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Complex Langevin solution to an effective theory of lattice QCD
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By means of a complex Langevin algorithm, we simulate on the full group space an effective
three-dimensional theory of QCD at finite temperature and finite chemical potential. We study the
effect of the chemical potential on the first-order character of the deconfinement phase transition.

I. INTRODUCTION

The effects of a finite chemical potential on lattice
QCD are still rather poorly known. This is due to the
fact that a nonzero chemical potential leads to a complex
action if the appearance of a singularity in the naive con-
tinuurn limit is to be avoided. ' The main difficulty in
working with a complex action is that standard Monte
Carlo sampling is no longer applicable. Attempts to use
Monte Carlo updating while including the non-positive-
definite part of the Boltzmann factor into the operator to
be measured are hampered by large fluctuations. The
only updating procedure based on the full complex action
which seems to offer hope of success at the present time is
based on stochastic quantization.

When the action is real, one can prove under very gen-
eral assumptions that the associated stochastic process
converges to the correct equilibrium distribution. The
assumptions under which this holds true when the action
is complex are not yet known. However, analytic and
computer-assisted proofs of proper convergence have
been given for specific examples of complex-action
theories. In fact, most attempts to simulate complex ac-
tions have been successful. ' The counterexarnples
known so far are actions which are either explicitly un-
suitable for simulation (the associated process is non-
ergodic' ) or not bounded from below. " Therefore, it
seems reasonable to hope that even complicated and real-
istic theories with complex actions can be solved by
Langevin quantization, provided the complex extension
of the differential equation is formulated properly.

In the present paper, we report the results of a complex
Langevin simulation of an effective three-dimensional
theory based on QCD in the strong-coupling limit with
Wilson quarks at finite temperature and finite chemical
potential. For large quark masses, this is expected to be a
reasonable model in which to study the structure of the
deconfinement phase transition. Moreover, this model is
easier to simulate than full QCD with dynamical quarks
(which remains the final goal). We have previously
solved the analogous U(1) effective model, with encourag-
ing results. This model of QCD is also solvable by
mean-field methods, ' so that we have terms of reference
for the complex Langevin results.

Because of the symmetry of this particular model, it is
possible to restrict its simulation to a subspace of SU(3)
and to its complex extension. We prefer to simulate in
the full group space, since the resulting algorithm can be
generalized to the full theory. Also, we concentrate on
the effect of finite quark mass and chemical potential on
the order of the deconfinement phase transition, which
has not been studied before.

In Sec. II we present the action to be studied and the
mean-field predictions for the phase diagram. Section III
contains a short discussion of the complex extension of
the Langevin equation, of the numerical algorithm, and
of its systematic errors. Our results on the order of the
deconfinement transition for zero chemical potential and
variable quark mass are presented in Sec. IV, and the re-
sults for fixed quark mass and variable finite chemical po-
tential are given in Sec. V. Some conclusions are drawn
in Sec. VI.

II. THE MODEL AND ITS MEAN-FIELD ANALYSIS

Starting from SU(3) theory with the standard Wilson
action and with Wilson quarks (hopping parameter «) on
a (d =4)-dimensional lattice with N, tetnporal sites, one
can use the character expansion in the strong-coupling
limit' ' to derive an effective three-dimensional spin-
system-type theory of interacting Polyakov loops. The
action of this effective theory reads

S=—P' g (TrL, TrL +TrL; TrL )

&ij )

—g (h, TrL;+h2TrL; ),

where the L, take values in SU(3) and the indices run
over the d =3 lattice. The last two terms in the action
are the first non vanishing terms in the hopping-

parameter expansion for N, &3. Defining h =2nf(2«)
(nf is the number of fiavors), we have

h, =h exp(pN, ), h2 ——h exp( pN, ) . —

where the prescription of Refs. 1 and 15 has been used to
incorporate the chemical potential p (the lattice spacing
is set to 1). For p&0, the action in Eq. (1) becomes com-
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(3)

with

plex. However, the corresponding partition function
remains positive definite.

