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We develop a scattering theory and decay theory for nonrelativistic quaternionic quantum
mechanics. We show that the far-zone part of scattering states lies in the complex C(1,i) subspace
of quaternionic Hilbert space picked out by the kinetic part of the Hamiltonian; intrinsically quater-
nionic terms are present in the wave function but have exponential spatial decay. Hence, scattering
phase shifts are necessarily complex in quaternion quantum mechanics, and the test for quaternionic
effects suggested by Peres gives a null result. Integrating out the quaternionic components, the
complex scattering problem can be expressed in terms of an optical potential V,~t which is Hermi-
tian but time-reversal nonconserving. The corresponding decay problem for C(1,i) initial states can
be expressed in terms of the same optical potential. Solving the decay problem to order V,~„ the
phenomenological form of the induced T nonconservation is seen to be "milliweak, "with T noncon-
servation arising both from the mass and the decay matrices, and hence is compatible with the phe-

nomenology of T nonconservation in the standard model. When the complex C(1,i) part of the
quaternionic Hamiltonian has bound states, the optical potential develops isolated pole singulari-

ties. These lead to resonances at scattering energies equal to the bound-state binding energies, with

widths proportional to the square of the quaternionic part of the potential. Inclusion of a positive-
rest-mass term in the Hamiltonian shifts the location of these resonances towards lower kinetic en-

ergy, and if large enough eliminates them altogether.

I. INTRODUCTION

Our aim in this paper is to give a parallel treatment of
the closely related topics of scattering theory and decay
theory in nonrelativistic quaternionic quantum mechan-
ics. In the course of doing so we will extend and correct
results we obtained in an earlier discussion of quater-
nionic time-dependent perturbation theory and
quaternion-induced time-reversal ( T) nonconservation
a certain amount of the introductory material of Ref. 1 is
repeated here so as to make the present treatment self-
contained. Quaternionic quantum mechanics is charac-
terized by a quaternion-valued wave function +,

Hp =IpHp

Io g i
n )i(n —i—, (4)

Ho= y ~

n )E„(n i, E„=E„&0,

an. In discussing decays and time-dependent perturba-
tion theory, we assume H to be the sum of an unper-
turbed Hamiltonian Hp and a time-independent perturba-
tion V, and we invoke the spectral theorem for
quaternion-anti-self-adjoint operators to write Hp in the
form

op+i% ]+J%2+k P3 (la)

with +p, 2 3 real and with i,j,k the quaternion units satis-
fying

l =J =k = —1

with
i

n ) a complete set of eigenstates of Ho. We take
the perturbation V to have the form

&j= —Jr=k .

The inner product is

(lb)

(2)

V = Vp +Ip Vi +Jp V2 +/p V3

and the inner-product-preserving (unitary) dynamics is

with %=%p—i+& —j+2—k%'3 the conjugate of %', and
with H = —H a quaternion —anti-self-adjoint Hamiltoni-

with Vp 3 commuting with Ip Jp Kp ~ As long as Hp
is T conserving, we may assume that both the zeroth-
order energy eigenkets

i
n ) and the position eigenkets

ix ) are real (since the wave functions (x
i

n ) can be
chosen real) and so we have
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r

Io

Jo =g ~n)&n

with the sum extending over all eigenstates of H, and
with iE a general unit quaternion. Thus a given eigenket
qi=

~

E ) obeys

o
k k

(6)
H%'= +iEE, (14)

Ip 1

Jo )x)= ~x) . j
kSCQ

H =iHo+ V

V= Vo+iV)+ jVz+kV3,
(7)

with Vo 3 real. Introducing complex C(l, i) symplec-
tic components V, Vp defined by

Hence in what follows we can neglect the formal distinc-
tion between the operators Ip Jp Kp and the quaternion
units i,j,k, giving

and by Eq. (3) has the exponential time dependence

qi(t) =4(0)e (15)

When Eqs. (14) and (15) are multiplied by a general unit
quaternion co from the right they become

H 4m =+coEBiEm,

qI(t)to= 4(0)cue
(16)

Since for a suitable m we have coiEco =i, there is no loss of
generality in assuming ip i in——Eqs. (14) and (15) (this
corresponds to choosing a particular ray-representative
for our state), giving

V VQ +i V], Vp
——Vz —i V3

we can rewrite Vas

(8) H+=CiE,
%(t)=0 (0)e -'P', (17)

V= V +jVp .

