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An operator equivalence between the Thirring model and the fermionic sector of a Dirac field in-

teracting via derivative coupling with two scalar fields is established in the path-integral framework.

Relations between the coupling parameters of the two models, as found by Gomes and da Silva, can

be reproduced.

Recently, a couple of papers' have appeared which
discuss the equivalence of the Thirring model with the
fermionic sector of a derivative-coupling (DC) model.
This equivalence is significant for analyzing different as-
pects of mass perturbation in the Thirring model. The
fermionic Green's functions of the Thirring model and
the DC model are shown' to be identical for a certain
choice of the coupling parameters. In Ref. 1, moreover,
it has been demonstrated that the degrees of freedom in
the two models may be matched by the introduction of
"spurions. " Notwithstanding these successes, however,
an incompleteness still persists. The reason is that a one-
to-one correspondence between the two models at the
operator level could not be furnished.

In this comment we explicitly show how this operator
equivalence can be established in the path-integral frame-
work. It ought to be noted that the operator construc-
tions proposed in our approach are a logical consequence
of the path-integral method. This is to be contrasted
with the conventional bosonization technique to suggest
an ansatz and subsequently verify it by different means.
The identification of the models at the operator level im-
mediately leads to certain relations between the coupling
constants. Analogous relations given in Refs. 1 and 2 are
reproduced. We also exhibit that different regulariza-
tions adopted for the DC model lead to solutions ob-

tained by redefining the coupling parameters. In the case
of the Thirring model also, it may be recalled, exactly the
same thing occurs. An interesting feature of this ap-
proach is that "spurions" are not necessary at any stage
of the computations.

The DC model is described, in the Euclidean metric,
by the Lagrangian

/DC —— i QBQ—+ —,'(B„1I,) + —,'(B„$2)

+g 1 fy sy„~„414+g24y„d„tt2tt
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where the Euclidean y matrices are defined by the alge-
bra

Iy„,y, I
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&oi = —&&0= & 'Vq= —X» Xs='V 5

A massive version of this model with g2
——0 has been con-

sidered by several authors. ' The approach of Ref. 4,
however, is closest in spirit to the ensuing presentation.

The generating functional of the DC model in the pres-
ence of sources is

Z= f dgdgdP, dP exp f d x[ig8$ —,'(B„P,) ——
—,'(B„P ) —g, Py y„B„Q,Q ggy„B„P P+Pg—+qg]

Since our attention is confined to the fermionic sector only, we have not included the bosonic source term. A change of
variables in the fermion fields is now introduced to eliminate the interaction:

exp('ysgltt11 tg2tt12)|b (x) W(x) P(x) e p('xysg1(b1+'g2tb2) .

The transformed generating functional is then given by

Z= f dgdtttdttp11$2JDcexp f d x[itttgg —,'(tl„pt)2 —,'(t)—„$2) +g—e ' ' ' ' '2)+ale ' ' ' ' 'p] (2)
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where JDC is the Jacobian of the fermionic transforma-
tions (1). The occurrence of such a Jacobian was first ob-
served and elaborated by Fujikawa in the context of
gauge field theories. In the case of theories without any

y~ couplings the calculation of this Jacobian is quite
straightforward. Subtleties arise wherever there are y&
couplings because the Dirac operator is no longer Hermi-
tian. Different prescriptions have been advocated and
we work with two of these. Let us first follow the general
treatment of Fujikawa to deal with non-Hermitian
operators. We define two Hermitian operators

(01~4'2)@(41~42) +( ( 1&~2)+ ~1&( 2
(3)

+(01&02)~ (01~02 ) ~(41&42)+( ( 1~42} ~

whose eigenfunctions are the orthonormal sets cp„,g„:
D&ip„=l,„&p„, f y„(x)y (x)d x =5„

D&X„=A.„X„, f X„(x)X (x)d x =5„

Expand tt(x) and P(x) in terms of the orthonormal sets,

P(x)= ga„ip„(x), t'ai(x}= gb„X„(x),
so that the functional measure is given by

d g d P =det[q&„(x ) ] 'det[X„(x ) ] ' g da„db„.

Let us now consider the expansion of the new Fermi
fields g', tb' in (1) where the transformation is initially re-
garded as infinitesimal. The result for the finite transfor-
mation may be subsequently eva1uated.

