
PHYSICAL REVIEW D VOLUME 37, NUMBER 12 15 JUNE 1988

General coupling of strings to the low-energy effective theory
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Starting from the field equations for supergravity coupled to super- Yang-Mills theory, we derive
the classical equations of motion for spinning strings in an arbitrary background. These equations
are also obtained from an action principle based on a generalized Wess-Zumino term.

I. INTRODUCTION

Considerable attention has been given to the low-
energy effective-field-theory formulation of superstrings.
Most notably, the arguments of anomaly cancellations'
are based on such a formulation.

The effective field theory can be described in terms of
an action So, which gives the low-energy dynamics for
the massless modes of the superstring. The dynamics is
essentially that of supergravity coupled to a super-Yang-
Mills theory in ten dimensions.

In principle, So can be derived starting from a first-
quantized description of superstrings. The procedure in-
volves integrating out all of the massive modes for the
string and performing a derivative expansion. From the
couplings of a string to a background field, it was shown
that the field equations for the massless modes can be ob-
tained upon demanding conformal invariance in the
quantum theory.

Conversely, in this paper we shall be interested in
deriving the dynamics of spinning strings in an arbitrary
background, starting from the field equations of the
effective field theory. Our approach shall be to introduce
"stringlike" sources to (the bosonic sector of) the effective
theory. Various identities (e.g. , Bianchi identities) for the
fields can then be exploited to constrain the dynamics of
the sources. A minimal set of equations of motion for a
spinning string in a supergravity background result.
They reduce to standard string equations of motion in the
absence of a nontrivial background.

The above procedure of deriving the equations of
motion from the field equations is a very old one. It was
most notably used to derive the geodesic equation for a
test particle in general relativity, starting from the Ein-
stein field equations. The procedure was also adapted to
finding the motion of particles in a Yang-Mills field, as
well as extended to the dynamics of spinning particles in
a gravitational field.

Long ago, the equations of motion for a Nambu string
coupled to general relativity were derived, starting from
the Einstein equations, by Giirses and Giirsey. Our
work is a generalization of this. The procedure is dis-

cussed in Sec. II. We attach five different quantities to
the string. They are the standard momentum P
(a=0, 1) and spin angular momentum S currents, as
well as a "Yang-Mills" current I and scalar densities 7
and c which couple to the dilaton and antisymmetric ten-
sor field, respectively. Identities on the fields give a
minimal set of equations of motion for these quantities.

The dynamics of these quantities, however, is not com-
pletely determined by the field equations. With this in
mind, we formulate an action principle for the coupled
system in Sec. III. The procedures is not unique. Our
approach is based on a generalized Wess-Zumino term,
as well as a free-string-action formulation given by
Balachandran, Lizzi, Sparano, and Sorkin. The general-
ized Wess-Zumino term is invariant under Yang-Mills
transformations, as well as local Lorentz transformations.
(The Yang-Mills-invariant expression was written down
by Nepomechie. '

) The generalized Wess-Zumino term
contains the couplings to all the massless modes, except
for the vielbein fields and the dilaton. The interactions
are uniquely given by the symmetries of the theory, and
are characterized by a single dimensionless coupling con-
stant, which is quantized in the quantum theory. Anoth-
er feature of this action is that because of the specific
form for the currents, additional novel constraints (not
present in the minimal equations) are obtained. One of
them implies that the string behaves as a superconductor.
This property has been noted previously. "

II. STRING EQUATIONS OF MOTION
FROM SUPERGRAVITY FIELD EQUATIONS

We first briefly review the bosonic sector of the low-

energy effective theory, i.e., supergravity coupled to
super-Yang-Mills theory in ten dimensions. The fields
of the theory are the following: the vielbein e ~, the
spin connection coM [taking values in the Lorentz algebra
SO(9, 1)], the Yang-Mills connection A~ (taking values in
some Lie algebra G), the antisymmetric tensor field BM~,
and the scalar dilaton P. Here, M, X, . . . denote space-
time indices, while A, B, . . . are tangent or flat-space in-
dices. The low-energy effective Lagrangian Lo is given

by
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where K is the gravitational coupling constant in ten di-
mensions. (The Yang-Mills coupling constant has been
absorbed in the definition of P.) e „denotes the inverse
vielbein and e =det(e "M). The Lorentz and Yang-Mills
curvature two-forms are defined as usual, i.e.,
R =dto+to and F=dA+A, respectively. The three-
form H = ,'HMNP—dx Adx Adx contains the Lorentz
and Yang-Mills Chem-Simons forms, i.e.,