The effective coupling P' is related to the inverse cou-
pling P= 1/g of the original four-dimensional theory by
the first character coefficient Z, .o (Ref. 14):

p'=[Z, .o(p)]

1 s — (Q)

l4

l.2—

I.O—

~~ 0.8-
0.6—

Z, .o —— dL TrLtexp[/3(TrL+TrL }],1
(4)

04—
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( l 1

where Z is a group integral given by

Z = f dL exp[P(TrL+TrL )] . (5)

O.I25 O.I30 0.135 O.I40 O.I45

The complex action defined in Eq. (1} implies in gen-
eral ( TrL; )& ( TrL; ) . Therefore, we define the mean-
field free energy as

is- (b}

l4

7 t——6p'M, M2+7„, (6)

where Mi 2 denote two real mean fields and V„ is a
single-site free energy

V„=—ln J dL exp(a TrL + b TrL ) (7)

with the notations

04—

0.2—

a =6p'M, +h„b =6p'M2+h, . O.IIO O. I I5 O.I 20 O.I25 O.I30

The function V t has to obey two self-consistency equa-
tions:

The solutions M& and Mz of Eqs. 9 are the mean-field ex-
pectation values of the Polyakov loops:

FIG. 1. Mean-field expectation values of the Polyakov loops
(TrL ) and (TrL ) as a function of P' for h =0.01. (a) @=0.5;
(b) @=1.19. (TrL ) and (TrL ) are denoted by the solid and

dashed curves, respectively. The solid vertical line in (a) indi-

cates the location of the first-order transition.

The function V„can be calculated by expanding the in-

tegrand in (7) in a power series of a and b; by numerical
summation up to any order we may achieve arbitrary pre-
cision. ' The next step is to solve Eqs. (10) numerically
for different values of h and p.

Let us summarize the result for the case p =0 (Ref. 14).
For h =0 (pure gauge theory) there is a first-order phase
transition at P'=0. 1345. The transition remains first or-
der for 0&h &h, . h, =0.055 is the critical value at
which the transition becomes second order. Above h,
there is no transition.

To investigate p&0 we have to assume h & h, since for
h & h, there is no transition for any p (Ref. 12). If now
h & h, the first-order transition will terminate in a
second-order end point at some critical value p, which
depends on h. We show our results for the values
h =0.01 and h =0.04 in Figs. 1 and 2, respectively. Here
and in the numerical simulations we shall use N =2.
The first-order rnetastability region shrinks to a point at

p, =1.19 for h =0.01 and at p, =0.42 for h =0.04.
The results obtained here from the mean-field analysis

will serve as a reference for our numerical simulations.

III. THE LANGEVIN PROCESS

To simulate the system described in Sec. II, we shall
use a Stratonovich-type stochastic differential equation
(SDE) in auxiliary time t:

dL; =iL;( —T V;.S dt+T dw; ),
where m,. is a standard Wiener process with covariance

(w; (t)w~~(t') ) =25 g;dmin(t, t')

and mean

(w; (t)) =0 ( tlt &to) .

a is the SU(3)-color index, i,j run over the sites of a
three-dimensional lattice, and T are the generators of
SU(3) in the fundamental representation (Tr T T~
=fi ti/2). The operator V,. is defined as

(12)

The SDE (11) is characterized by certain conservation
properties. ' To see this, begin by considering S real.
Define the real matrices X and Y by L =X+iY. One can
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FIG. 2. The same as in Fig. 1 for h =0.04 and (a) @=0.01
and (b) p=0.42.

then formally split Eq. (11) into real and imaginary parts,
yielding a pair of coupled equations for X and Y. These
can be shown to preserve the following conditions (i)
XXr+YY =I, XY —YX =0; (ii) det(X+iY)=1. In
the real-action case, these are just the special unitarity
conditions for L.

Consider, however, the extension of the split equations
to complex S. Now X, Yare complex matrices, properties
(i) and (ii) are still valid but they are no longer equivalent
to special unitarity. Therefore, the characteristic conser-
vation properties of the complex Langevin process can-
not be derived directly from Eq. (11), but only from the
split equations.

Any discretization of these differential equations will
violate the above conservation properties. ' Therefore,
the numerical discretization scheme for these processes
must include the explicit enforcement of these properties.
In the complex-action case, we have seen above that this
can only be done at the level of the equations for L and
K In the present work, we discretize the split equations
by means of a two-stage algorithm whose deterministic
part is accurate to second order in the auxiliary-time step
size E Conditions (i) a. nd (ii) are implemented as explicit
constraints.

