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Excited-state vertices for type-I superstrings
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Requiring conformal invariance and invariance under the 6 gauges, we construct Lorentz-
covariant vertices for the emission of excited states of the type-I superstring.

I. INTRODUCTION

Soon after the understanding of the group-theoretical
basis' for dual resonance models, Lorentz-covariant ver-
tices were constructed for excited states of the general-
ized Veneziano model. The basic requirement of such
vertices was covariance under the Virasoro generators:

[Ltt, V(z)]=z z +NJs V(z) .
dz

v=g 'v(z).
z

The Veneziano ground-state vertex

(1.2)

Covariance under the SU(1,1) subalgebra, (N =0, +1),
with arbitrary SU(1,1) spin Js, was found to be sufficient
to ensure the duality property of dual amplitudes provid-
ed that all vertices transformed with the same J&. The
Casimir invariant of SU(1, 1) is Js(Js+1) with Js nega-
tive for the unitary irreducible representations. Howev-
er for the elimination of negative-norm states, covariance
under the full Virasoro algebra (all integer N) was re-
quired with the unique conformal spin J& ———1 for each
vertex. This, with (1.1), is then seen to be sufficient for
the gauges to commute with the integrated vertices

II. EXCITED-STATE VERTICES IN THE VENEZIANO
MODEL

In most string-theory calculations, the zeroth modes
are treated on a different basis from the higher modes.
One writes the familiar string coordinate and momentum
as

Q„(z)=qop ipo„l—nz+ g n ' (a„" z"+a„"z "),
n=1

(2. 1)

P&(z}=iz Q„(z)=pa„+i g n+' (a„"tz"—a„"z ") .
n=1

The Virasoro generators are then defined through the
contour integrals

L
1 dz z:P(z): .
2 2aiz

(2.2)

In Sec. II we review the construction of excited vertices
in the Veneziano model using the e limiting procedure to
put the zeroth modes on the same basis as the higher
modes. In Sec. III we construct the excited vertices of
the superstring. In Sec. IV we discuss zero-norm state
and results at low-mass levels.

.eik Q(z).
( 1 3) These satisfy

normal ordered except for the zeroth mode, is covariant
with Js ———k /2 requiring, therefore, a negative squared
mass m = —k = —2 for ghost elimination. The
excited-state vertices were obtained by multiplying by
certain functions of the conjugate momentum

and

[Ltt, Q„(z)]=z z Q„(z}
dz

[Ltt, P„(z)]=z z —N P„(z) .
dz

(2.3)

(2.4)

P„=iz Q„.
dz

(1.4)

For the superstring the vertices are similarly invariant
under the L,z to guarantee ghost elimination,

[Ltt, V(z)]=z z NV(z), —
dz

(1.5)

V(z) =z I 6 ir2& V(z) I (1.6)

but in addition the vertices must be obtained by anticom-
mutation with the fermionic gauge operator G»2 to
guarantee decoupling of the tachyon:

In this scheme, the excited-state vertices require a very
cumbersome ordering prescription for zeroth modes. For
this and several other purposes, therefore, it is convenient
to treat the zeroth modes on the same basis as the other
oscillators. For instance, in the finiteness proofs of the
loop graphs for arbitrary numbers of external particles,
the contribution of the loop momentum integration (trace
over zeroth modes) inust be combined with the correla-
tions of higher modes to produce correlations that are co-
variant under the modular group. This can be most con-
veniently accomplished by unifying the translational and
vibrational modes. In the group-theoretical analysis, in
fact, this unification arises naturally. One defines Q„ to
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transform with an infinitesimally small negative SU(1,1)

spin —e: [L~,P„(z)]=z z —N z N—e iQ„(z)
d d
dz dz

[L~,Q„(z}]=z z N—e Q„(z) .
dz

(2.5) =z z N—(1+e) P„(z)
d
dz

At the end of all calculations, e is taken to zero, although
in intermediate stages this is a singular limit. For in-
stance, the string coordinate is

+z N ieQ„(z) . (2.15)

Q„(z)=F(a,z '}+F(a,z),

where

(2.6)
Equation (2.13) shows that, when sandwiched between
exponentials e'"'F and e'" ", ieQ„ is equivalent to k„/2.
Thus the effective commutator is

F(a,z)= g y„a„"z
n=0

y„—:[I (n +2e)/n!]'~

(2.7)

(2.8)
and

[Liv, P„(z))=Z z NP„—(z)+z N k„/2
dz

(2.16)

[a„,a" ]=5 "g„, m, n =0, 1,2, . . . . (2.9)

By expanding (2.6) to first order in &e and comparing
with (1.3), one makes the identification