H =d8 —CO3+m3, 8 = —,BMNdX A dX
2.2

to3 ——Tr(co A R —
—,
'

co ), co3 ——Tr( A A F —
—,
' A

H is invariant under Yang-Mills transformations, as well
as local Lorentz transformations. Under an infinitesimal
Yang-Mills transformation,

5A =dA+[A, A], 5B = —TrA AdA, (2.3)

(p )NP a
e HMNP =0, (2.5)

where the infinitesimal parameter A takes values in the
Lie algebra C. Under an infimtesimal local Lorentz
transformation,

5to=de+[to, e], 5B =TrtoAde, (2.4)

where the infinitesimal parameter e takes values in the
Lorentz algebra.

The field equations resulting from variations in BN&,
A p, top, e p, and P are

sentation of the appropriate group, DM'"'=aM+[ AM, ]
and DM' ' a——M+[toM, ].

Now consider introducing sources into the field equa-
tions. Since there are five field equations, we can define a
set of five sources. We thus replace the zeros on the
right-hand side of Eqs. (2.S)—(2.9) with currents, denoted
by j™,l, , s, E A, and p, lespectlvely,

(p )NP ~.NP

(p )P P

(p) =s

(p, )

(2.5')

(2.6')

(2.7')

(2.8'}

aNJ' =0 . (2.10)

The identity DP'"'DM'"'(eF /p)=0 plus (2.6') yields

( A)&N+ —K1/2F ™0N l' 2K MNj

When we apply DP'"' to (2.7'), we find

(2.11)

DN'"'s + ', ttRMNg —+ [RMN, E —) =0 . (2.12)

The last term in (2.12) can be written in terms of the
current t „,since, from (2.8'),

pt, =p . (2,9')

The currents & (s ) are 0 valued (Lorentz-algebra
valued), and transform covariantly under the action of
the Yang-Mills group (local Lorentz group). The remain-

ing quantities j = —j, t „,and p are invariant un-

der Yang-Mills transformations.
The currents are subject to constraints which follow

from identities on the fields. For example, from
aNaM(eH /P )—:0 and (2.5'), we have

e 9 K'/'e
(pg )

——DM
" —F —— FMNHM =(), (2 6)A = M

y 2 ~2 MN

(p„)'=D '"'(.E ') ",R „HM—"'—=0,
2

(2.7)

AB K
c = ee c(E ) ABRMN — e cLO =0,

2

M l 2p, = aM(ea——
1/2

+ TIFMNF + HMNPH =0
K 3K MNP

8 8$

(2.8)

(2.9)

respectively. Here (E )„tt ,'(e™„es e„——e —tt)and—
D' ' and D'"' are the covariant derivatives associated
with Yang-Mills and local Lorentz transformation, re-
spectively. When acting on matrices in the adjoint repre-

e MN M M

2
[RMN, E —]„a e„Mt s——ettMt— (2.13)

5 AM =aN AM &"+ AN aM &",

5toM =aNtoMe +toNaMeN N

M ~Ne M~ +e N~M~
A A N A N

5BMP aNB„Pe +—B„Pa„e+BMNaPeN N N

5p=aNpe

(2.14)

Requiring that Lo is invariant means that (up to a total
divergence)

A further condition on the currents results from the re-
quirement of local coordinate transformation invariance.
Under an infinitesimal coordinate transformation
(parametrized by e ),

Tr ~i2 (P„)— (Ps } Ap 5AM —Tr —(P ) — (Pe )PMtop 5coM+ (Ps )MP5BMp

+, , Pt,5$ —,(P, ) c5e cp ——0 .—
K K

(2.15)
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For transformations (2.14), the invariance condition reads

