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Wick-Cutkosky model in the large-temperature limit
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%'e study the Bethe-Salpeter equation in the simple scalar-scalar model of Wick and Cutkosky in

the framework of the instantaneous approximation and the large-temperature limit. Using the
stereographic projection technique due to Fock and a theorem for integral equations due to Funk
and Hecke, we are led to a second-order difference equation. The condition for the existence of
nontrivial solutions of this equation, obtained by use of a Poincare theorem, then yields the
temperature-dependent discrete energy spectrum of the model, which is briefly discussed.

I. INTRODUCTION: WICK-CUTKOSKY MODEL
AT FINITE TEMPERATURE

The initial motivation for studying the finite-
temperature behavior of a class of relativistic field
theories' was provided by the following question: In such
theories, can finite temperature restore a symmetry which
at zero temperature was broken either dynamically or
spontaneously? Since then, the domain of inquiry of
finite-temperature field theories has been considerably en-
larged. Thus, one-loop radiative corrections in finite-
temperature QED have been comprehensively dealt with
in the paper by Donoghue et al. , which also refers to a
variety of other applications of finite-temperature theory.
Within the same domain of inquiry, it seems to be of gen-
eral interest to ask how the energy spectrum of bound
states of a field theory changes with temperature. Indeed,
similar investigations have been carried out for the P
theory and the Gross-Neveu model in one space dimen-
sion, and for hydrogenlike atoms.

In this note we study the large-temperature behavior of
the Bethe-Salpeter equation in the simple scalar-scalar
model of Wick and Cutkosky, using the stereographic
projection technique due to Fock and a theorem for in-
tegral equations due to Funk and Hecke. We are thus
led to a second-order difference equation, the condition
for the existence of nontrivial solutions of which then
yields the energy spectrum of the model. We note that
the earlier results ' of this model correspond to the case

when temperature is zero.
The equation to be studied is
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Since the right-hand side (RHS) of Eq. (2) is a function of
p alone, we may define

where P is the sum of the four-momenta of the particles
(each of mass m) forming the bound state, p their relative
four-momentum, A, the square of the coupling constant,
and P(p) the Bethe-Salpeter amplitude. In order to be
able to make contact with earlier work in the limit T =0,
also for the sake of simplicity, we work within the frame-
work of the instantaneous approximation. Thus, special-
izing to the frame

P =(0,0,0, iE)

we have
'2
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to obtain an equation for S(p):

S(p)=, f d p'S(p')
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We can now introduce temperature dependence in the theory by following the recipe given in Ref. 10: viz. ,
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Equation (5) holds for arbitrary P; its substitution into
Eq. (4) generalizes the Wick-Cutkosky equation to arbi-
trary temperatures. For P~ oo,

E2
2( '+ ')'" '+
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which is precisely the result of integration over po in Eq.
(4).

It is thus explicitly seen that the T =0 limit of the
present investigation, at this stage, corresponds exactly to
the earlier investigations of the %ick-Cutkosky model in
the instantaneous approximation.

II. LARGE-TEMPERATURE LIMIT
OF THE MODEL AND ITS ANALYSIS

THROUGH FOCK'S TECHNIQUE
AND THE FUNK-HECKE THEOREM

It will be seen that the substitution of Eq. (5) into Eq.
(4) leads to a very complicated equation. To explore a
range of P other than the well-studied P~ ~ limit dis-
cussed above, we now consider the opposite limit, the
case when /3 is small. In this limit, Eq. (5) leads to

2l 7T

2
E2

P p'~+m

whence Eq. (4) yields

Now, let
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then, noting that

1 1
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4a
, X Qz(n)~rcM(fI')I'zM«»

K, M

where

2+ &2~, cose=pp,
2N' pp

and Qk(g) is an associated Legendre function of the
second kind, we can integrate over the angles in Eq. (7),
to obtain

&(p)= J d p~(p )

2
2

(p pr)2 p/2+m 2

4

(7) Equation (9) is a one-dimensional equation. We adopt
the strategy of transforming it into an equation that holds
on the surface of a unit four-dimensional Euclidean
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sphere. To this end, additional integrations must be in-
troduced. The first of these is introduced through the
representation

„2pp 'd 8'sin 8'PI ( cos8' )

