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We give an analysis of the solutions of the n-dimensional vacuum Einstein equations with a
metric in the form of a direct sum of a Friedmann-Robertson-Walker (FRW) metric and a Kasner-

type Euclidean metric. The solutions. are interpreted as four-dimensional perfect-fluid cosmological
FRW models, using the simple ansatz proposed by Ibahez and Verdaguer. We first obtain the gen-

eral solution for flat models. These are perfect-fluid solutions that can be made compatible with

contraction of all the extra dimensions. The general compatibility of the field equations is then dis-

cussed. It is found that for n & 5 both open and closed models admit a range of perfect-fluid solu-

tions whose qualitative behavior is analyzed.

Exact solutions of Einstein's equations in more than
four dimensions are of interest in several contexts. From
a strictly technical point of view, they have been used as a
tool for obtaining exact solutions in four dimensions, '

without ascribing a physical meaning to the added di-
mensions. Kaluza-Klein-type theories, in more than four
dimensions, have been used, on the other hand, as a way
of unifying all gauge interactions with gravity. Here the
extra dimensions play a physical role and its unobserva-
bility is usually explained by the assumption that they are
restricted to a compact space with a very small length
scale. The first simple cosmological model showing con-
traction of the extra dimensions as a consequence of
cosmological evolution, a generalization of the anisotrop-
ic Kasner solution, was proposed by Chodos and
Detweiler. In a recent paper, Ibanez and Verdaguer
consider a set of solutions of Einstein's equations in an
n-dimensional vacuum. With a very simple ansatz they
obtain homogeneous solutions with expanding three-
dimensional isotropic spaces. Thus, their solutions con-
tain a four-dimensional subspace isometric to a
Friedmann-Robertson-Walker (FRW) cosmological mod-
el. This subspace is directly identified with the observ-
able four-dimensional space. In this respect their ansatz
differs from other treatments which include a nontrivial
conformal transformation in the definition of the four-
dimensional perspective. With their identification,
Ibanez and Verdaguer find that the n-dimensional vacu-
um solutions correspond to perfect-fluid four-dimensional
FRW metrics. They also claim that the field equations
are compatible only for a radiative perfect fluid while the
extra dimensions contract as a result of cosmological evo-
lution only in certain cases, depending on the number of
extra dimensions and the type of model. Their analysis
is, however, incomplete. In this paper we consider again
the field equations given by Ibanez and Verdaguer and
show that they admit a much larger set of solutions than
what is indicated in Ref. 5 (see Refs. 6—8).

We start our discussion reviewing briefly the derivation
of the field equations and their interpretation as given by
Ibanez and Verdaguer. Next, we consider some exact

solutions that result with certain specializations of the
relevant parameters. All these solutions correspond to a
perfect fluid satisfying the ("y fluid") equation of state,

where p is the pressure, y a constant, and p the energy
density. Physical values of y, i.e., satisfying the energy
conditions, are restricted to the interval [1,2]. However,
not all of the so1utions satisfy this requirement.

Besides the radiative perfect-fluid solutions (y =—', )

given in Ref. 5, we also obtain, for flat models, solutions
where the y fluid equation of state is satisfied for a range
of values of y including y= —', . As a consequence, for
these models the relevant parameters can be chosen so
that all extra dimensions contract.

Finally we show, analyzing the general compatibility of
the field equations, that there are other perfect-fluid solu-
tions. In these solutions the fluid does not satisfy (1),
leading to qualitatively difterent behaviors of the models.

Following Ibanez and Verdaguer we consider vacuum
solutions of the n-dimensional Einstein equations with a
metric of the form

d

ds =(ds )„Rw+g a;(t)(dx; )

where d is the number of extra dimensions (d =n —4)
and (ds )„Rwis the line element of the FRW metrics in
four dimensions:

(ds )FRw —— (dt) +R (t) — +(dQ), (3)
1 —Kr

where (dQ) is the standard line element on the unit
sphere, R (t) is the radius of the FRW universe, and the
constant K characterizes the diff'erent models (K =0 flat,
K = —1 open, and K = 1 closed).

