
PHYSICAL REVIEW D VOI.UME 37, NUMBER 12 15 JUNE 1988

Finite-size eKects and phase transitions

Bernd A. Berg
Supercomputer Computations Research Institute and Department ofPhysics,

The Florida State University, Tallahassee, Florida 32306

Alain Billoire*
Supercomputer Computations Research Institute, The Florida State University, Tallahassee, Florida 32306

Roman Salvador
Supercomputer Computations Research Institute and Department ofPhysics,

The Florida State University, Tallahassee, Florida 32306
(Received 27 April 1987; revised manuscript received 8 February 1988}

We perform numerical simulations of SU(2) lattice gauge theory on 4L 64 lattices with

4 & L & 16. A finite-size scaling analysis of the tunneling signal extrapolates the critical coupling P,
(relevant for the deconfining phase transition with N, =4) toward the infinite-volume limit and
yields 2.28 &P, & 2. 32. We illustrate the method with exact results for the two-dimensional and nu-

merical results for the three-dimensional Ising model. For finite systems the notion of a "phase
transition" is discussed critically. Geometry is important and the deconfining phase transition is
not sharp on lattices that are relevant for spectrum calculations.

For obvious reasons, Monte Carlo (MC} simulations'
[of four-dimensional (4D) pure SU(n) lattice gauge
theories] are performed on finite lattices. Here, we use
periodic boundary conditions. Mass measurements are
best done on (N N„N, »N) lattices. Looking at the
correlation function's falloff in the z direction allows one
to estimate the spectrum of the Hamiltonian in a N box.
For technical reasons N, should be taken as large as pos-
sible, although the spectrum is independent of the value
chosen for N, . Such lattices are called N ~ lattices here-
after.

Independently, lattice gauge theories are known to ex-
hibit a finite-temperature phase transition. One consid-
ers lattices of size N, N, (N »N, ), interpreted as sys-
tems of volume N at inverse temperature N, (Ref. 4). In
the thermodynamical limit N~ ~, N, fixed, the system
presents two phases, a confined phase for P &P, (N, ) and
a deconfined phase for 13&P,(N, ) where the global Z„
symmetry (of pure lattice gauge theories) is broken. (As
usual, P=2n /g, where g is the coupling constant. )

This phase transition is a finite-size effect: namely, N,
is small. A natural question to ask is whether the usual
finite-size effects (where more than one direction are
small) are related, in some sense, to the deconfining phase
transition. It is a widespread belief that this relation is
strong and that the N Oo lattice is in the "deconfined"
phase for P &P, . [Here P, (N) =P, (N, =N) as determined
from finite-temperature studies on N, N, (N~oo ) sys-
tetns. ] This belief is not based on firm ground. The two
geometries are very different and the belief has to cope
with the fact that, for fixed N, a N N, lattice does not un-

dergo a phase transition for N, ~oo. This shows up if
one tries to locate a transition and/or crossover by look-
ing at the order parameter (i.e., the mean Polyakov loop

in any of the three "short" distances). Even if P is large
enough such that order takes place and Polyakov loops
tend to be aligned, macroscopic domains will exist, the
net effect of those being that for N, ~DO the crossover
moves toward infinity. For N, = 00, the average
Polyakov loop is zero, configuration by configuration.
The reason is that, starting from a completely ordered sit-
uation (all loops aligned}, the energy cost to create a
domain (a z interval, where all loops have been rotated by
a Z„element) is (small and) independent of the domain
size. It is 2N A, where A is the surface tension. For N,
large, a typical configuration mill thus contain many
domains. The system does not choose one of the n possi-
ble ground states but rather a unique linear combination.
Tunneling between would-be-degenerate vacua (domain
formation) lifts the degeneracy and restores the Z„sym-
rnetry.

The statement that in a finite system a transition is not
sharp seems to be standard terminology. Already the ex-
ample of the Polyakov loop expectation values shows
that, to be precise, one has to distinguish two aspects of
this terminology. (a) The sharp transition and/or cross-
over smoothens out. (b) Its location in P moves. Often
the second aspect seems to be regarded as irrelevant,
presumably because the effect is considered to be a small
correction as compared with the first one. This is not
necessarily true. In the case of Polakov loop expectation
values the signal moves, with X,~oo, all the way to
P= Oo. Because of the strong N, dependence this exam-

ple looks somewhat artificial and it is natural to ask for
the behavior of signals that are N, independent. A large
class with this property are all signals that can be ex-
pressed as functions of eigenvalues of the (N, direction)
transfer matrix. In a numerical lattice calculation one
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normally estimates such eigenvalues from correlation
functions.

Correlation functions of Polykov loops (in the funda-
mental representation) characterize directly the broken
or unbroken phase. Here we consider correlations be-
tween two zero-momentum Polyakov loops [closed in the
(a) small direct direction] separated by a distance z (in the
large direction)

C(z)=(P(0)P(z))-exp( Nlr—z) (z~oo) .