Q((g) = —,
'

p +p' —2pp'cos8'

a second angle is introduced by simply multiplying the
RHS of Eq. (9) by (1/2') f 0 dP W.e thus obtain

(1+p')'g(p)
dp'd8'dp'p' g(p')si n8'P&(c os8')

~P m 'b' p'+ p' —2pp'cos8'

given by
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& p') =-,'m'b',

Intuitively, it might seem that the approximation in Eq.
(18) is not inconsistent with the instantaneous approxima-
tion scheme" within which we are working; i.e., the
infinite velocity of propagation of the interaction scarcely
allows the participating particles to move with respect to
each other. However, since the eigenfunctions are now
known, one can explicitly calculate (p ). One finds, in
fact, that

where

p=mbp . (12)

showing that the approximation in Eq. (18) is inconsistent
with the result obtained. In the next section we follow up
Eq. (14) without using Eq. (18).

p= tan, p'=tan2' 2

We obtain

(13)

The use of Fock's transformation variables now brings
about the desired mapping on a unit four-sphere:

III. THE DIFFERENCE EQUATION
AND THE EIGENVALUE SPECTRUM

In Sec. II we choose

cos
d04H ' P, cos9'

H(P)=
2mP m 3b 3 1 —cosy

(14)

H(f) = sin'PC„'+ I(cosf)n+1
—=P„' I'(cosP) . (20)
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leads to

cosy here is the angle between the unit vectors with
directions ($,0,0) and (g', 8', y'), respectively.

The form of Eq. (14) makes it transparent that if,
through a suitable choice of H(P'), we could make
[H(f')P&(cos8')] a surface harmonic of degree n, the in-

tegration over d04 via the Funk-Hecke theorem would
lead back to [H(11 )P&(cos8)]. Thus, the choice

n(n+l+1) p(2)
( y)

2(n +1)
(21)

Equations (21) and (17) then suggest that one might at-
tempt a solution of Eq. (14) in the form

bk Pn + k, I ( cos P)
k=x

where, since for any 1 we can only have n+k&1, the
lower limit in the summation has to be x = —n +1. Ac-
tually, the presence of n here is quite superAuous and the
expansion can simply be written as

We note that as a direct consequence of the recurrence
relation satisfied by the Gegenbauer polynomials, the hy-
perspherical harmonics defined in Eq. (20) satisfy the fol-
lowing recurrence relation:

cos/P„/ (cosy) = (n+2)(n —l+1)
2 P„+, i(cosg)

2(n+ 1)

mb= 2k%
cos

P(n +1) 2
(17)

H(g)= g akP&"I'(cosP) . -
k=1

(22)

From Eqs. (12) and (13),

cos2 m 2b2 =1,
p 2+ m 2b2

(18)

if p &&m b . It thus follows that the functions in Eq.
(16) are eigenfunctions of our problem only in the limit

p &&m b, and in that limit the eigenvalue spectrum is

We remark here that an expansion similar to the above,
with the lower limit for k replaced by zero, was used by
Basu and Biswas in their study of the Bethe-Salpeter
equation at zero temperature. A consistent analysis in
such a case leads to the uninteresting situation where
ak ——0 for all k, rather than the infinite continued fraction
obtained by them.

Substitution from Eq. (22) into Eq. (14) and application
of the Funk-Hecke theorem now yields
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Using Eq. (21), we obtain

(24)
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This equation may be rewritten as
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We now equate the coefficient of each Pk /'(cosg) to zero.
Since P/' ',

/ (cosg) =0, the terms outside the sum relate
a( to a(+, . From inside the sum, we get the expression in
the square brackets equal to zero for each k ) l +1. This
may all be set together compactly into the following
difference equation for all k & l:

y(k+1+2)(k+1) y
2(k+2)' + k+1

(k —1)(k+1)
ak —)

A, =o. (31)

Next, let the boundary conditions be a(, ——0 and

a(+2 ——0. In order that a( and a(+& be nonzero, we must
now have

Bl+1 A(+1
B(+i=0 or A( ——

A, +,
(32)

Similarly, if a( &

——0 and a(+3——0, for nontrivial a(, a(+ &,

and a(+2, we must have

B(+i

with the condition

a( q

——0.
It will be convenient to set Eq. (27) in the form

k+1 k k Bk k —1

(28)