For the matrix elements of V we correspondingly have

&"
I

V
I

i &=Vo t+'Vi t+j V2 t+kV3 i

which is the starting point for our scattering analysis.
Before doing the general case, let us consider the one-

dimensional problem of scattering by a 5-function spike.
Thus we have

= V „I+jVp„I, (10) H=i
—d 1

dx 2' +5(x)( V +jVp), (18)

Vp.I = Vpi.

where an asterisk denotes complex conjugation with
respect to C(l, i), in other words, in the

~

n ) basis [or in
any other basis related to it by a complex C(l, i) unitary
transformation] V is C(l, i) anti-Hermitian and Vp is
C(l, i) symmetric. In discussing scattering theory, we
specialize Eq. (7) to the case

pz
Ho ——

2m 2m

V =iV, (x), Vp ——Vp(x),
(12)

V«& ——Vo„i +i V,„I, Vp„i
——Vz„I —i V3n

In this notation the anti-Hermiticity condition on V be-
comes

When
~

x
~
&0, these simplify to

4 (x)=iE+ (x),
2m

1
%p(x) =iEqIp(x),

2m dx

(20)

with V p complex constants. Writing 4'=4 +j%p and
substituting Eq. (18) into Eq. (17) gives the pair of cou-
pled complex equations for the symplectic components

p.

2
q' (x)+5(x)[V 4' (0)—V p%'p(0)]=iEV (x),2m

(19)

Vp(x)+5(x)[Vp+ (0)+V'Vp(0)]=iE+p(x) .
2m dx

thus identifying Ho with the kinetic term in the Hamil-
tonian and V with a quaternion-valued local scattering
potential.

II. SCATTERING THEORY:
TIME-INDEPENDENT FORMALISM

which have the general solutions

4 (x ) =C + e '~"+C e

%p(x) =Cp+ e~"+Cp e

p =(2mE)'

(21)

&= g ~

E &Ei, &E ~, E=E &0,
E

(13)

We begin by discussing quaternionic scattering theory
using the time-independent formalism. To set this up, we
start from the spectral representation of the full Hamil-
tonian H,

We see from Eq. (21) the very interesting fact that the in-
trinsically quaternionic (4p) part of the wave function
has no running wave solutions. Imposing finiteness of the
wave function at x =+oo, and assuming an incoming
wave e'~" incident from the left, we have, for the wave
function in the regions x & 0 and x ~ 0,
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0' (x) =e'P" +Re

%p(x) =SeP",

4 (x)=Te'P",

Op(x) =S'e

x(0,

x &0,

(22)

(23)

p2
'P + V + —V p%'p ——lE%'

2m

p2
q'p+ Vpq'. + V.*q'p=lEq'p

2m

(30)

with R,S,S', T complex constants. Continuity of ql p(x)
at x =0 gives the two conditions

1~R =T,
S'=S, (24)

0+
i d+

2m dx
0+

d%'p

2m dx 0—

which in terms of R,S become

i V, % (0)—V p% p(0) =0,

~ Vp+ (0)~ V* +p(0) =0,
(25)

[ip(l yR) ip(—l —R)]~ V (1+R)—VpS=O,
2m

(26)
( —pS —pS)~ Vp(1~R)~ V*S=O .

2m

while integrating Eq. (19) across x =0 gives the two jump
conditions

We assume the potentials to be of bounded support; in
the region where the potentials are zero Eq. (30) becomes

(V,'+p')'0 =0,
(V„—P )alp ——0,
p =(2mE)'

(31)

4p —— i (H—o ~E ~i V ~ )
' Vp+ (32)

which when substituted into the equation for %' yields

and we again see that the 4p part has no propagating
wave solutions, but instead decays exponentially at spa-
tial infinity. Thus the asymptotic scattering states for the
Hamiltonian of Eq. (29) lie entirely in the complex tL( l, i)
part of the wave function. This being the case, it is useful
to completely eliminate 4p from the problem by the
methods of forrnal scattering theory. Writing
Ho= —V„/2m, the second equation in Eq. (30) may be
solved for 4'p to give