P'(x)= pa„'y„(x), g'(x)= g b„'X„(x) .

The new functional measure is given by

dpi'd4'=det[t. (x)] '«t[X'. (x}] ' g «.'db.',
where the coefBcients a„',b„' are related to a„,b„by

r

a. = 5..+ f V!(iy~i5&i ig2-5~2)f
L

=g C„a

+ f X„(iysgi 5$i+ig25$2)X b'

= gC„' b'

obtained from (I) and exploiting the normalization condi-
tion (4). The Jacobian is then extracted from

d P d P=(detC ) '(detC') 'd P'd P'

and can be estimated by the standard procedure:

/M
(detC) '(detC') '= lim exp tr f—d x g y" (x)(iy5g, 5$, —igz5itiz)e p (x)

M~ oo
I~

/M
+X (x)(iysg, 5$, +ig25$2)e X (x)

lim exp ' —tr d x g y (x)(iy g,55$, igz5itiz)e —
(p (x)2 —D@/M

M~ oo

—D~/M
+X (x}(iysg, 5$, +ig25$2)e X (x)

T

d k —D), /M
lim exP —tr d x

z
e ' "[(iy5g, 5$, ig25$2)—eM~ oo (2ir )

—D /M .
I+(iysg, 5y, +ig25yz)e ' ]e'""

a result obtained after inserting D&,D& from (3} and performing the Dirac algebra. Thus, remarkably, the fermionic

measure remains unaffected. Towards the end of this paper we will deal with a different regularization which produces
a nontrivial Jacobian. In the present case, however, the generating functional (2) assumes the form

Z= f ditidpdp, dpzexp f d x[ip8$ —
—,'(a„p, } —

—,'(a„pz) +1Tje' ' ' ' ' 'ri+qe ' ' ' ' 'p]

Performing the integration over the fermion fields,

Z =f dp, diaz exp fd x[——,'(a„y, }' ,'(a„itiz)' rie"—"—'""'"—s,e""'"'"'"2)]

where SF(x) is the free Fermi propagator

i8SF(x)=5' '(x) .

It is now simple to compute the two-point function:
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(Tg(x, )g(xz)) = 5Z
671(x, )5g(x ~ )

= fdg, dP, SF(x, —x2) exp f [ —
—,'(B„P,)' ——,'(B„$2)']

y5$1~1( i ) ig242(xi )+iy5glkl (x2)+ig202(x2)l

= exp I (g, +g 2 )[DF(0)—DF (x, —x 2 ) ] I SF (x, x2 )—,

where DF(x) is the free scalar propagator,

ODF(x)=5' '(x) .

From this path-integral analysis we may write the classi-
cal solution of the Fermi field by inspecting (1):

g(x) = exp[iysg, P, (x) ig, (—((ix)]g (Fx),

where gF (x ) is the free massless Fermi field and

Pi(x), $2(x) are the free massless scalar fields.
To quantize this solution, we follow the usual prescrip-

tion of normal ordering the exponential with respect to
the scalar fields:

f(x ) =:exp [iy~ i Pi (x ) ig 2$&(x ) ]—:fF(x ) .

Using the above expression for itt(x) and employing
Wick's theorem, the structure for the two-point function
given in (5) is reproduced which furnishes a simple check
on the proposed operator fit. This completes our discus-
sion of the DC model and we focus our attention on the
Thirring model.

The dynamics of this model is governed in the Euclide-
an metric, by the Lagrangian

The Euclidean generating functional in the presence of
sources is

Z= f dgdgexp f d x[igBQ g—(Py„P)~

In solving this model we shall henceforth closely follow
Ref. 4. A multiplicative factor

f do„exp g fd x(o„gy„P—)

is inserted to eliminate the quartic coupling term. The
modified Z is

Z= f dgdPdo„exp f d x(iggP+go„2ggdg—

+A+ ri4)

Exactly as happens in the DC model, the vector field may
be decoupled from the spinor field by the following
change of variables:

g(x)~ exp[ 2igP(x—)+2igy5a(x)]g'(x),

g(x) ~g'(x) exp[2igI3(x )+2ig y ~a(x) ],
cr„(x)~8+(x)+is„„B,a(x) .