The vacuum Einstein equations in n dimensions lead to
the following equations:
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where D (t) is a function defined by
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Equation (4c) implies that
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Clearly, all radiative fluid solutions correspond to
a=0. Assuming a=0; from (13a) and (13b), we obtain

The solutions can therefore be interpreted as isotropic
homogeneous perfect-fluid cosrnologies with extra dimen-
sions. We remark, however, that contrary to what hap-
pens in four dimensions, the possible equations of state
relating p and p are here restricted by the condition of
compatibility of the system (6), (10a), and (10b). Thus,
Ibanez and Verdaguer find that the only solutions with
an equation of state of the form (1) are those with y =—', ,

i.e., radiative perfect fluids. However, as we show in
what follows, their analysis is incomplete.

It will be convenient to eliminate R using (8}. From
(10a) and (10b) we get

where the p; are constants. Equation (6) can be integrat-
ed once to give

D 4 D
D 3 D

D——=0
D

(14)

DR =P (8) where the general solution is

where P is a constant.
Using (7) we may write (4a) and (4b) in a more compact

and convenient form. Defining

1

2

d

p —1
2 (9)

Eqs. (3a) and (3b) can be written

D D2
3 +3 =—+n

D D
(loa)

R R K—2—— DR D'
DR+ D2 ( lob)

Together with (6) [or, equivalently, (8)], (10a) and (10b)
make up a system of three nonlinear ordinary differential
equations for the two unknowns R (t) and D (t). Such an
overdetermined system has in general no solution unless
some conditions, that effectively reduce the number of in-
dependent equations, are satisfied. We shall come back
to this question but will first consider the physical inter-
pretation of the model. As indicated in Ref. 5, the four-
dimensional Einstein equations for the metric (2), with a
perfect-fluid energy-momentum tensor of the form

(P+J }U U +J (gFRW }

where U=d/dt and p, v=0, 1,2, 3, are identical to (10a)
and (10b) with the right-hand sides replaced, respectively,
by p and p. Namely, we make the identifications

~D= Do(2at + A)

~

xr'+ Ar+B
~

'" (15)

where A, B, and Do are (not all independent) constants
and @=0,+1. From (12a) we have

3( A —4~B)
4(ar'+ Ar +B)' (16)

A +2t
~

At+t'~' '
for K =+1,

A —2t
A )0,

(17)

(18}

while for K =0, a solution is

D=t (19)

These are the solutions given by Ibanez and Verdaguer.
We remark, however, that we also obtain n-dimensional
vacuum solutions when A & 4&8. In this case only
K = —1 is admissible, but p is negative. The case
A =4a8 corresponds to the trivial solution D =const.

We consider now the general solution for K =0. If we
choose a trial solution of the form

Therefore, the energy density will be positive provided
A g4a8. This, in turn, means that for solutions with

p & 0, the denominator in (15) must vanish for some value
of t. It is easily verified that in this case, for E&0, we
may choose the constants such that, for K = —1,
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D=C, (r —ro) ', (20)

with to, C, , and Cz real constants, then (13a) and (13b)
are compatible if

tion is then if these are the only possible solutions. In
other words, if the system (13a), (13b) is compatible for
the indicated combinations of values of E and a. The
problem can be analyzed as follows. Equation (13a) is of
the general form

1+e(9+ 12a )
'~

(4+6a)
(21) h (D,D, D) =0 . (25)

with @=+1.From (12a) and (12b) we have

1+C,
p 1 —Cq

(22)

From the general theory of nonlinear ordinary
differential equations, it has regular solutions for any ini-
tial choice of D and D, except in the neighborhood of the
set defined by

Namely, we obtain perfect-fluid solutions where p and p
satisfy a "y law" equation of state with y=2/(1 —C~).
The dominant energy condition

~ p /p ~

( I is satisfied
only if Cz(0 and this requires e= —1. The resulting
cosmological models contain a "big-bang"-type singulari-
ty for t =tp and expand forever for t ~ tp. We thus find
that for fiat spacetimes (E =0), the field equations are
compatible with the equation of state (1) and the dom-
inant energy condition if

12a+ 8

3(2a+ 1)+(12a+9)'
(23)

D =C, (t —to) . (24)

This solution corresponds to Minkowski spacetime in
four dimensions, but, since the p; are restricted only by
(7) and (9), with a nontrivial Kasner-type structure in the
extra dimensions.