Solving Eqs. (26) for R,S and using Eqs. (8) and (12), we
get

iC

[Ho~ V, , (E)]4 =E'0

with the optical potential V,P, (E) defined by

V, ,(E)= i V ~ Vp — Vp .
HO~E gi V*

(33)

(34)

T =1+R =
Since V = —V and Vp

——Vp, the optical potential is
Hermitian:

+iC V,P, (E)= V,P, (E) (35)

iVp
T

(27)
and hence Eq. (33) defines a standard complex quantum-
mechanical scattering problem (with nonlocal potential).
Letting 4 be the incident plane wave,

+ Vi, C—:V, +(V2+V 3)/D .
m er .x

P (2 )3/2 p I

=(2mE)'", (36)

We see that the intrinsically quaternionic part of the
wave function is confined to an exponentially decaying
near-zone piece, while the outgoing reflected and
transmitted waves are contained in the C(:( l, i) part of the
wave function, with coefficients R and T which exhaust
the unitarity sum rule

(28)

we can define a corresponding outgoing wave scattering
solution 4+ by the Lippmann-Schwinger equation

++ =%,~ 1
V,P, (E)+P+, (37)

Z —H, ~i~

and the solution to the quaternionic scattering problem is
then

%.=%+,
These features of the one-dimensional model will be seen
to carry over to the general three-dimensional problem.

Turning to the three-dimensional problem, we have
%p —— i (HO+ E ~i V—") ' Vp+

Since

(38)

H=i
p2

+ V (x)+jVp(x),
2m

(29)

which when substituted with 4=% +j%p into Eq (17).
gives the coupled complex equations

2m e I' lx —x'

(x
I
(H, ~E) '

I

x')=, (39)
4m Ix —x'I

Eq. (38) shows exPlicitly that alp-e P ~" at infinity.
troducing a complex transition matrix to the state with
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final momentum q by

Tqp
——(%q, V, ,(E)%+), ,

with (, ), the usual complex C(l, i) inner product, we
will see in the next section that the squared matrix ele-
ments

~ Tqz ~

give the transition probability per unit
time via the usual golden-rule formula. Hence the usual
complex quantum-mechanics- scattering theory discus-
sion of the S matrix, unitarity and the optical theorem
follows from Eqs. (37) and (40) without modification. We
have thus demonstrated that in nonrelativistic quater-
nionic quantum mechanics, the S matrix is necessarily
complex —there are no quaternionic phases in the far
zone outgoing scattered wave. Hence the tests for
quaternionic quantum effects suggested by Peres, which
look for nonvanishing quaternionic scattering phases, will
necessarily give a null result.

There are, however, characteristic quaternionic effects
which appear in the complex transition matrix. Using
Eq. (12), Eq. (34) becomes

V,p, (E)=V, +Vp VpHo+E+ V

and expand 4 on a basis of zeroth-order eigenkets
1 ) exp( i—Et t }, with time-dependent quaternionic

coefficients ct(t }:

0 =W.+j Pp,

ct(t) =c&a(t)+j ctp(t),

giving, when substituted into Eq. (44),

(45)

1)e '
ct (t),

I

%p——g ~1)e 'ctp(t) .
I

Substituting into Eq. (43) gives the following complex
C( l, i) equations for the coefficients c„p(t):

n 1)t(V.„,e " ' c,.

iII= g ~

1)e ' c,(t) .
I

Making a symplectic decomposition of c& and 0', we have

Veven(g)+ Vodd(g)

V;~p,"(E)= Vi+ V~ Vq+ Vi Vp,
Ho+E+ V) Ho+E+ V)

(41}

i(E„+El)t—
Vogie

" '
c(p

—i (E„+F()t—c„p——y„( Vp„,e
" ' c(.dt

(47a)

HQ+E+ V& HQ+E+ V& i (EI —E„)t+ V'„te ' "
cip) . (47b)

X &
(

1
X

Ho+E+ V
(42)

which is nonvanishing in general, and vanishes only when
Vi(x) and Vi(x) are linearly dependent (as is the case in
the 5-function example solved explicitly above). Thus we
see that the underlying quaternionic structure is rejected
in the complex S matrix by the appearance of time-
reversal-nonconserving effects.

with V',"'," and V', „respectively, even and odd under
complex C(1,i) time-reversal symmetry. Taking the
(x

~ ~

x') matrix element of V,', (E), we have

(x
~
V;, (E)

~

x') =i[V (ix)V (ix') —V2(x)V&(x')]

Equation (47) forms the basis for the treatment of both
the scattering and decay problems.

