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After performing a special type of wave-function renormalization procedure, we obtain the auto-
nomous A,P Gaussian effective potential in time-dependent curved space. The bare coupling con-
stant A.& is allowed to be positive but infinitesimal (A.& ~0+) for the occurrence of spontaneous sym-

metry breaking. Some properties different from those for flat space-time are also discussed.

I. INTRODUCTION

Recently, we have seen a renaissance of the triviality
problem of the A,P model in the literature. ' By means of
the Gaussian-effective-potential (GEP) method, several
cases have been discussed.

(i) Introducing a large but finite moment cutoff A, one
finds that the bare coupling constant A.z is constrained by
the condition 0&ltt &8m/ln(2A/p) (p=mass parame-
ter) for exhibiting the spontaneous-symmetry-breaking
(SSB) phenomenon, and which in turn can be used in the
Higgs mechanism.

(ii) After taking A ~~, one gets the so-called precari-
ous phase where the bare coupling constant is negative
and infinitesimal, A2t ——1/InA (Ref. 3) and no SSB
occurs.

(iii) By performing a wave-function renormalization
trick, one can find an autonomous theory ' in which the
bare coupling constant is positive and infinitesimal. This
theory exhibits a SSB phase.

In Refs. 6 and 7, the precarious theory has been dis-
cussed for Robertson-Walker space-time and time-
dependent de Sitter space-time, respectively. In this pa-
per we shall discuss the autonomous theory for de Sitter
space-time.

II. CALCULATION
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Taking the trial fields in the form of

P(x) =it'io+Pn(x)

From (2.1)—(2.3) the energy density can be written as
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Following the notations of Ref. 7, the line element in
half the de Sitter space can be expressed as

3
ds2 =dt e'~ g (dx')2—

with Po being a constant background field and Pn(x) be-

ing a free quantum field with mass 0 in the curved space,
one has

[Ui, (x, r/, a)a(k)+ Ui*, (x, r/, a)a (k)],d k

(2n )'i'

where
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Ui, (x, r/, a}=e'"'"Ut,(g, a),
(2.8)
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2/= —ae '
( —oo &g&0) . (2.2) Uk(r/, a)=r/ exp i (v+ —') —H—' '(kr/}, (2.10)2' 2 2

The Lagrangian of the A,P model in curved space reads
and

[B yB y (me+gR—)y 2~ed ],—

where

g =det(g„) .

(2.3)
v =—', —a 0 —12(

with H' ' being the Hankel function of second kind.
As in Ref. 7, the GEP VG(i/io) can be found as

(2.1 1)
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and
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+&gQt+6&~goIo(Q, )+3ksIo(Q, )], with

where

Q —= Q +12(/a

m, —=m&+6(/a

while Io(Q, ) and I&(Q, ) are given by
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(2.14)

y(z) =r (z)/r(z} .

It should be emphasized that Eqs. (2.12)—(2.18) are val-
id only for a Q&~2, which reduces to the condition
0 )0 in flat space.

Now let us minimize the energy density to find the
mass parameter 0,. This gives

I', ( Q}i+—,'(m, —Qf)Io(Q, ) ——,'Io(Q|)

Io(Q, )= [ —2A —
—,'(a Qf —2)lnA +So(Q, )],

8+a +6Aa[go+Io(Qi)]Io(Qi) =0, (2.19)

I& (Q
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(2.15) where a prime implies the derivative with respect to 0,.
DifFerentiating the GEP, Eq. (2.12) once and twice

with respect to Po, we get

—
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(2.16)
I

and

&&g(Po)
=m iPo+4X Po +12kakd (oQ

0
(2.20)

&' Vg (Po)
m f + 12~ako'+ 12~a Io(Q

ay',

[12AapoIo(Qi )]

I|'(Q&)+—,'(m, —Q&)Io'(Qi) —Io(Q|)+6k& [PoIo'(Q, )+[Io(Q&)] +Io (Q, }Io(Q,) ]
(2.21)
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m f +12k&Io(po) =b/I, (p)+c,
and the field is rescaled by

(2.23)

Ao=I i(V}@o

with

I 1(p):——2Io(p) = —2 Io(p) .
a

Bp

(2.24)

(2.25)

In order to obtain more information than that in Ref.
7, we carry out a wave-function renormalization pro-
cedure similar to that of Ref. 4. Then in a renormalized
theory, one has

I

in po would result in a finite change of c, or vice versa.
However, we shall see later in (2.33) that one cannot ad-

just po such that c =0. The above prescriptions, as we
shall see later also, will render the would-be divergent
theory convergent by adjusting the values of a and c and
removing an infinite constant into the redefinition of vac-
uum energy.