[Liv, :Vog P:]=z z N(1+k—/2):Vog P:
dz

+Voz N g k/2. (2.17)

qoz
—— —(a&+a ), po i &e/——2(a —a ) .o ot (2.10)

The e-dependent term in (2.5) depends therefore on &e
and higher powers of e. In general it is safe to neglect
terms of order e and higher. The operator a„" annihilates
the vacuum for n=O as well as positive values. We will
take z on the unit circle so that Q(z) =F +F. The vertex
of (1.3) can then be written

V( )
ikFeikF k /4'Oz —e e e (2.11)

F and F vary as e ' as e~O, but, if the zeroth modes
of (2.11) are brought into a single exponential, the k /4e
term cancels and all e dependence can be subsumed into
qo„and po„. The commutator with LN is then, using
(2.5),

Virasoro covariance requires that the polarization g„be
transverse to k„. Elimination of negative-norm states re-

quires that 1+k /2=1 or that this vertex describes a
massless vector meson. A Lorentz-spin J particle on the
leading trajectory is described by the vertex

V, J(z)=:VoP: . (2.18)

Here, and in the following, suppressed Lorentz indices
are taken to be transverse. Covariance of the normal-
ordered vertex is ensured by contracting with a traceless
polarization tensor. Vertices for particles on daughter
trajectories are constructed by contracting transverse in-
dices in (2.18}and by using the following S„'"':

(2.19)

[Lz, Vo(z)]=z z Vo(z) Nee'" ik Qe—'" e"'N d
dz

S(g +]) d 2n
k P S(P)

P dz k2 P (2.20)

(2.12) It can be proven by induction that S'"' transforms with
conformal spin, —n, so that

After the two exponentials have been brought together, it
is safe to neglect terms of order v'e and higher: v(z)=v, g (s'"')"

n=1
(2.21)

(2.13)

Thus

[L~, Vo(z)]=z z Nk /2 Vo . —
dz

(2.14)

If we operate with iz d /dz on (2.5), we have

e'" eik Qe'" =(eik Q+k /2) '"~ t ~

(k2/2) ik FikF. corresponds to a state in the Veneziano spectrum with
k /2+ g nk, „=1 providing that the normal ordering
does not destroy the Virasoro covariance. The problem
of maintaining covariance after normal ordering has not
as yet been solved on deep daughter trajectories and, as
we will see, the problem recurs in the case of the super-
string. One cannot construct longitudinal S'"' that are
covariant under the full Visaroro algebra although it is
possible if one requires only SU(1,1) covariance
(N =0,+1):
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[L~,k.S' '+ k.P ~ k l2]

=z z 2—N (k S' '+k.P+k /2)
dZ

[Ltv LM]=(M N)LM+&+cb~+No ~

{G„,G, I =2L„+,+b5„+,o,

(3.3)

(3.4)

~k+z " N(1 —N') .
2

(2.22)
[L~ G, ]= s ——G~+, .

N
(3.5)

Having used this brief review of known results to define
our techniques, we may proceed to construct the super-
string excited vertices.

For the superstring we require that the physical state ver-
tices V be covariant under the Virasoro algebra with
Js ———1 to eliminate ghosts and that they be obtained by
anticommuting some V with G»2 to eliminate tachyons:

III. EXCITED STATE VERTICES
FOR TYPE-I SUPKRSTRINGS

The realization of the Virasoro generators that satisfy
(2.5}et seq is

[L~ V]=z z NV—,
dZ

V=z' {Gin, VI .

(3.6)

(3.7)

L~ ———f . z (P„Nie—Q„) H„z —H„
2 2&lz dz

(3.1)

The corresponding 6 gauges, for half odd integer r, are

Consider the following lemma.
Lemma I: If V is Virasoro covariant with conformal

spin Js, i.e.,
r

[Ltv, V] =z z +NJs V,
dZ

G, = (t) . z "[P„(z)—2rieQ„(z)]H„(z),
2' lz

(3.2} and if Vis also covariant under the fermionic gauges, i.e.,

where H„(z)= g(b'„z'+b„'z '), summing s over posi-
tive half odd integers. To the requisite order &e, taking

Q„ to behave as e '~ near a=0, it is easy to show that
these operators satisfy the usual algebra:

{G„,VI =z "V, (3.8)

with V being independent of r, then V is also Virasoro co-
variant with conformal spin Js ——,'.