Turning first to the scattering problem, we seek to
solve Eq. (47}with the initial conditions

c, ~1
c„~0, n&s as t~ —eo .

c„&~0 all n

(48)

Following the method used in the complex case, we
make the ansatz

III. TIME-DEPENDENT PERTURBATION THEORY

8%'

at
(43)

We turn now to the use of time-dependent perturbation
theory to discuss the scattering and decay problems.
Since we have seen in the previous section that the
asymptotic wave function is complex C(l, i}, we will be
interested in the scattering of a complex C(l, i) state
specified at time t = —~, or the decay of a complex
C(l, i) state specified at time t =0. We start from the
time-dependent Schrodinger equation

i(E„—F., )t+~t

cna(t) = —Tans ~ (~ ~ )
+ ns

Pl S

—i (E„+E,)t+et
e

np pns .(~ ~ )

(49)

with the limit a~0+ to be taken at the end of the calcu-
lation. From Eq. (49) we can immediately compute the
transition probability per unit time into the various final
states:
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d
c„ (t)

dt dt (E —E ) +e
T

~

2e2ss

(E +E )2

, /
T,„, /

'e"' 2m5(E„E—, )
)
T „, /

',
(E„E,—) +e s-o+

fT f' '" 0.
(E„+E,)' .-o+

T =V Vanl Tais
ans ans X i(E E )+e X

l l s

VPnl Tais

i (E E)+e-s

VP.l TPl.

i (EI+E, )

(51)
V anl TPls

i (EI+E, )

Consistent with the results of Sec. II, where we saw that
the outgoing scattering state is complex C(l, i}, we see in

Eq. (50) that the transition probability per unit time to
the intrinsically quaternionic part of the final state van-
ishes, while that to the complex part has the standard
golden-rule form with the transition matrix T „,. Substi-
tuting the ansatz of Eq. (49) into Eq. (47), and setting
et =0, the time dependence completely cancels out and
we get the following coupled equations for the transition
matrix elements:

iT—, = V,p, (E, )s+ V,p, (E, ) . ( i Ta—, ) .Pt ' E —Ho+le

(56)

as+=4', + . V,p, (Es)4+,1

E —Hp+i e

and multiplying from the left by V,„,(E, ) gives

V,p, (E, Ws+ = V,p, (E, )%,

(57)

+ V,p, (E, ) . V,p, (E, )4+, (58)E —Hp+l6

which reproduces Eq. (56}with the identification

Now rewriting Eq. (37) in the notation of the present sec-
tion (p~s, E~E, ) we have

To solve these, we define column vectors T 13, and V &,
according to

Ta, =— i Ta, = V—, ,(E, )4+, (59)

Ta, pns = ( ti
I Ta, ps

V p„,
—=(n

~

V p, ',

(52}

factoring ( n
~

away from the left of Eq. (51) and using an
operator form for the sum over intermediate states then
gives the following column vector equations:

1 1
as as a (H E )+ as p (H +E } ps

1 1
ps ps p '(H E )

as a '(H E )
ps

s o+ s

Solving the second equation for T&„we get

1
TI3s = —gi(Ho+E }

'
H, +E +iv:

providing the promised justification of Eq. (40) of Sec. II.
Turning next to the decay problem, ' we consider the

time evolution of a state which is at t =0 the C(l, i) su-
perposition of a set of degenerate eigenkets

~ s, ) of the
unperturbed Hamiltonian Hp. Thus we want to solve Eq.
(47) for t & 0 subject to the t =0 initial conditions

c, (0)=E,EC(l, i),

c„(0)=0, n&Is, I,
c„&

——0 alln .

(60)

Equivalently, we can add a 5 function to the equation for
dc, /dt, changing Eq. (47a) tos a

i (E„—El )t —~ i (E„+EI)t
cna= g ( VanI cra —Vpnre

"
clp)dt

X V, —V
i (H oE, )+e

+5(t) +5„,K. , (61)

(54) and solve the problem in the domain —~ & t & ac subject
to the boundary conditions

Substituting Eq. (54) into Eq. (53) for T „we get c„(t}=c„p(t)=0, t &0 .