The constant Cz can be related to the Hubble constant
Hp and the age of the Universe v.p. From (20),

Cp: 1 3Hp7 p

As yet, our analysis has sidestepped the fundamental
question of the general compatibility of the field equa-
tions by resorting to particular solutions. Summarizing,
we have explicit, exact solutions with a =0, K unrestrict-
ed or with K =0 and a range of values for a. The ques-

This solution is not mentioned in Ref. 5. It introduces,
however, an important modification in their conclusions
and is therefore worth further discussion.

The reality of the p; together with (6) imply a lower
limit for a, equal to I/(2d) ——,'. This, on account of (23),
sets a lower limit on y that is equal to 4 for d =1 and de-
creases with the number of extra dimensions but is al-
ways larger than one. ' '" As illustrative examples, for
d =2 we have yp1. 26. . . and for d =10 we have

y p 1.18. . . . Notice also that we recover the result
y= 4 for a=O. The fact that a can take negative values
for E =0 and d g 1 implies, however, that for flat mod-
els, in opposition with the results given in Ref. 5, it is
possible to choose all the p; positive and thereby obtain
perfect-fluid solutions with compactification in all the ex-
tra dimensions as a result of cosmological evolution.

The solutions with a=+1 do not satisfy, in general,
the condition that the energy be positive. However, for
a=O, we obtain Cz ——1, i.e.,

Bh

D
(26)

This implies

~ 3 DD=—
2 D

(27)

D =Cp — t
p2

2

Therefore

(28)

(29)

and the open models approach the perfect radiative fluid
FRW regime irrespective of the value of a.

For all closed models (K = 1), D goes to zero in a finite
time. The nature of this second singularity depends on
the value of a. For a~O, the pressure grows until it
equals the energy density. This happens when D=O,

Equation (27) determines the singular solutions of (13a).
It is now easy to check, by direct differentiation of (13a),
that the regular solutions of (13a) are also solutions (13b).
We remark that these conditions are independent of the
particular values of a and K. Also, the singular solutions
of (13a) are not, in general, solutions of (13b). Therefore,
Eqs. (13a) and (13b) should be considered as independent,
although compatible.

These results imply that besides those already men-
tioned, there are other perfect-fluid solutions compatible
with the ansatz (2) and leading, possibly, to contraction
of the extra dimensions as a result of cosmological evolu-
tion. Even though for general values of a and E, Eq.
(13a) can be solved only numerically, we may still extract
useful information by analyzing the behavior of its solu-
tions near critical points where D (or D ) approaches zero
or infinity or in the limit t ~~.

We have already given the general solution for J( =0 in
closed form. We notice now that for all values of K, near
a singularity where D ~ oo, it is consistent with (13a) and
(13b) to assume for D the form (21), because the leading
term in the expansion of D is (as expected) independent of
E. This implies that the three types of models (open, fiat,
and closed), admit solutions with a "big-bang"-type
singularity where R ~0 for t~tp.

The behavior of the solutions after the initial singulari-
ty can be analyzed qualitatively using (13a). For open
models (K = —1), all solutions expand indefinitely. For
large t we have the asymptotic expansion
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where R attains its maximum value. After this time the
models recollapse but the ratio p/p keeps growing and
the dominant energy conditions are violated. For a &0,
D and D vanish at the second singularity and R is un-
bounded. Therefore these models do not recollapse. It
can be seen that the energy conditions are also violated in
this case. We remark that this behavior of the closed
models is in agreement with the general results for the
recollapse of FRW models given by Barrow, Galloway,
and Tipler. ' In particular, for a &0, we have R &0 near
the "big-bang" singularity and R &0 near the second
singularity with the inflection point R =0 at the value of t
where the ratio p/p goes through the "critical" value

13'

We thus have that for closed models, the equation of
state for the matter content eventually violates the dom-
inant energy condition, except in the particular case
a=0. For open models, near the singularity, we have

p/p& —,
' for a&0 and p/p& —,

' for e&0. However, this
ratio approaches —,

' in all cases when t ~~.
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