(29)

A(+ )—
I+2

and in the most general case, viz. , ak&0 for all k & 1, the
following compatibility condition involving an infinite
continued fraction (ICF) must be satisfied:

where

1 1
Ak ——

and

(k+1+2)(k +1)
2(k+2)

(30)

A(+1
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B
(+2

l+3

=0. (33)

k —l

2A:

k+i+2
2(k +2)'

We now indicate how, in an elementary manner, one may
investigate the condition for the existence of nontrivial
solutions of the above difference equation. We note that
Eq. (29) is subject only to the boundary condition
a/ )

——0; for the exact solution given by Eq. (22), ak&0
for all k &l. Nevertheless, an intuitive and step-by-step
method of obtaining the final result consists of subjecting
Eq. (29} to one additional boundary condition, which is
relaxed in a systematic manner. Thus, assume first that
Eq. (29) is to be solved subject to a/ )

——0 and a/+, ——0.
For a( to be nonzero, we must have

This equation can be obtained in a rigorous manner by
applying a theorem of Poincare and by using an identity
due to Thiele. ' Such a derivation is presented in the Ap-
pendix. From the definitions of Ak and Bk, Eqs. (30), it
follows that Eq. (33) expresses the binding energy as a
function of the coupling constant A. , the temperature T
(-P '), and the quantum number 1, and thus represents
the discrete bound-state spectrum of the present problem.

We now investigate the nature of the spectrum implied
by Eq. (33). Since the equation represents a power series
in (1/y ) equated to zero, it ought to have an infinity of
roots. These may be numerically determined in the usual
way: choose a value of 1 (e.g. , zero), fix the accuracy to
which the roots are required (e.g., up to the sixth decimal
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TABLE I. The first ten roots of Eq. (33) giving values of y as a function of l.

I=O

0.837 515 6
1.834 905
2.834 225
3 ~ 833 933
4.833 775
5.833 677
6.833 612
7.833 566
8.833 531
9.833 506

1.616613
2.591 663
3.576 923
4.567 011
5.559 806
6.554 287
7.549 899
8.546 310
9.543 312

10.540 76

1=2

2.389 677
3.355 411
4.331 960
5.314724
6.301 423
7.290 788
8.282 055
9.274 725

10.268 48
11.263 07

1=3

3.161 095
4.121 706
5.092 456
6.069 724
7.051 458
8.036 396
9.023 716

10.012 87
11.003 47
11.995 23

l=4

3.931 852
4.889 217
5.855 853
6.828 902
7.806 595
8.787 767
9.771 624

10.757 60
11.745 27
12.734 35

place) and plot the LHS of Eq. (33) as a function of y.
We find that it sufficies to retain 20—40 terms (depending
upon the value of l) in the ICF for the first ten roots for
the states l=0 to 1=9 to become stable. The results for
these states are given in Table I. It follows from this
table that the lowest values of (1/y) decrease monotoni-
cally with I. Furthermore, from Eq. (24) we have

' 1/3

mb=

which implies that for a given l, as y is increased, mb de-
creases; in other words, the low values of y are responsi-
ble for the prominent states of the spectrum, while large
values of y tend to push the spectrum into the continu-
um.

IV. CONCLUDING REMARKS

It is interesting to recall the case of the hydrogen atom
or the Wick-Cutkosky model at zero temperature, for
which the energy levels are degenerate with respect to
one of the two quantum numbers which characterize the
eigenfunctions [O(4) degeneracy]. In contrast, in the
present case, both the energy eigenfunctions and the lev-
els depend only on one quantum number l. However, for
each l, we now have an infinite number of levels —as if
there were also a hidden quantum number characterizing
the system. The latter feature seems to be a consequence
of the instantaneous approximation, rather than due to
any temperature considerations. '

We conclude by pointing out that, since 0 (b ( 1 and
the lowest state for the system under investigation corre-
sponds to y=0.838 (1=0), the critical temperature in
the model is given by