Introducing Fourier transforms with respect to t by

(62)

Ho+E, +i V.*

E, —Ho+i@

c„(t)= — J dE e " c„(E),
27Tl

c„p(t)= I dE e " c„p(E),
2'7Tl

(63)

or comparing with Eq. (34),

(55) i5(t)= — . f dE e'
27Tl

Eqs. (47b) and (61) become
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(E+ie E—„)c„(E)=—i g [V~„ici (E)+ V p„(cip(E)]
l

M,b(E) =M,b(E, ),
r.,(E)=r.,(E, ),

(69)

++5„,K. , (64}

(E+ie+E„)c„p(E)=i g [Vp„ici~(E) V~—„icip(E)],
l

g (Ho+ E +i@+iV ')„icip(E)=i g Vp„ici,(E),
l I

we can solve for the c„&'s in terms of the c„'s, giving

(65)

c„p(E)=i g [(Ho+E+ie+iV ~) ']„k Vpkici~(E)
l, k

(66)

which when substituted back into the equation for c„
yields

with the boundary conditions of Eq. (62) implemented by
requiring c„p(E) to be analytic in the upper half of the
E complex plane. Rewriting the equation for c„p(E) as

in which the mass and decay matrices become real con-
stants. Because V, , is time-reversal nonconserving, both

the mass and the decay matrix'exhibit T-nonconserving
effects at leading order V& and V V&, respectively. Be-
cause our earlier calculation of Ref. 1 worked only to or-
der V, the T-nonconserving contribution to the decay
matrix was omitted, and we erroneously reached the con-
clusion that quarternionic physics implies a "superweak"
form for T or CP nonconservation. In fact, the form of
the T nonconservation predicted by Eqs. (34) and (68) is
phenomenologically "milliweak, " with T nonconserva-
tion of the same order ( V p) appearing in both the mass
matrix and in decay amplitudes.

IV. BOUND-STATE EFFECTS

The optical potential defined in Eqs. (34) and (41) can-
tains the inverse of the operator Hp+ V~+E; hence for
each complex quantum-mechanics bound state gb satisfy-

ing

(E +i e E„)c„—(E}= g V,~,(E +i e)„ic& (E)
l (Ho+ Vi )tl'b —— Ebpb, E—

b & 0 (70)

++5„,K, , (67)
there will be an isolated singularity in the optical poten-
tial of the form

with V,z, the optical potential defined in Eq. (34). From
this point on the analysis is the same as the usual discus-

sion of the decay problem in complex quantum mechan-

ics; to accuracy of order V, , the coefficients c, of the

initially occupied states are governed by

(x
~

V,~,(E)
~

x') =nonsingular at E =Eh

V p(x)itib(x)itib(x') Vp(x'}
+ E —E

(71)

(E+ie E, )5., M.,(—E)+ I—„(E) c, (—E)=K, ,
b

s ab ab 2 ab sba aa~

M,b(E) = V,z, (E+iE), ,

V, ,(E+'e), i
1~Is, I

The singular term is explicitly Hermitian and so does not
invalidate the arguments of the preceding sections, but
we wish to explore here its detailed consequences for the
scattering problem. We can anticipate some of the re-
sults by looking back at the 5-function spike problem dis-
cussed in Sec. II. When Vi of Eqs. (18)—(27) is negative,
the complex quantum mechanics problem defined by
Ho+ Vi 5(x) always has a single bound state. Writing

X V„,(E+ie)„P
opt b

(68)
PbV)=-
m

(72)

I,b(E)=2m. g V, ,(E+ie), i
l~ts )

we indeed see that the quantity C defined in Eq. (27),
which in the 5-function spike problem is the analog of the
optical potential, becomes

X5(E Ei }V,p, (E +i@)(, — C = V, +m ( V z+ V 3 }/(p —p„) (73)

which are readily solvable if we make the Weisskopf-
Wigner approximation

and has a single pole at p =pb. In the neighborhood of
pb, the coefficients R, T, and S are
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—iAR=
P —Pb + l 6

T= P —Pb

P —Pb+l5
—im V&S=

P —Pb+~~

(74)

K)C=
E —Eb —K2

K, = —f dr ub (r )Vp(r )pr jI(pr ),
0

= —2m dr'dr"ub' r' V& r' 6 r', r"
0

(81)

m
I Vp I'

Pb

so the scattering coefficients remain bounded (as required
by unitarity) but exhibit resonant behavior at p =pb, with
a resonance width b, proportional to

I Vp I
. We will see

that these features are common to the behavior exhibited
by the partial waves of the three-dimensional case as well.