1/2

[DM' '(P, ) z ]e ")v+(P, ) zr"Mz+ z P&a&(I)+ Tr[(((3& ) F(vt)t ]——,'Tr[(P ) R)vM ]+ ', (c(—13' ) H~Mp =0 (2 ~ 16)

where r "stN is the torsion tensor, i.e., r"~~=D~' 'e ")v D—t(r'"'e "M. In deriving (2.16},we have used the previously
discussed identities. Equation (2.16) is itself an identity for sourceless supergravity [from Eqs. (2.5)-(2.9)). However,
when sources are present, it leads to the following condition on the currents:

(DM'"'t „)e")((+t „r"~)v+ &Pa&P+ Tr(c F)vM ) ——,'Tr(s R)vt)t)+ ', ~J —H~Mp =0 . (2.17)

(2.19)

(2.21)

Finally, let the current sources originate from strings; i.e., we require j™,~, s, I, „,and p to have support on a
two-dimensional surface M, which we parametrize by o, et=0, 1. o is a time parameter. (For simplicity, we shall

only consider closed strings, so M is topologically R XS'.) We denote the string space-time coordinates by z =z (a ).
Additional variables must be defined on the string surface if the sources are to be nonzero. For this purpose we intro-
duce the scalar densities c (cr ) and X(cr ), a C-valued vector I (cr) on M, a Lorentz-algebra-valued vector S (o ) on M,
an/the set of vectors P„(o.). Now set

j M"(x)=~f d'o 5'(x z(o—))c(o)e t'a~Mag~, (2.18)

(x)=)c f d o 5 (x z(a))I—( o)a~
M

& "(x}=~'f d'a 8'{x z{a))S—(o)a&~, (2.20)

t „(x)=)cf d o 5 (x —z( rc)) p„(rc) a~
M

p(x)=(c f d o 5 (x —z(cr))g(o), (2.22)

where e '= —e' =1 and a =ayao . The vectors I, S, and P„canbe interpreted as "Yang-Mills, " spin, and
momentum currents, respectively.

The dynamics of the above string variables are constrained by Eqs. {2.10)—(2.12) and (2.17). Equation (2.10) implies
that c(a ) =c is a constant. From Eqs. (2.11) and (2.12), we get

D.'"'I +9cF(o)=0,
(D '"'S )~t)+9cR(cr)ca+(e~MPtr eBMPw —)aH =0,

respectively. The covariant derivatives on M are definecl according to

D (A) a ~MD(A) D (co) a MD (co)
a = a M & a = u M

while the contracted Yang-Mills and Lorentz curvatures are

(2.23)

(2.24)

(2.25)

(2.26)

(2.27}

F(o)= ,'e t'a~"a~ F-„(.), R(o}=—,e t'a&"a~~R „{.) .

The final condition (2.17) leads to

(D ' 'P„)e")v+P„a~™r"))tj((++a)v(I}+ ,'Tr(I F)vM)a~ ——
—,'Tr(S R ~)a~ + e ~a~ at)z H)v~t —0 .

8

(2.28)

(2.29)

a.~, =o. {2.30)

Equations (2.23), (2.24), and (2.27) comprise a minimal set
of equations of motion for a string coupled to an arbi-
trary effective-field-theory background. Since they in-
volve divergences they do not completely specify the dy-
namics of the system. To remedy this situation we shall
formulate an action principle for strings in the next sec-
tion. Upon extremizing the action we will then recover
Eqs. (2.23)—(2.25).

If we turn off the external fields ( A))t ——cost BJ)t&
——0, ——

/=const) and set e "I——5"I, the system of equations
reduces to the following:

ap =0,
ap ~a+aa~pa —a~spy =o,

Equation (2.28) states that the Yang-Mills current is con-
served, while Eq. (2.30) gives the conservation of the
momentum current on the string. Upon using (2.30), we
see that (2.29) corresponds to the conservation of the to-
tal angular momentum current on the string. Equations
(2.29) and (2.30) are the standard equations of motion for
a free spinning string. '