The effects of the systematic errors induced by discreti-
zation on various lattice observables and on the phase
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FIG. 3. Time histories for
l
TrL l, h =0, p =0, P'

=0.136. Triangles denote the cold run and squares denote the
hot run.

structure have been studied for various theories in the
real-action case. ' ' The additional problem in the
complex-action case, as we indicated in the Introduction,
is whether an equilibrium action exists at all. If it does,
then the analysis of systematic errors should carry over
from the real-action case. In particular, the equilibrium
action of the stochastic process should be in the same
universality class as the simulated field theory. There-
fore, we can expect that we should be able to study the
phase diagram of our theory even if the step size is large
enough to induce a non-negligible systematic error.

However, we must expect that all the couplings in the
model, namely, p', h „and hz, will be shifted by the resid-
ual systematic error which cannot be eliminated by our
second-order scheme. ' Therefore, the numerical values
of the critical parameters observed in our simulation will
be subject to systematic uncertainties. To minimize the
effect of the bias on our ability to judge the order of the
phase transition, we shall compare two independent runs
for each value of P, ht, hz which we wish to study: one
which starts from a completely ordered configuration and
one starting from a completely random configuration.
Outside the transition region, the two runs are found to
join after a few thousand iterations. We shall therefore
consider that a run shows a two-state signal, whenever
the hot and cold runs remain widely separated for 10000
to 14 000 iterations.

All the runs were carried out on a 10&10&(10lattice
with periodic boundary conditions. The step size was
fixed to @=0.01. This choice should ensure an efficient
exploration of phase space while keeping the systematic
error tolerably low. In fact, we shall see below that the
residual shifts in the critical coupling are indeed small. Of
course, as pointed out above, the qualitative nature of the
phase diagram is completely unaffected by this systematic
error.
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IV. RESULTS FOR 8=0

When (M =0, the action given by Eq. (1) is real:
ht ——h2 ——h, (TrL;) =(TrL,. ). In the limit correspond-
ing to pure gauge theory, h =0, the deconfining phase
transition is defined by the breakdown of global SU(3)
symmetry. Since the ground state of the theory remains
symmetric under global Z3, in Fig. 3 we plot the length
of TrL, the lattice average of TrL; (Ref. 19). In the case
h&0, the global SU(3) and Z3 are explicitly broken, so
that one could simply plot TrL. However, to be con-
sistent with Fig. 3, the ordinate in Fig. 4 is again the
length TrL i. In agreement with the strategy we out-
lined above, we systematically search for metastability in
the time histories of cold and hot runs.

The mean-field analysis has lead us to expect a first-
order phase transition for h =0 at an effective coupling of
p'=0. 1345. The transition is expected to remain first-
order for h ~ h, and to terminate in a second-order tran-
sition point at h, . There should be a crossover for h )h, .
For the value of h, we have the prediction h, =0.055.
The transition )33' is expected to decrease as h increases.

Figure 3 shows a clear two-state signal for h =0. We
find a transition coupling of 0.136+0.004. This agrees,
within errors, with the mean-field estimate quoted above
as well as with previous numerical determinations. '

This confirms that the Langevin systematic error is
indeed small. In Fig. 4 we show how the transition
evolves as we increase h (decrease the quark mass from
infinity). We observe a rapid weakening of the two-state
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FIG. 4. Same as Fig. 3, but with @=0aud with various values of h. (a) h =0.01, P'=0. 134; (b) h =0.02, P'=0. 131; (c) h =0.04,
P'=0. 125.
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signal, which appears to be no longer discernible for
h =0.04. Since our numerical procedures are not sensi-
tive to the difference between a second-order transition
and a rapid crossover, we cannot decide whether the
transition terminates abruptly (in a second-order point)
or whether it continues as a short second-order line.
Note that the critical effective coupling decreases with in-

creasing h, as expected. As the strength of the two-state
signal decreases, the range of P' for which rnetastability is
observed narrows by an order of magnitude.