Here N is the length of the loop and ~ the string tension
(more precisely the energy of a 't Hooft electric flux per
unit length). If the symmetry is broken, Polyakov loops
are aligned over the whole lattice, C(z) is thus constant
for large z, K is zero. On finite systems x will never be
zero, the phase transition will appear as a rapid crossover
to very small ~ values.

Other eigenvalues of the transfer matrix, for example,
those related to glueball masses, are also expected to be
sensitive to the deconfining phase transition, although
they are not directly related to the Zz symmetry. For in-
stance, in the N, ~ geometry one might expect massless
gluons at temperature T =T, . In this paper we do not
obtain explicit results for the finite-size behavior of glue-
ball masses. Indirectly, our results suggest that reliable
a priori expectations on this topic are not possible, at
least on the basis of current rather limited theoretical
knowledge of the dynamics of non-Abelian gauge
theories.

For SU(2) lattice gauge theory, the breaking of the Z2
symmetry invites Ising-model analogies. The mass gap m
of an Ising model corresponds to Na and we like to illus-
trate our investigation first with the solvable 2D Ising
model. Consider a LN, Ising system

exp
' —pg t7, tTJ

0.=+ l, o . =+1
J

1P= —(T temperature),
T

and spin-spin correlations in the z direction. The corre-
sponding mass gap is exactly known for any L (and
periodic boundary conditions):
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where e is the positive root of cosh(e }=cosh[—2P
—lntanh(P)]+[I —cos(q)] for q&0 and
co= —2/3 —ln tanh(P}. In the high-temperature region, eo
is positive. It is equal to the infinite-volume mass gap.
As L goes to infinity, the two sums cancel out:

In the low-temperature phase, m is exponentially small,

—]eo (Lm=O ev'L (3)

to the correlation function. Summing over all contribu-
tions gives

C(z)-exp( —ze )
2PL (d —1)
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Figure 1 shows the mass gap m as function of the temper-
ature I/P for various values of L. The envelope is the
infinite-volume result where m is zero in the whole bro-
ken phase.

The following comments are in order.
(i) Symmetry breaking means that several (here two)

degenerate ground states are possible. The zero mass gap
m is nothing but the gap between these degenerate states
[see Eq. (3}].

(ii) The infinite-volume limit is often defined in the
presence of a small magnetic field H (limH ~0+,
volume~co). In such circumstances, the system stays
trapped in one vacuum and the mass gap, defined
through connected correlation functions, is zero at the
critical point only (if the transition is second order, other-
wise it is never zero). Without a magnetic field, there is
no difference between connected and plain correlation
functions, as the subtracted expectation values are zero.
[Obviously, they may be different in a Monte Carlo (MC)
simulation with finite statistics. Convergence to the true
results is fastest, if plain correlation functions are used. ]

(iii) The behavior of the mass for large L and P follows
from the simple domain-wall picture. A (minimal sur-
face) wall contributes by a factor of e to the par-
tition function of a L 'N, Ising system, where A =2P
holds for the surface tension at large P. Let us consider
the correlation function of two spins separated by a dis-
tance z. Configurations with n walls between the two
spins contribute by a term

n

)n(
—2pL "

)n
z
g1

—eoL
m E'p 1+0 —ev'L (L~co) . 0.1—

eo changes sign at the critical point P, = —,'in(1+&2),
where

0 ~ 0
0

c 1
m =—+O, L~oo .

L2
(2) FIG. 1. Mass gap of the 2D Ising model on LX, lattices. m

is plotted vs 1/P for L = 1, 2, 4, 6, 8, 10, and infinity.
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and therefore

ppL ( — )

The correct (power of L in the} prefactor can be obtained
by a more careful treatment of the interface.

(iv) The behavior of I for P&P, (1) and P)P, (3) is

quite general. Equation (2), m —1/L (L =large) at P=P„
is implied by finite-size scaling theory for second-order
phase transitions.

The mass-gap behavior (1)—(3) as a function of the lat-
tice size suggests a method to locate the critical point
which amounts to plotting m (L)L as function of L for
various P. At low P, mL is soaring linearly with L. For
larger and larger P the slope will decrease, up to the criti-
cal point where mL is constant for large L. Above P„
mL will decrease with L (faster and faster as P grows).

The method is exemplified in Fig. 2 for 2D and 3D Is-
ing models. mL is plotted as a function for L for T =T„
T, (1+1%), and T,(1+5%). The 3D Ising model is of
particular interest because spin correlations in this model
are in analogy with Polyakov loop correlations in 4D
SU(2) lattice gauge theory. Our MC results were ob-
tained running a variant of the computer program of Ref.
10 that uses different random numbers for all 64 lattices.
For the critical temperature we assume T, =0.22165
(Ref. 11) and our calculation of zero-momentum correla-
tion functions is carried out on L 64 lattices. Evidence
is found that the correlations are dominated by a single
mass. Therefore, the determination is already possible
from eff'ective masses at distances z =1 and 2 (the aver-
age is used for the figure). In this case our calculation of
P, is, of course, far less accurate than the very precise re-
sult of the literature. " For SU(2) lattice gauge theory,
treated now, the precision turns out to be competitive
with previous results.