0.838m
c

beyond which the bound system will definitely not sur-
vive.
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k+2 ~k+1 k+1+~k+1 k

where

(A 1)

k gl —1 and ai, ——0.
Let us define bk by

ak ——I (k+2)bk, (A2)

in terms of which the difference equation takes the form

bk+2+pkbk+1+qkbk =o

where

I (k+3) „r(k+2)pk= r(k+4) "k+1 qk= r(k+4) k+1

Note that

—2
p

—= lim p/,
—— , q = lim q/,

——0 .
k ~ oo P k ~ oo

The characteristic equation corresponding to (A3) is

t +pt+q=0,
which, in view of (A5), reduces to

2
t t ——=0.

r

(A3)

(A5)

(A6)

(A7)

The two distinct roots of this equation are

2
t

y
t2 ——0. (A8)

Now let (A3) have a set of fundamental solutions bk" and
bk '. In terms of these solutions, we obtain, from (A3),

bk+2 k bk+2 k
(1) (2) (2) (1)

k k+1 k k+1
(1) (2) (2) (1)

bk+ lbk+2 bk+ lbk+2
qk b(1)b(2) b(2)b(1)

k k+1 k k+1

(A9)

(A10)

To proceed further, we use an identity due to Thiele
(see Milne-Thomson' ). We define

APPENDIX

The difference equation given in the text may be writ-
ten as
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1=5

4.702 282
5.657 405
6.620 975
7.590 704
8.565 078
9.543 050

10.523 87
11.507 00
12.492 02
13.478 59

1=6

5.472 529
6.426 009
7.387 209
8.354 262
9.325 872

10.301 11
11.279 28
12.259 86
13.242 46
14.226 75

TABLE I. (Continued).

1=7

6.242 662
7.194 886
8.154 200
9.119055

10.088 34
11.061 21
12.037 06
13.015 38
13.995 78
14.977 99

1=8

7.012 718
7.963 952
8.921 729
9.884 749

10.852 04
11.822 87
12.796 65
13.772 94
14.751 38
15.731 66

7.782 722
8.733 154
9.689 656

10.651 12
11.616 70
12.585 73
13.557 69
14.532 16
15.508 79
16.487 32

Xs Xs+1
Zs

Xs —Xs+2

Xs+1—Xs+3 s=1,2, . . . , n —3,
Xs +2 —Xs +3

X —Xn sV=s
Xn —Xs+ 1

Xs Xs +2
Vn 2

——1.
Xs+1 Xs+2

(A12)

Z1
V1 ——1 — =1-

V2

Z
1

1—
V3

Z1

1—
V4

(A11) The identity is then
I

Z
1

Z2

Z3

(A13}

Setting

1 — zn —4

1 —zn

I

Let us now choose our fundamental solutions so that
b(1)k+s —2

(2)bk+s —2

(A14)
bk+n+1

11m
2=t

1

y
(A18)

we get

qk+s —1

Zs Ik+s —2$ k+s —1

and
(1) (2) (2) (1)

bk+nbk+1 bk+nbk+1
1 (1) (2) (2) (1)

bk+n k bk+n k

(A15}

(A 16)

g, (2)
k+n+1

1m (2)n
=t2 ——0 (A19)

(A20)

whence

which is possible from Poincare s theorem (Milne-
Thomson' ). It then follows that

(2) (2)
bk+n+1 bk+n

hm Oe
bk+n+1 bk+n

I k+1 6'k+n —2

Pk+n —2

Substituting into the identity (A13), we get
(1) (2) (2) (1)

bk+nbk+1 bk+nbk+1

bk+n bk —bk+n bk
(1) (2) (2) (1)

—
Qk

qk+1
(A17)

(2)bk+.
lim =0 .n-

Equation (A17) then yields
(2)

bk +1
b(2)

k Pk—
9'k+2

1k+1 Pk+2—

(A21)

(A22)
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bi+1 I (l +2)
1 (1+3)

(A23)

We now put k = 1, so that the LHS becomes simply the
ratio bt'+', Ib& '. Setting k=1 —l in (A3) and using the
boundary condition

b, , =o
which follows from (A2) and Eq. (28) in the text, we ob-
tain

From Eqs. (A22) and (A4), we finally get Eq. (33) given
in the text.

It may be noted that the difference equation of the type
considered here will, in general, have a second solution.
This has been discussed by Milne-Thomson. Because of
the result t2 ——0, such a solution is nonexistent in the
present situation. The result given in the text is thus the
only solution of Eq. (27).
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