III. ACTIQN PRINCIPLE

We shall now rederive equations of motion (2.23},
(2.24), and (2.27) starting from an action principle. We
begin by examining the %'ess-Zumino term for a string
in the absence of external fields:
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Tr dgg
12m

(3.1)

where we have introduced a dynamical variable

g =g(o, o', cr ), which takes values in the Yang-Mills
group G. n is a dimensionless constant which is required
to have integer values for a consistent quantum theory.
N is a three-dimensional disc (parametrized by cr, cr', cr ),
with dN =M. The equation of motion resulting from
infinitesimal left variations on g (i.e., 5g = —Ag) in Eq.
(3.1) is

We note that Eq. (3.5) contains couplings to all fields
but the vielbein and the dilaton. From the coupings to
AM, AM, and BM~, we ascertain

Ia &aPD ( A)gg 1

(3.6)

d(dgg ')=0 on M . (3.2) 18m

On comparing Eq. (3.2) with Eq. (2.28), we see that we
can identify the Yang-Mills current according to
Ia eat)g+g —i

This result is modified when external fields are present.
Nepomechie' wrote down the coupling to Yang-Mills
potentials. It necessarily contains a coupling to the an-
tisymmetric tensor field BMN as well. Along with the
infinitesimal Yang-Mills transformation (2.3), one in-
cludes 5g = —Ag. Then the sum of Eq. (3.1),

SI —— Tr gg 'AA andS = B z4' M 477 M

(3.3)

is invariant under such a combined transformation.
Although the sum of the three terms Swz, SI, and

S is gauge invariant, it is not invariant under local
Lorentz transformations. This is because BMz trans-
forms nontrivially under the latter [cf. Eq. (2.4)]. In or-
der to rectify this situation we need to add the following
two terms to Nepomechie's action:

St ——— f Tr(dh h ' hto),
4K M

Swz ——— f Tr(dh h ')
12m

(3.4)

Swz =Swz +Swz +Sr +Sr +S
is invariant under both Yang-Mills and local Lorentz
transformations. This invariance can be made explicit by
writing Swz in the form

n
SWZ LWZ4' N

Lwz=H(z) Tr[D' "'gg ' h F———,'(D'"'gg ') ]

+Tr[D' 'hh 'hR ,'(D' 'hh ') ], ——

(3.5)

where D' 'g =dg + Ag and D' 'h =dh +cob. Now using
dH=TrF —TrR, it is easy to see that Lwz is a closed
(but not exact) three-form. This is a generic property for
Wess-Zumino terms.

Here we have introduced a new dynamical variable
h =h (o,o', o ), in analogy to g, where h takes values in
the Lorentz group. To the local Lorentz transformations
defined in Eqs. (2.4), we attach 5h = —eh. Then the to-
tal action

The string equation of motion (2.23) can now be easily
recovered from the action (3.5). Variations in g,
5g = —Ag, lead to

(D(A)gg —i)2 F 0

Now use the identity

D(A)(D( A)gg
—i

) (D( A)gg
—1)2+F

(3.7)

(3.8)

1
AB 09 AB

2&ex
(3.10)

and TA~ are SO(9, 1) generators. a' is the usual Regge
slope parameter.

For n =0, corresponding to no Wess-Zumino term, it
was shown that the action (3.9) is equivalent to the
Nambu-Goto string action. [The proof involves the elim-
ination of h (which is an auxiliary variable when n =0)
froin the action. ] In addition, upon replacing T09 in Eq.
(3.9) by other Lorentz generators new classes of strings
were found.

Now consider n &0. By minimizing the action

and the identifications (3.6) to obtain the result.
An analogous equation is obtained by performing vari-

ations in h. This however does not lead to the desired re-
sult, because the last term in Eq. (2.24) is not recovered.
That is, the string described by only the Wess-Zumino
term (3.5) has no momentutn current PA . From Eqs.
(2.8') and (2.21), the momentum current couples to the
vielbein field. Since the Wess-Zumino term contains no
such coupling, an additional term SzE must be included
in the action.