Our present numerical results seem to indicate that the
first-order transition vanishes at a lower value of h than

that predicted by mean-field theory, and also than the
tentative finding reported in Ref. 9. Of course, it is possi-
ble that the transition is actually first order for h =0.04
and slightly beyond, whereas we cannot resolve a two-
state signal as soon as the gap is comparable to the stan-
dard deviation of TrL. However, the transition as ob-
served in Figs. 3 and 4 weakens so fast that the mean-field
estimate of h, is clearly too high. The main difference be-
tween our present method of analysis and that of Ref. 9 is
that we explicitly search for metastability signals,
whereas they draw their conclusions from the depen-
dence of certain observables on the coupling. It is well
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~
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with h =0.01 and various values of p. Circles and + 's denote the cold runs for

~

TrL
~
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~

TrL ~, respectively. Squares and &&'s denote the corresponding hot runs. (a) p=0. 1, p'=0. 133; (b) p, =0.2,
P' =0. 1325; (c) p =0.25, P' =0. 133; (d) p =0.3, P' =0. 132 64; (e) p =0.35, P' =0. 132 24; (f) )u =0.4 P' =0.1315.
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known that these two approaches can lead to quantita-
tively different conclusions.

V. RESULTS FOR p&0

When the chemical potential is nonzero, we have
h i &h 2', therefore ( TrL; )&(TrL,. ) in general. Consider
a value of h (of the quark mass) for which the transition
was first order for p=0. By the mean-field analysis of
Sec. II we have seen that the effect of increasing p should
be analogous to that of increasing h in the real-action
case: the transition should remain first order for p &p,
and it should terminate in a second-order point at p, .
There should be a crossover for p & p, . The transition
coupling should decrease with the increase of p. Our nu-
merical study concentrates on the case h =0.01, for
which mean-field theory predicts p, = 1.19 (see Sec. II).

Another mean-field prediction is that there should be a
marked difference between TrL and TrL in the disor-
dered (confined) phase but that this difference should van-

ish in the ordered (deconfined) phase. To test this we plot
the time histories of

~

TrL
~

as well as those of TrL
~

in Fig. 5.
Figures 5(a)—5(f) suggest that the transition indeed

remains first order for p=0. 1,0.2,0.25,0.3 and possibly
for p=0. 35. However, it does not appear to be first or-
der for p=0.4. We have verified that there is clearly no
two-state signal for p&0.4. The transition coupling is
indeed found to decrease with growing p (within the er-
rors of our procedure); the range of metastability in P' be-
cornes very narrow as p increases: it is of the order
0.0004 for h =0.01, p=0. 35 as compared to 0.004 for
h =0, p=0.

We can see that the mean-field prediction concerning
the splitting between TrL and TrL as well as the qualita-
tive effect of p on the phase transition are borne out by
the numerical results. On the other hand, the numerical
study suggests that the first-order transition disappears at
lower p than mean-field theory predicts.

VI. CONCLUSIONS

We have investigated the phase structure of an
effective theory of the deconfinement transition in the
presence of a nonzero chemical potential by means of a
complex Langevin simulation on the full group space.
The qualitative picture which emerges from this numeri-
cal study agrees with physical expectations and with the
mean-field analysis. For infinitely heavy quarks and zero
chemical potential, we recover the well-known result that
the deconfinement transition is first order. As the quark
mass is decreased (the hopping parameter becomes
nonzero), the first-order transition weakens and eventual-
ly disappears. If one starts with a value of the hopping
parameter for which the transition is first order, the
chemical potential has the same effect as a further in-
crease in the hopping parameter: the transition ceases to
be first order when p is large enough. This equivalence is
intuitively understandable, since both a decrease in the
quark mass and an increase in chemical potential result
in more screening. Since it is built into the form of the
effective action (1), its appearance in both the mean-field
treatment and in the numerical simulation of this theory
is in fact not surprising. The present study suggests that
the transition ceases to be first order at higher masses
and/or lower chemical potential than mean-field theory
would predict.

Our successful simulation of the complex extension of
a process which diffuses on the SU(3) group manifold is
another indication that the SDE approach should work
for complex actions which are not manifestly pathologi-
cal. However, further work on the conditions under
which such complex processes converge is clearly needed.
In particular, a careful verification of the proper conver-
gence for certain known limits would be important.

As we pointed out earlier, the algorithm used in this
work is readily generalizable to the full @CD problem
with dynamical quarks. It is known that the light fer-
mions can be simulated by means of additional bilinear
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noise terms. ' This amounts to an additional "heating"
of the system, while the main mathematical structure of
the problem remains unchanged.
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