To prove Lemma 1 we use (3.5) to write

[Lx, V] =z "[Lx,{G„, V j ]=z "{[Lx,G„],V ) +z "{G„[Lx,V]]

=z "(r —N/2) {G~+„VI +z "z z +NJs {G„, V)
dZ

=z (r N/2)z "{G„, V—I +z z r+NJs z—"{G„, VI

=z z +N(Js ——') V .
dZ

S (3.9)

The problem reduces therefore to finding the covariant V
vertices with Js ————,', whereupon the excited state ver-
tices V are obtained from (3.7). We begin by recording
the effective anticommutators (when sandwiched by the
ordered plane wave)

{G„Q„I
= —iz "H„, (3.10}

{G„,P„'{=z "(H„rH„) . — (3.14)

gauge covariance requires Lorentz transversality. To go
up the leading trajectory, it is not sufficient to multiply by
powers of P as in the Veneziano model since P by itself is
not covariant under the G gauge. Acting on (3.10) with
z d/dz represented by an overdot, we get

{G„,Hq I =z "(P„rk„), —

[L~,H„]=z z —N/2 H„,
dZ

(3.11)

(3.12)

To cancel the r-dependent term we form the combination

(3.15)

z {G&q~ .VOH:I =:Vo(P+k HH): (3.13)

The right-hand side defines the vertex of the massless vec-
tor state of the superstring, and one can see again that

In the limit of vanishing 0, S„"'reduces to the Veneziano
model S„"' of (2.19). The transverse part of S"' is

Virasoro and G gauge covariant:
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[LN, S'"]=z z —N S"',d
dz

(3.16) [L~,R '"']=z z N— (n +1) R '"'d
dz

[G„,S())]= —r H —k 'PH k HP
I 2 I 2

(3.17) +z Niy2n (3.27)

The superstring vertex for the spin-J particle on the lead-
ing trajectory is, therefore,

V z)/2[G .V HS())(J —)).
I

=z'"[G, , :V()K[P ' (J ——1)k HHP '/k']
I

=:Vo[(P +k HH)P ' —(J —1)HHP ): . (3.18}

Higher than first powers of the anticommuting fields van-
ish inside the normal-ordered product. One may check
explicitly the covariance of this VJ under the Virasoro
gauges. These leading trajectory vertices agree with the
recent results of Yamamoto.

To construct vertices for the daughter trajectories, we
need generalizations of the H—:H'" and S"' to some
H'n' and S'"'. It is convenient to introduce the inter-
mediate field

From (2.16), (3.24), and (3.25) one has

—N(n + —')

2

+z H—N rr(n)

and

R" =z z N(n+1)

2

+z R—N ~(n)

From (3.12), (3.25), and (3.26) one has

(3.28}

(3.29)

R „'"'=z "I G„,H„'"'
I

in terms of which we will define

(3.19) k H H(n)
2k

S'"' =R '"' —(2n —1)[k H, H'"']/2k (3.20)

with R ' "=P. The transverse R '"' are Virasoro covariant
by Lemma 1 but not G gauge covariant. The S'"' are
constructed to be Virasoro and G gauge covariant. We
will show that the required recursion relations are

H'"+' =H'" — [k H, R'"') — k PH'"',
2 I 2

(3.21)

and

=z z —N(n+1)N

dz

k H H (n)

2k

z N (n ——,')
[k H, H"] (3.30)

L~, ,R " =z z N(n+ —')—k H (n)

2k2 '
dz 2

R'"+"=R '"' — k PR'"'+ [k H, H'" ] k H R(n)+ (3.31)

[k H, H'"'] .
2k

We assume that for some n, H'"' and R '"' satisfy

t
G„H'"'I = "R ("',

[L~,H("']=z z N{n ——') H—'"',
dz

[L/y, R'"']=z z Nn R'"' . —d
dz

(3.23)

(3.24)

(3.25)

From (3.24) and (3.26) one has

=z z —N(N+1)
dz

+z N'(n —-') -H'"'k.H
k

(3.32)

Combining (3.26)—(3.32) we see that, having assumed
Virasoro covariance at the nth level, we have it also at
the (n + 1)th level:

[L&,H'"+ "]=z z N(n +—') H'"+"—
,

d
dz 2

(3.33}We have shown that these equations are valid for n = 1.
Taking the z d/dz derivative of both sides of Eqs. (3.24)
and (3.25), one has

[L,R'"+")=z z —N(n+1) R'"+" .d
dz

(3.34)

[LN, H '"']=z z N(n + —') H "—'d
dz 2

+z N (n ')H'"'——

The proof of (3.23) for all n is similarly proven inductive-
ly. One can then prove the G gauge covariance of S'"' for

(3.26} all n:
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[G S(n)] —r H (n) (2n 1) H(n)
r~

k

+(2n —1),R "k H (pg)

2k

= —"H'"+"+ [k H R'"'j (3 35)
k

Modulo further constraints that arise from normal order-
ing that are as yet unsolved in general, the excited boson-
ic state vertex for emission from a bosonic line in the
type-I superstring is therefore, with non-negative integer
A.„and A, '„:

