-body bound state for all
physically admissible values of the coupling constant. A
comparison has been made with a similar model by
Glockle, Nogami, and Fukui' based on a two-body
Dirac equation in one space dimension with contact in-
teraction. For a weakly bound system the results are
identical and coincide with nonrelativistic quantum
mechanics.

Since our wave function is both Lorentz invariant and
explicitly known, we are able to calculate the elastic
electromagnetic form factor of the model "deuteron" in
a rigorous way. Again, for weakly bound systems, our
result for the form factor agrees with the results of Ref.
10 and is equivalent to a static approximation. For
strongly bound systems, however, the static approxima-
tion fails even for small momentum transfers.

The paper is organized as follows. In Sec. II we
present the model. In Sec. III we give solutions for the
mass and the wave function of the bound state. In Sec.

II. THE MODEL

In this paper we study properties of a relativistic two-
body bound state in a solvable model in one space and
one time dimension. The model is based on the light-
front description of the relativistic system of two scalar
particles with mass m interacting via exchange of a
heavy scalar boson of mass p. We study the limit p~ Oo

corresponding to a contact interaction.
The Lagrangian of the system is

(2.1)

where x"=(x,z).
Quantizing on the light front we get

~( )
~ dk+ 1 b(k+)

—i(~kx++k+x )/2

(2sr )' &2

+H. c. , (2.2)

where x+' '=x +z, k+=k +k', cok ——m /k+, and the
nonvanishing commutators are

[b (k+ ),b t(1+ ) ]=5(k+ —1+ ) . (2.3)

We construct the two-body sector of the relativistic
bound state with the overall light-front momentum P+,

) = — J dk+ I dl+5(P+ —k+ —1+ )b (k+ )v'2 o 0

x b'(1')
i
0)t1,,(k+,1'),

(2.4)

IV we study the elastic form factor. A short summary is
given in Sec. V.
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with the normalization

f dk,+
~ P (k,+,P+ —k1+ )

~

=P+
0

so that

(2.5)

(2.6)

In lowest order in the coupling constant g the bound-
state wave function f is given by the integral equation

where

m g 1 14x 1 x 2 ) = dV j ~V ~ &( 1 —V i
—V 2 }

x )x2 2' 0 lx 2y ly 2

&(x;,y; ~
M')g(y&, y&), (2.7)

K(x;,y; ~M )= 8(y, —x, )

m 2

M—
x)

1 +(1~2) .
p m

y) —x)

(2.8)

Here M is the mass of the bound system, x;:—k,+/P+ is the fraction of the total light front momentum P+ carried by
the ith constituent, 0&x, ,y, &1, x, +x2=1=y, +y, .

To obtain contact interaction we perform the limits p~ ao, g~ oo keeping A,
—=g /2np m constant. Equation (2.7)

reduces to

1g(x„xz)=
Qx )xg MP

1 1
dy~dy~&(1 —y~ —y~ }

m 0 V v&yz

x)x2

(2.9)

III. THE SOLUTION B/m =(kn. /2) (3.8)

The solution of Eq. (2.9) is clearly the function of the
relative light-front variable x =x, —x2 and has the form

( I x 2) I/2

P(x) =N
a +x

(3.1)

with the normalization constant N fixed by the condition
(2.5)

whereas the strong-binding limit (M/2m =q «1) corre-
sponds to A, =1.

The average values of light-front momenta are easily
calculable. One has clearly

&x, &=&x, &=-,' (3.9}

and

2a

1+ 1 —a
a

1arctan-
a

(3.2)
N2

(x, ') =(x~'& =-,'+ —3+—(1+3a )arctan—1 2 1

a a

(3.10)

Here we have defined

a—:(1—ri )/q

ri=M/2m .

(3.3)

(3.4)

Since the light-front variables x; are invariants of
Lorentz boosts, the wave function g given by Eq. (3.1) is

the Lorentz-invariant object. For future use it is con-
venient to introduce a parallel parametrization of the
bound-state mass as

Thus in the weak-binding limit (B/m «I) we have

&x )=-,', (3.11)

(3.12)

&.e.,

whereas for the strong-binding limit (M/2m «1) we
get

B =2m —M, B =B—B2/4m,

so that

~2
m

The eigenvalue of Eq. (2.9} is given by the formula

k='g a
1

arctan( 1 /a )

(3.5)

(3.6)

(3.7)

(3.13)

In the rest frame (P+ =M) this reduces to
(k+') =0.3M'.