In order to prove that the theory resulting from
(2.22)—(2.24) is really finite, one might start from Eq.
(2.20) or (2.21) and integrate it with respect to 4o once or
twice just as has been done in Ref. 4 or 5 for flat space.
But now for curved space-time the integration would be a
formidable task due to the involvement of the g function
in a complicated manner. So instead we resort to Eqs.
(2.12) and (2.19) directly.

From (2.15) and (2.16), we can get

Here we introduce two mass parameters p and po as
well as a, b, and c being three constants. In some sense, p
is a substitute for A,z while b is that for m &. The constant
c, on the other hand, is not independent of the reference
mass parameter po. Since A,z is of order 1iI,, a change

o(Qi) —Io(}M)=— (Qi —p )lnA2 Z

16m

1
[So(Q, ) —So(p)],

8~a
(2.26)
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p2( 2+2p2}] (2.27)
with y being the Euler constant while

y (@ ) y( 3 +( 5 2&2@2)1/2)+q( 3
(
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1 2 lnA S', (Q, )I', (Q, )= — A —
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and

$2(P ) = f(-', + (-', —~'P')' ')+ li (-,' —(-,' —~'P') '/') .

(2.36)

(2.37}

lnA 1
Io(Q, )= —

—,'I, (Q, )= — + 2S0(Q)) .
16m 8~a 2

(2.29) III. DISCUSSION

Substituting (2.26) —(2.29) into (2.19), one finds

Q2 2

2+a +p+ +—pp+, +E,a 2 1

a
(2.30)

a@0I,(p)

and

where E —1/I &. At first sight, the E term in 0& would
provide a finite contribution to each term in the GEP
VG(@0}. But fortunately, after calculating, one can find
that these contributions cancel each other precisely. So it
is not necessary to write down the explicit form of E.

After substituting (2.26)—(2.30) into (2.12), through a
tedious calculation, we are led to the surprisingly simple
fact that all the divergent terms of order A and A (with
the divergent constant erased) vanish automatically, in-
dependent of the values of a, b, c, pp, and p, etc. Only
two divergent terms survive. They are

1 1 a
(2.31)

4 3 2+a

g(x +iy)+g(x iy) =2 Re—g(x +iy)

with real x and y.
Taking a @p)&1 while keeping a finite, one finds

Q)(40) -in@0 .

(3.1)

(3.2)

Thus it is easy to prove that this theory does exhibit SSB
property for either negative or positive (but not too large)
m, a property better than that in the flat-space case.
This is because not only the coeScient of the 4z term but
also that of the 4p term now all have a

We see from (2.34} and (2.35) that po appears only in
m . Since b is arbitrary, so is m . Therefore, the theory
is pp independent as expected. Notice that two indepen-
dent parameters m and p in quantum theory now re-
place the original bare parameters ms and As at the clas-
sical level. Furthermore, it is worthwhile to mention that
the function g, (40 } [or $2(p, ) ] is real even if
v=( —,

' —
—,'a 40)'/ [or v=( —', —a p )'/ ] is imaginary.

Actually, one has

2c+apo —
2 4p i(p) .

2 2+a a
(2.32) 1')(40) = In@0

a +0))1

So if we take the values of a and c as

1a=1, c=
2a

2
Pp

2
(2.33)

all the divergences drop out and the theory becomes
finite. Note that Eq. (2.33) entails the constant c to be
different from zero. For if e =0 then pp

——1/a &2/a,
which in turn implies that the theory ceases to be valid.

Finally, the GEP has the following form:

Pi(@0) 1 2VG(40)= V„„+—,'m @0+ 2 2
——40

32&a 2a

dependence whereas in the flat-space case only the 4p
term has this dependence.

Comparing the above calculation with that of Ref. 7,
one discovers that all the infinitesimal terms I /I, (p) in
the precarious theory now become important in the auto-
nomous theory and vice versa. What does it mean and
which one of these two theories is the correct or better?
We do not know yet.

Finally, let us go back to flat space from the previous
results. In view of Eq. (2.1}, when a~~, the theory
should return to the flat-space ease. It is easy to accom-
plish this if one notices that

a p —2+
144

01(a'0)-e2(P)+ e2(P)
144m a

Pl ( @0) 02(P }
2@p

3p
(3.3)

I (y4
2

(2.34)
+~ oo

(3.4)
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Hence the GEP in flat space follows immediately: m =&trM (3.8)

VG(40)= V„„+—,'m @0+
2e'o'

ln
3p 2

(3.5)

then

1 4
VG(4) = V„„+—,'M@ 1 ——

p2

As p and m are arbitrary, 4o may be rescaled at one' s

disposal, say,
e4 e'

+ ln
144m. V

(p2 (p2
~tr

(3.6) which coincides precisely with that in Ref. 4 with Vbeing
the broken vacuum value of 4 in flat space.

and correspondingly

2 2 y2 36~2~2
p = —exp 1+

3&m . p'2
(3.7)
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