To study the three-dimensional problem, we assume
that the potential components V, 2 3 are spherically sym-
metric, permitting a partial-wave analysis. We assume
that the bound state gb has angular dependence

(8,$), so that we can write

ub(r)
Qb= Y, (8,$) .

r
(75)

We then see that the singular term in Eq. (71) contributes
only to the l, m partial wave of + . Writing

u, (r)
Y~ (8,$)+other modes, (76)

and substituting Eqs. (71), (75), and (76) into Eq. (33) for
4, we find that the contribution of the singular term to
the radial Schrodinger equation for u& is

1

2m

d l(l + 1)+ —p uI(r)=CV p(r)ub(r), (77a)
dr2 r2

C = — f dr'ub" (r') Vp(r')ui(r'),
E —Eb o

(77b)

where we have written E=p /2m and have omitted all
nonsingular potential terms. To solve Eq. (77) we intro-
duce the Green's function G(r, r'),

2m

p

or, substituting Eq. (81) for C,

(82)

r
2(E„E)—

Er=Eb+E2 ~ (83)

Hence as a consequence of the bound state, the l, m
scattering partial wave exhibits a resonance at energy
Eb+E2, with the resonance width I quadratic in the
quaternionic part V& of the potential.

The fact that the resonance energy is at Eb+K2, rather
than at Eb, reAects the fact that the quaternionic dynam-
ics shifts the bound-state energy by a term which in lead-
ing order is quadratic in V&. To see this, we note that in
the limit of vanishing V&, the bound-state solution of Eq.
(70) appears as a solution 4 =0, 4'p pb of Eq. (——30),
rejecting our convention of choosing the quaternion ray
representative so as to make E always positive. Hence
the V& corrections to the bound-state energy are obtained
by eliminating 4 from Eq. (30) according to

P
( l)V p+—p,

Ho+ V) —E
(84)

xub(r")Vp(r") .

Taking the large rasy-mptotic limit of Eq. (80), we find by
the usual method that the scattering phase shift 5& is
given by

tan5& ——f dr'r'j &(pr')2mCV p(r')ub(r')
0

G(r, r')= prrj'i(pr )nI(pr —),

which satisfies

(78)

giving as the effective equation for 4&

(79)
d l (1 +1)+ —p G(r, r')=fi(r r') . —
df r

Ho+ V)+ VP VP+E O'P ——0 .
Ho+ Vi —Z

(85)

Including a homogeneous solution corresponding to the
incident plane wave, we can then integrate Eq. (77a) to
give

u&(r)=prj&(pr)+ f dr'G(r, r')2mCV p(r')ub(r') .
0

(80)

Substituting Eq. (80) back into Eq. (77b), we get a linear
equation determining C which can be solved to give

The use of a principal-value boundary condition in Eqs.
(84) and (85) is dictated by the fact that E is real, and
hence the inversion in Eq. (84) must be carried out so as
to produce an Hermitian effective potential in Eq. (85).
Treating the Vp term in Eq. (85) as a small perturbation
(and making the leading-order approximation of drop-
ping V& in the denominator) we get, for the corrected
bound-state energy,
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E E=p —id x d x'dp(x)(x Vp Vp x'jAp(x')
Ho —Eb

H' =e'"'He
(89)

=Eb+E2, (86) =i(HO+ V, )+j Vpe '"';

reproducing the result inferred from the scattering
analysis.