V(z, [A.„,X' j)
~ I

=z', G, , :V g(H "') "g (S™~: . (3.36)
n m

The fermionic nature of H'"' requires that A.„be less than
or equal to 9 with multiple H's antisymmetrized. The
even G parity of the physical states requires that g A,„be
odd. We refer to the Lorentz spin J of the state as the
number of symmetrized transverse indices as would be
the case in D=4,

J = g(A, „+A,'„)

and the squared mass is

(3.37)

m l2= ——,'+ g [(n —
—,
)

)A,„+nA.'„] .
n=1

(3.38)

V —z ) ~2
[ G ~ V H(1)S(2)(S(1))J 2

j J)2 (3.39)

Vi )/2[ G .V H(2)S(1)(J—1).
j J) 1 (3.40)

However, V' is a perfect derivative and therefore decou-
ples:

V'= — z:V()(2P+k HH)P
k2 d&

(3.41)

The same phenomenon occurs in the Veneziano model,
the second trajectory being, in that case, empty. For the
superstring, however, the vertex of (3.39) provides a phys-
ical state on the first daughter trajectory for J)2. The
decoupling of excited states will be further discussed in
the next section. On the second daughter trajectory one
has vertices

V"=z' [G)i~, .VO(H"') (S"))J:j, J)0 . (3.42)

The lowest state of this type corresponds to spin J=O in
the four-dimensional sense: a product of three antisym-
metrized, transverse four-vectors. The vertices of (3.18)
and (3.42) agree with those of Ref. 4, although we would
identify them with states on the parent and second

To emit the excited states from fermion lines, one re-
places H„by I „l(i&2) On th. e second trajectory one
has, a priori, a twofold degeneracy:

V=z [G)y2~ V] (4.1)

If V transforms with J& ——0, then by Lemma 1, V trans-
forms with J& ————,', and V transforms with J = —1 as re-

quired for ghost elimination. However, in this case

z' [G)&z, Vj =z[(G)&&),V]=z[L+» V]=z V .
dz

(4.2)

The corresponding physical state is therefore a zero-norm
state and decouples. The rule for constructing the zero-
norm states of the superstring is to drop back —,

' unit in

conformal weight and commute with G&&2 to find the
decoupling V.

At the first excited level (m =2), the covariant ver-
tices together with their SO(9) content are as follows.

Physical states, V:

V H")
0

v 0"'s"'
0

V a'"H'"H'"
0

9
9 —1 =36+44

91

,
', =8

Zero-norm states, V:

V S'"
0

V a("H("
0

91 =36
2!7f.

Multiplication by V0 is intended to mean multiplication
from the left by exp(ik F ) and from the right by
exp(ik F+k l4e) The above. covariant vertices with
the appropriate trace subtractions are then equal to
themselves normal ordered. Products of H'" are of
course antisymmetrized to survive normal ordering. At
this level, the normal-ordered vertices are separately co-
variant after trace subtraction. The spectrum at the first
level agrees with the light-cone analysis (128=44+ 84).
Each of the above vertices generates vertices for more
massive particles through multiplication by products of
s(1)

At the second level, (m =4), one has the following.
Physical states, V:

v a"'
0

V [H(2) S(1)
j

v a(2)a(1)a(&)
0

v a'"s'"
0

v a'"s'"s"'
0

v a'"a"'a'"s"'
0

V,(H'")'

9
9 —1 —36 +44
9x 36=9+84+231
9 —1 =36+44
9x 44=9+156+231
9x 84—36=126+594

9f = 126
5f41

daughter trajectory, the first daughter trajectory states
being given by (3.39).

IV. EXPLICIT EXCITED STATE VERTICES

It is useful to explicitly compare the covariant vertices
at low levels with the spectrum of states as given in the
light-cone analysis. To get the correct counting, one
must eliminate zero-norm states from the covariant ver-
tices constructed in Sec. III. Suppose a superstring ver-
tex V is related to a vertex V by (3.7) and V itself is given
by
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Zero-norm states, V:

V S(2)
0

V S(1)S(1)
0

V H"'H'"S"'
0

v, (a"')4

V H'"H'"
0

9
9X 10

44
2

9X36=9+84+231
9'f

4t5I
= 126

9 —1=36+44

these vertices and trace constraints necessary to maintain
Virasoro covariance after normal ordering are not at
present understood and further work is needed to present
a general prescription here and at higher levels.

The mass shift results of Ref. 4 depend on the fact that
the vertices considered there involved only S'" and H" '.
%e suspect, therefore, that the speculation of unbroken
mass degeneracy to one-loop order will not be confirmed
on lower daughter trajectories.

If we subtract the zero-norm-state representations from
the physical state representations, we obtain the SO(9)
representations found in the light-cone gauge: 9+36
+ 126+ 156+231+594. However, the recombinations of
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