For the purpose of comparison to nonrelativistic
quantum mechanics we cast Eq. (2.9) into another form.
To this end we introduce the relativistic relative momen-
tum p as the new variable, defining

In the weak-binding limit (B /m « 1) one has
Blm =Blm and Eq. (3.7) yields

x) 2 ———1+1 p
2 e(p)

( —~ &p&+~), (3.14)
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where

e(p)=(m'+p')' ' (3.15)

Blm
0.5

Using definitions (3.14), (3.15), and (3.5) we transform
Eq. (2.9) into the form

2

m 2 e(p')
+B P(p) = —f dp™P(p'),

where the new wave function is defined by

P(p) =(1—x')'~'f(x) .

Using (3.1) and (3.14) we write (3.17) explicitly:

(3.16)

(3.17)

0.5

0.5 1.0

77/ 1

1+a p +m a /( 1+a 2)
(3.18)

The structure of Eq. (3.16) is analogous to that of the
Lippmann-Schwinger equation

2

+B P(p) =—f dp'P(p'),
2m 2 oo

(3.19)

describing a one-dimensional nonrelativistic two-body
system with the reduced mass m ' =m /2, bound by the
contact potential that in the position space has the form
(z =zi —z~):

g =(M/2m)
FIG. 1. Coupling constant k vs q =(M/2m) . The solid

line represents the solution (3.7) of the light-front equation, the
dot-dashed curve represents the solution (3.21) of the
Lippmann-Schwinger equation, and the dashed line corre-
sponds to the results of Ref. 10 based on the two-body Dirac
equation in one dimension with 5-type contact interaction.

nonrelativistic, positroniumlike approximation.
In addition, we draw also the results of Glockle, No-

gami, and Fukui, ' based on the two-body Dirac equa-
tion in one space dimension with a 5-type interaction.
In our notation their results reads

V(z) = nA5(z) —. ,

The solution of Eq. (3.19) is
'2

Blm =
2

(3.20)

(3.21)

2
A, =—arctana .

7T

IV. FORM FACTORS

the wave function reads

23
P(p) =

P +K

and its Fourier transform to the position space is

P(z) =+I~e

(3.22)

(3.23)

where we defined in the standard way K—:m8.
Indeed, in the low-momentum region of the phase

space (i.e., for p'/m «1}and for weakly bound systems
(i.e., for B Im =B Im «1) the kernel of Eq. (3.16) coin-
cides with that of Eq. (3.19) and we recognize the ap-
proximate solution (3.8) as an exact solution (3.21) of the
corresponding nonrelativistic equation. Likewise, for a
weakly bound system the wave function (3.18) reduces to
the expression (3.22).

In Fig. l we present the relation between the mass of
the bound system and the coupling constant A, as given
by the formula (3.7} and compare it with the result given
by the solution (3.21) of the Lippmann-Schwinger solu-
tion. One clearly sees the onset of the difference between
relativistic and nonrelativistic solutions as the binding of
the system increases. This feature appears to be qualita-
tively independent from details of interaction and there-
fore of rather kinematical origin —indeed, in Ref. 5 we
studied another extreme case, setting the mass of the ex-
change boson to zero (@=0)and found a similar relation
between the exact light-front solution and its

Let us treat our composite system as a prototype of a
deuteron and probe its structure by means of elastic elec-
tron scattering. Let us consider a situation when the
deuteron with momentum P absorbs a virtual photon
carrying the momentum q'=(q, q') and remains intact.
This means that the photon is absorbed by the proton
(constituent 1) which acquires the photon's momentum
and then both constituents could be found in the state
representing the deuteron with the final momentum P'.