SKE should reduce to the free string action for a trivial
vielbein field. Furthermore, it must be a functional of the
group variable h, as well as z (and e "M), in order that
we recover Eq. (2.24) upon minimizing with respect to h.
We note that this requires a nonstandard formulation for
the free string action

Let us first examine the limit of no external fields (and
flat space). In this limit, Eq. (2.24) reduced to the
angular-momentum-conservation equation (2.29). We
wish to obtain the latter by varying h in some action con-
taining Swz. The appropriate action was given by
Balachandran, Lizzi, Sparano, and Sorkin. It is, name-
ly, Swz plus

[h, z]= f —,'Z „dZ"h dZ' (3.9)
m

where
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SKE +Swz (in the flat-space limit) with respect to h, we
find

0= (dh h ')
A~

——'Xscdz h dz„
4m

AB 2 BC

+ —,'XAcdz h, dzB . (3.11)

Equation (3.11) is equivalent to (2.29) after making the
identification

P„=-,'r,„,E i'a~'. (3.12)

SicE[h z, e]=I ,'&A—se"« (3.13)

The momentum current is conserved as a result of
minimizing the action in z ".

The generalization of Eq. (3.9) to curved space is
straightforward. Coordinate transformation invariance is
ensured upon including the vielbein fields according to

where e "=e "M(z)dz . From the field equation (2.8'),
obtained by minimizing with respect to e M, and Eq.
(2.21), we now get the following assignment for the
momentum current:

p„=(r—„,es E('a~ (3.14)

Equation (3.14) reduces to (3.12) in the flat-space limit.
Now minimizing the total action SicE[h,z, e]+Swz,

with respect to h, gives

0= [(D' 'hh ') —R]AE4n.

+ (&—Ace hes —Xsce heA )

Upon using the identity D' '(D' 'hh ')=(D' 'hh ')
+R, and the definition (3.14) for the momentum current,
we recover the string equation of motion (2.24).

It remains to obtain Eq. (2.27). For this purpose, let us

vary z in SicE[h, z, e]+Swz. The resulting equation of
motion is

)(pcTr(R pMD13 AA ) TI'(FpMDf) 'gg '
) + ,' d13z HMN—p

4~

4~ AB C N(~p) &Ace Mes)vc)p
n

=Tr(RpMS )d~ Tr(F MI —)(3~ e~HM&—d~Mc}y+ 2P„(cop)—"Ee M(3~M, (3.16)
4

where SicE ——J Md cr LKE, and we have substituted equa-

tions of motion (3.7) and (3.15) into the right-hand side of
(3.16). Equation (3.16) differs from (2.27) only by the fact
that the former contains no coupling to the dilaton field.
The standard interaction with the dilaton was proposed
by Fradkin and Tseytlin. ' Here we suggest an alterna-
tive. We simply replace LKE by

1/2 2
gYM

X(o )= LicE .
2e (z}

Now upon varying z in

2
g YM

d O.
3&2 LZE+SWZ s

M (c3"(i)(z)

(3.17)

(3.18)

gYM

3/2y( )
KE

where g YM is the Yang-Mills coupling constant.
The above prescription is equivalent to multiplying the

Regge slope parameter a' by (I)(z}rc ~ /gvM. The latter
reduces to one when P attains its vacuum value. We note
that we recover (in a simple manner) the known result'
that a rescaling of P by a constant is identical to a
redefinition of the Regge slope parameter.

%'ith the above choice of coupling to the dilaton field,
we identify the scalar density X(cr ) in Eq. (2.22) according
to

we obtain the equation of motion (2.27). Thus from the
action (3.18), we recover the full set of minimal equations:
(2.23), (2.24), and (2.27).

On the other hand, the particular form for the currents
[cf. Eq. (3.6)] leads to some extra conditions, not present
in the minimal set. Let us first examine the Yang-Mills
current defined in Eq. (3.6). Starting from the identity

Tr(~a)3D ( A)gg —1D ( A) —)D ( A) l
) ()

a, P, y =0, 1 (3.19)

and the equation of motion (3.7), we arrive at the condi-
tion

TrF(o )Ir(o ) =0 (3.20}

which is not present in the minimal equations. This con-
dition was previously found for strings in interaction with
Yang-Mills fields.