Before we report the analog MC calculation for SU(2)
lattice gauge theory, we would like to comment on finite
continuum boxes as used for Liischer's small-volume cal-
culations. ' ' The reason is that we' first developed
concepts, on which this paper relies, when we explored
the relationship between the so-called "tunneling transi-
tion"' and the deconfining phase transition. A continu-

2.28&P, &2.32 . (4)

This has to be compared with the conventional estimates
2.29+0.01 (Ref. 16) and 2.296+0.005 (Ref. 17). The re-
sults are in good agreement. (The small error bars of the
standard results involve assuming Ising-model values for
certain' ' critical exponents. )

More interesting than the number (4) is the behavior
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um box can be defined by taking the limit of lattice gauge
theory in a N box, N~ao, mass gap m~0 in lattice
units, with

z =Nm =const .

For z exactly zero, the Z„symmetry is broken and the
string tension is zero. For any finite z, tunneling re-
stores the symmetry and the string tension gets exponen-
tially small contributions like in the Ising-model case (3}.
The tunneling transition, sharp increase of the string ten-
sion as the coupling constant grows, is nothing but a sig-
nal for the deconfinement phase transition, maimed by
the geometry. ' Now, we use the tunneling transition to
calculate explicitly the critical coupling constant.

Let us consider lattices of size NL N„N &L (N„N,
very large, and measure correlation functions of two
Polyakov loops in the "N direction, " separated by a dis-
tance z (in the "N, direction"). For L =N, this is just the
geometry used for mass-ratio computations. ' ' Letting
L grow enables a true phase transition. For our explora-
tory demonstration, we have chosen N =4 and N, =64,
with 4&L &16. The analog of m(L) [to which Eqs.
(1}—(3) apply] is N~(L) and for various P, LNa(L) is plot-
ted as function of L in Fig. 3.

In the symmetric case' (L =4), LNa is a rather
smooth function of P. The behavior becomes more and
more abrupt as L increases. In conclusion, for P&2.28
LN~ is clearly increasing with L. On an infinite lattice,
this will be the confined region. P)2.32 will be the
deconfined region. Therefore, our estimate is
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FIG. 2. mL as a function of L in the vicinity of the critical
point for the 2D and 3D Ising models.

FIG. 3. LN~ as a function of L in the vicinity of the critical
point for SU(2) on 4L'64 lattices.
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seen in Fig. 1, which is qualitatively also true for N~ in
lattice gauge theory (N fixed). It implies that on N oo

lattices, as relevant for spectrum calculations, the P
dependence is smooth around P=P, (N, =4). A remnant
of the deconfining phase transition, the tunneling transi-
tion, is shifted to a much higher P value [in our SU(2)
case 13=4.5, corresponding to z & 1 (Ref. 2)] The reader
should compare the L =4 situation of Fig. 1 which is
roughly similar. Let us denote by intermediate volume"
the region between the tunneling transition and 13=/, (N)
on an N ~ lattice. By analogy with Fig. 1 we expect
that a smooth interpolation of the string tension from the
intermediate to the large-volume region exists. Other-
wise one would be faced with the strange scenario of two
deconfinement remnants in one physical quantity.

For glueballs (in the N ao geometry} the situation is
not clarified by results of this investigation. Although the
A I+ and E+ glueball states' were also measured (de-
tailed results will be reported elsewhere } and the same
smoothness as for the string tension is found around
13=13,(N, =4), the situation is nevertheless different. In
contrast with the string tension none of the glueballs ex-
hibits a clear deconfinement signal for P&P, (N) The.
present investigation leaves two scenarios open: Either
the deconfining transition is entirely smoothened out for
glueball states, or remnants of it exist at least for some
glueball states and may be shifted to P&P, (N). To de-
cide between these two options seems only possible
a posteriori, i.e., by explicit calculation. Unfortunately
our signal-to-noise ratio becomes bad for P&P, . If the
second scenario is realized, the terminology "deconfining
phase transition" is rather meaningless on N ~ lattices,

because equivalent signals for this transition would
scatter far beyond their individual accuracy. For finite
systems one should only talk about "phase transitions, " if
relevant signals for it show up together in a suSciently
small-P region. The terminology "not sharp" may still be
used, but we have to be aware of the fact that it would
make rather extreme use of its property (b) stated before.
The phase transition has not only become smooth in P
due to the finite lattice, but different "smooth" signals
may in addition scatter over an even much larger P
range.

In conclusion, we have introduced an alternative way
of estimating the deconfinment temperature of pure lat-
tice gauge theories. On N ~ lattices, as relevant for
spectrum calculations, the deconfining phase transition is
not sharp (in the sense explained).

Notes added. (I) Since this work was submitted for
publication new results, relevant for the N ~ case, ap-
peared. ' They suggest other remnants of the
deconfining phase transition at z ~y 1 values. If
confirmed, they would decide between the two options
that are still left open by the investigation presented here.
(2) The method of this paper has turned out to be
relevant for the first analytical estimate of the SU(2)
deconfinement temperature. '
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