The probability of such a sequence is measured by the
elastic electromagnetic form factor F(Q ), where

2
( 0)2 (qZ)2 Q2

so that Q &0.
In nonrelativistic quantum mechanics one works in a

static approximation neglecting a motion of the target
and calculating the form factor as the Fourier transform
of the charge-density distribution in the target. In this
case Q =q' and we have

F„(Q )= f dz, e '{t*{z,)P(z, ) . (4.1)

Here z
&

is the distance of the first particle (proton) from
the center of the mass of the target (deuteron). The
wave function P is taken as the Fourier transform of the
exact wave function (3.18). Keeping in mind that z =2z&
(z=2z2), where z is the relative position appearing as
the argument of the Fourier transform, one easily ob-
tains the form factor in the static approximation
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F„(Q')=
1+Q /(16mB)

(4.2)

In the case of the weakly bound system one has
mB ~mB =—a and the form factor (4.2) becomes identi-
cal to what one obtains upon using the nonrelativistic
wave function (3.23) from the very beginning

J (x)=I:q(a q) (—a.q)q: (4.3)

momentum transfer suffers a huge recoil. The natural
question arises of how good is the static approximation
to true form factor. To this end we calculate the form
factor from first principles.

VVe begin with the electromagnetic current for the bo-
son field,

F„(Q )=
2 2 (weak binding) .

1

1+Q /(16m )
(4 2 )

and define the form factor in a standard way:

(gp, , ~

j"(0)
~ gp~) =— (P+P')"F(q'), (4.4)

where the state vectors of the initial and final deuterons
are given by Eq. (2.4). We extract the form factor upon
calculating the longitudinal component of Eq. (4.4).
Defining q =P' Pand—using (2.2) we obtain

We note here that the result (4.2) is identical to the stat-
ic form factor calculated by 61ockle, Nogami, and
Fukui' for all values of the bound-state mass M.

In the actual scattering process, however, the deute-
ron not only does not remain at rest, but for large

I

k ~+ +1 j+

(,q, j+(())
~ q ) =— f dk~+ f"dI~+, 5(l&+ —k, —q+)p, (I~+,P+ —k~ )fp+(k~+, P+ —k&+ )

(4.5)

For elastic scattering the target in initial and final
state is on shell, i.e.,

p2 (pO)2 (pz)2 p+p — M2

and likewise for P'. Thus

P'+ =P++q+ =P+(1+a),
I ~+ =k+ +q+ =P+(x, +a),
l+ =k+ =P+x, .

Thus the new distribution reads

(4.11)

and

q =(P' P) = —M—2

p+p~+ (4.6)
x&+a

y =—I+ /P'+=
1+a

+ ~+
y l+P&+

1+a

(4.12)

2

Q =M
1+a

where we have defined the key parameter

a=q+/P+ .

(4.7)

(4.8)

Combining together Eqs. (4.4), (4.5), (4.8), (4.11), and
(4.12} we obtain the form factor as a function of parame-
ter a rather than Q .

2+a —i 1+x 1+x +2a
(4.13)

Solving Eq. (4.7) for a we get

(Q'/M')+ [(Q'/M )'+4(Q'/M')]' '
2

This yields

Q/M for Q/M « 1,
Q'/M' for Q/M))1 .

(4.10)

Relation (4.7} constitutes an essential point —we see
that, due to a lack of transversal degrees of freedom in
our model, any nonzero momentum transfer in elastic
scattering must have a nonvanishing longitudinal com-
ponent. For this reason we cannot reduce our result to
the standard Drell-Yan formula" for the latter holds in
the particular frame of reference where q+ =0, Q =q~ .
This leads in effect to a change in fractional distribution
of longitudinal momentum of the bound state among
both constituents. Clearly, we have

1 +0
Q

2

16m

(a «1, weak binding),
M

(4.14)

Here the wave function is given by Eq. (3.1), x —=x, —x2
and y:—y ~

—y2 =(x +a ) /(1+ a ). Performing the in-

tegration we arrive at the general analytical result for
the form factor F(a) that is given in the Appendix.
Here we discuss only special cases.

For small values of momentum transfer a we expand
our result into the power series in a. The terms linear in
a cancel exactly and in the particular case of a weakly
bound system (a =B /m « 1) the result simplifies to

1 +0(a')
a1+

48/m
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where the second equality follows from Eq. (4.10). This
agrees with our result for static approximation, cf. Eq.
(4.2').