The experimental implications of the resonance
phenomenon discussed above will require careful study.
In principle, since the resonance width is governed by

~
V2

~

and
~

V3 ~, the width could have an order of
magnitude different from that of the T-nonconserving
effect of the preceding section, which is governed in mag-
»tudeby

~
V,

~ ~
V3

It should also be noted that in calculating the reso-
nance locations from the bound-state energies, the energy
zero point is a significant parameter. We have assumed
that the potential V& vanishes at spatial infinity, but the
complex quantum-mechanics bound state and scattering
theory governed by Ho+ V& are unchanged when V& ap-
proaches a constant p at infinity, apart from a shift
E~E+p of all scattering and bound-state energies. One
can verify that provided p & 0 (i.e., has the sign of a rest
mass), the intrinsically quaternionic modes remain
nonpropagating and the general framework set up in Sec.
II remains valid. Since Es is defined in Eq. (70) as the
negative of the bound-state energy, the corresponding
shift in Eb is Eb ~Eb —p, and hence the singular term in
Eq. (71) is shifted according to

(x
~

V,~, (E)
~

x') =nonsingular

V& (x)Pb(x)Pb(x') V&(x')
+ E —Eb +2P

(71')
E=p /2m .

This shift propagates throughout the subsequent analysis,
and in particular the resonance of Eq. (83) now appears at
a lowered kinetic energy

Er =Eb +F2 —21M (83')

and is absent altogether if 2p ~~Eh.
The reason why p is a relevant physical parameter and

cannot be eliminated from the physics by rephasing the
quaternionic wave function was already noted in Ref. 1:
Consider the time-dependent Schrodinger equation which
corresponds to a shifted V&,

8%'

at (H+ip)%, — (87)

0'(r)=e')"%(r) . (88)

Substituting Eq. (88) into Eq. (87), we find that 4' obeys

and let us attempt to eliminate p by defining a rephased
wave function

hence, if H is a time-independent operator, the quater-
nionic part of H' has an harmonic time dependence.
Corresponding to the fact that H' is time dependent, if
we assume %' to be a stationary state

%'=(4 +j qd&)e

then 4" is given by

0 '=e'~'0

(90)

and is not a stationary state unless 4 or +& vanishes.

V. DISCUSSION

We see that scattering in quaternionic quantum
mechanics takes a very interesting form, with the asymp-
totic state structure complex, and with the quaternionic
effects disguised as an effective T nonconservation and as
novel scattering resonances induced by bound states.
Our results here lend strong support to the conjecture we
have made' that the asymptotic state space of a quater-
nionic quantum field theory resides within a complex sub-
space of quaternionic Hilbert space. Complexity of the
asymptotic state space automatically eliminates the two
principal objections which have been raised against the
possible relevance of quaternionic quantum mechanics to
elementary-particle physics. The first of these objections
is that quaternionic quantum mechanics has no multilin-
ear tensor product, and hence cannot accommodate
multiparticle states. The second objection is that the
quaternionic representations of the Poincare group are
just the usual complex representations constructed with
respect to any complex subspace of the quaternions.
However, in quantum field theory, both the Fock-space
construction and the Poincare classification of states are
relevant only to asymptotic "free particle" states and, if
these states are necessarily complex for quaternionic
quantum theory, then the usual complex constructs (and
not nonexistent quaternionic generalizations) are all that
are needed. Quaternionic quantum mechanics then be-
comes a new way, with an unexplored and potentially
very rich structure, of generating an effective complex
theory acting on the asymptotic state space. The fact
that the qualitative prediction, that this effective theory is
T nonconserving, is in accord with the known symmetry
properties of elementary-particle physics, encourages ex-
ploration of the idea that a layer of quaternionic dynam-
ics may underlie the effective complex dynamics of the
standard model. If the scale of quaternionic T noncon-
serving effects is indeed set by the magnitude of the ob-
served CP violation in the E-meson system, then assum-
ing

~
Vz

~

—
~

V3
~

the ratio V;, /V;";" for typical nu-
clear processes is of order 10 ', and will be extremely
hard to detect (becoming visible in the K system only be-
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cause there it is amplified by a factor Mz/AM+ —10' ).
Similarly, by this estimate the bound-state-induced reso-
nances discussed in Sec. III will be exceedingly narrow,
and hence very hard to detect.

At a strict formal level, our results show that there ex-
ists a new class of problems to be studied in potential
theory, with possibly interesting consequences for such
well-developed topics as the inverse scattering problem
and Levinson's theorem.
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