The interpretation of Eq. (3.20) is as follows: If at a
point z(o ) on the string a component I (o ) of the
current is nonzero, it defines a direction in the Lie alge-
bra C. By Eq. (3.20), the components of F(o ) vanish in
this direction. There are at most two such directions in

C, corresponding to a =0, 1. Furthermore, these direc-
tions change from point to point on the string. If, on the
other hand, I (o ) =I'(o ) =0, there are no restrictions on
the field Fat the point o..

From the above, if the current I'(o ) is not zero, the
component of the "electric field" F(cr ) parallel to I'(cr)
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where y,&
——B~ Bp~ is the induced metric on the

string, with y I'yz& 5&——and y=det[y~&]. A, can be
determined by demanding that, in the absence of external
fields, the quantized theory has a zero beta function. In
that case, it was found that' A, =+4'/n. Indeed, it may
be argued that a consistent quantum theory of the string
requires the term (3.21). We note that the inclusion of
(3.21) will alter the definition of the momentum current,
as well as the Yang-Mills current.

In addition to the constraint (3.20) on I, we can simi-
liarly derive a constraint on the spin current S based on
its form [cf. Eq. (3.6)]. From the identity

Tr(e ~D '"'hh 'Dp'"'hh 'D '"'hh ')—:0

and the equation of motion (2.24), we get

(3.22)

TrR (o )S~=2e(z)P„r)~Me z(S~)" (3.23)

In flat space, this condition reduces to

(S )" 8 (z„Pa z~P„)=0—. (3.24)

Equation (3.24) can be interpreted as follows: If the spin
current S (cr ) is not zero, the orbital angular momentum
current and spin current are separately conserved, at the
point o., in the direction in the Lorentz algebra parallel to
S

A final condition not present in the minimal equations
of motion is

2e(z)X(cr ) =a' g YMP„e"~8~™, (3.25)

vanishes at o.. The string can be said to superconduct.
Superconducting strings [with G =U(1)] are of interest
in the cosmological context. ' It is thus conceivable that
the action (3.18) (rewritten in four space-time dimensions)
might be suitable for discussing such macroscopic, as well
as microscopic, strings.

By introducing additional terms involving g in the ac-
tion, we will modify the form of the current I in Eq.
(3.6), and hence the condition (3.20). One such term
which is commonly included is the nonlinear 0-model ac-
tion

S = f d o& yy —Tr(D '"'g ')(D&'"'g), (3.21)
1

which follows from (3.17). The physical relevance of Eqs.
(3.24) and (3.25) is not clear to us.

IV. CONCLUDING REMARKS

We have derived a minimal set of equations that a clas-
sical superstring must satisfy when interacting with the
zero-mass modes of the effective theory. We further real-
ized these equations by proposing an action principle
(3.18) based on the Wess-Zumino term (3.5). The latter
potentially offers a bosonic description of the heterotic
superstring. The standard O.-model action for the
heterotic string coupled to the background of massless
particles is known to be anomalous with regard to Yang-
Mills and local Lorentz transformations. ' Counterterms
were introduced in order to recover these symmetries.
For us, the effects of the anomalies are already contained
in the action S~z and no counterterms are necessary. It
remains to show that the action presented here can lead
to a conformally invariant quantum theory. One can fur-
ther ask if the effective theory equations of motion can be
recovered by demanding that relevant f3 functions vanish
for the coupled Wess-Zumino action. We would then
have the situation where the classical string action leads
to the effective-field-theory equations of motion, while the
effective-field-theory action leads to the classical string
equation of motion.

We remark that although our starting point was ten-
dimensional supergravity, the resulting equations of
motion and action principle is easily generalized to an ar-
bitrary number of space-time dimensions. Thus, the ac-
tion (3.18) may also prove useful for the description of a
four-dimensional macroscopic cosmic string. This classi-
cal string has the novel features of possessing spin, as well
as being superconducting. Regarding the former, some
surprising consequences have already been noted. '

Equation (3.5) gives a unique coupling of the string to
A„,co„,and 8„„(thelatter being interpreted as the axion
field) which may lead to interesting consequences.
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