In terms of these new objects, Z may be expressed as

Z= fdgdgdadPJ&exp f d x[iPPg+g(BP+iE„,,B,a) +Pe ' g+qe ' P]

The calculation of the Jacobian Jr of the fermionic transformation (7) has been extensively dealt with in an earlier
work. We insert the final result corresponding to Schwinger's normalization. Thus,

Z= fdgdgdadPexp fd x il/i++g(BP) —g 1 — (B„a) +itje ' g+7)e

=fda dP exp . fd x g(BP) —g 1 — (8 a) —i)e ' SFe

The two-point function is then computed as usual:

6Z
6g(x, )5g(x2)

4g 2

= exp [DF(0) DF(x, —x~)] SF(x—, —x2)
K —2g
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which reproduces Schwinger's form.
It follows from the preceding analysis that the operator

solution of the Thirring field may be directly written from
(7) and (8):

1)'r(x ) =:exp[ 2—igp(x)+2ig y, a(x)]:QF(x), (10)

where a(x) and 13(x) are massless scalar fields satisfying
the modified commutation relations

[a(x, ),a(x2)]=
2g 1—2g

. D(x, —x2),

gi1t'1 ——2ga, g2$2=2gp .

The coupling constants are, of course, not independent.
Recalling that whereas pl and 1)}2 are the usual free scalar
fields while a and P are the modified ones [as defined by
(11)],it follows that

1
[P(x, ),P(X2)]=— D(x, —x2) .

2g

a(x) and P(x) are defined here in indefinite metric but
translation-invariant form which is opposed to Klaiber's
positive-definite but translation-noninvariant form. The
method of extracting the positive-definite physical sub-
space has been elaborated in an earlier paper. Again, as
was done for the DC model, we may utilize (10) and (11)
to reproduce the two-point function (9) by exploiting
Wick's theorem. This serves as a consistency check.

It is now simple to establish a one-to-one correspon-
dence between the operator solution (6) of the DC model
with (10) of the Thirring model by making the
identifications

tive models.
As promised earlier we will end this Comment by

working with an alternative prescription for computing
the Jacobian in (2). The Dirac operator 8 in the DC
model, it may be recalled, is non-Hermitian. If we make
an analytic continuation tl,1~i(t„1h owe ver, it becomes
Hermitian. We may then employ this analytically contin-
ued 8 as the regulator. The final result will be obtained
after continuing back to P, . This approach, it may be
mentioned, leads to the consistent anomaly in a chiral
gauge theory. The previous prescription (i.e., using 8 P
and gg as regulators), on the other hand, corresponds
to a gauge-covariant (Schwinger-type) regularization and
consequently yields the covariant anomaly. In the
present example the Jacobian, evaluated in the standard
way, turnsout tobe

JDc e"P
2 I d x [g i (~„41)'—g2(i}p42)']

and the corresponding Z is

2

Z= I dg, dg2exp ' jd x —— 1 — (B„P,)

2

1+ (&„P,)'

[P,(x, ),$,(X2)]= 1 D(x, —x2),
1—

where the source term has not been written. Thus the
massless scalar fields pl and $2 occurring in the operator
fit (6) are now defined via the modified commutators

D(x, —x2) =[/, (x, ), P, (X2)]

[a(x, ), a(x2))4g
2

g&

[02(xl ) ( 2(X2)]=
1 D(x, —x2) .
g21+

(13)

2g

g& 1—2 2g
D(X1 X2 } ~

The two operator solutions of the DC model may be
matched by adopting the identifications

D(x, —x, }=[y,(x, ),y, (X2)]=, [13(x, ),p(X2)]
4g 2

gz
2g

2 D(x, —x2),
g2

which leads to the relations

g I 41 g141 S~t 8242 (g202)S

where the expression with the subscript S corresponds to
the previous Schwinger form. Using the commutation re-
lations (13) it follows that the new solutions may be ob-
tained from the Schwinger-type solutions by the replace-
ments

1+ g&
2

g21+
(12}

2 2=
g&g2 =—

2g

where k is Klaiber's coupling corresponding to
Schwinger's normalization. Equation (12) reproduces the
choice of parameters discussed in Refs. 1 and 2 but
which, as opposed to our presentation, have been ob-
tained by comparing the Green's functions of the respec-

(gi)s 2

+

In view of its equivalence with the Thirring model, this
feature of the DC model is quite expected. The different
solutions of the Thirring model are known to be repro-
duced by redefining the coupling parameter.
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