On the other hand, for large momentum transfers
(a &&1) and again for weakly bound systems (B /m « 1)
we obtain

APPENDIX

In this appendix we calculate the form factor defined
by Eq. (4.13}. Using Eq. (3.1) we obtain

XF(a)= [(1+a) Io(a) —o(1+o.')I, (a)2+a
F(a)= +O(1/a ) (a~&1, weak binding) .4B /m 2

a
(4.15)

—(1+a)I2(a)],

where N is given by Eq. (3.2) and

(A 1)

However, for large values of a relation (4.10) yields
a=Q /M . This again yields the Q falloff. Explicit-
ly, for weak binding (M =2m), Eq. (4.15) reads

16m M
F(Q )= +0 (Q/M &&1, weak binding) .

Q2 Q4

+& x" dx

a (1+a) +(x+a) x +a
n =0, 1,2 . (A2)

The integrals are calculated in a standard way, yielding

(4.16)

Again, for weakly bound system the large-Q behavior
of the full form factor agrees exactly with the predic-
tions of the static approximation.

V. SUMMARY

Iq(a) = Pk(o') (1+a }(1+a}
(1+ a'}(1+a)'—4a

&k(~) —~Pk(~)
+

a (1+a)
1 1 —a

X arctan —+arctan
a a (1+a)

In the framework of a scalar field theory quantized at
equal light-front time we investigated the model in one
space and one time dimensions with interaction La-
grangian L =gP P. When the exchanged boson becomes
infinitely massive the model is exactly solvable by means
of simple quadratures. The mass and the wave function
of the bound state are calculated and shown to reduce to
nonrelativistic results for the case of weakly bound sys-
tems. The elastic electromagnetic form factor is also ob-
tained in an analytical form. For weakly bound systems
the true form factor reduces exactly to the results based
on the static approximation both for small and large
momentum transfers. This is not the case for systems
with considerable binding —even for small momentum
transfers the exact form factor yields the behavior (A7)
that differs from the static approximation (4.2) as the
control parameter B /m increases.

Finally, we point out that in the classical Drell-Yan
treatment" of the elastic form factor one works in the
infinite momentum frame, where not only q+=0 and
q~+0, but in addition one always satisfies the condition
q~&&P'. The last condition allows for an approximate
treatment of individual momenta of constituents in the
final-state wave function. On the contrary, due to a lack
of transversal dimensions in our model we are not only
forced to work with q+&0, but in fact in the light-front
approach one deals with finite momenta and an exact
treatment of the redistribution of momenta in the final
state is found vital to ensure proper results simultane-
ously for small and large momentum transfers.
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1 1
+2Qk(a) —arctan —, k =0, 1,

a a' (A3)

where

2a
Po(a)=, P&(a) = —Qo(a),D(a) '

(~) + ( } g (~) 2~ ( )+
D(u) ' ' D (a)

Qo(a}=, Q&(a)=a Po(a),w (a) 2

D(a) '

(A4)

and

w(a)=2aa +a (1+a ),
D(a)=w (a)+4a a

(A5)

The last integral yields

1 1 1 —aI2(a }= arctan —+arctan
a (1+a) 0 a (1+a)

—a Io(a) (A6)

completing the calculation of the form factors.
(i) For small values of a (o. «1) we expand expres-

sions (A3)—(A6) into the power series and collect the
terms up to order a . To check the result we expanded
the integrand of Eq. (4.13) into a Taylor series in a and
integrated term by term, in any case arriving at
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o;F(a)=1— +a 3 1

2(1+a } 3a ()+a )

1 5 1

22+2a (I+a } 3(1+a ) 3a (I+a )

3 1 1 1+ — arctan-
2a a

For the special case of the weakly bound system
(a =8/m «1) this result reduces to the formula (4.14).

(ii) For large values of a (a~~1) we use the expan-
sions

(A7}

I

Combining (A8) and (A9), with (Al) and using Eq. (3.2)
we observe that the leading behavior is provided by the
term (A8):

Io(a)- 1 2 1
arctan —+O(a ),a a(1+a }

(A8)

1 4aF(a)=-
a 1 —a1+ -'. 1 1arctan—

1 1+a arctan-
a

and

1 4I, (a)—
3 (1+ 2}2

1—I+aarctan — +O(a ),
a +0 1

a
(A 10)

1 1 —a
arctan —+arctan

a a (I+a)
2a

a(1+a )
(A9) In particular, for weak binding (a =8/m «1) one ar-

rives at Eq. (4.15).
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