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It is known that the behavior of a four-point string amplitude at large center-of-mass energy V's
and fixed momentum transfer ¢ =V — is not perturbative. We study this region of phase space
by summing multiple Reggeized graviton exchange in the eikonal approximation in D space-time
dimensions. It is argued that the eikonal sum is at least representative of the summation of the
leading powers of s in a string theory. The masslessness and high spin of the (Reggeized) graviton
determine the character of the result. For «*sg” ~*S1 (k is the gravitational coupling), the eikonal
amplitude is dominated by single Reggeized graviton exchange. The amplitude in the region
k’sqg®?~*>>1 is quite nonperturbative in character: simple Regge behavior and the Froissart
bound are violated, and the amplitude does not satisfy a fixed-momentum-transfer dispersion rela-
tion. Although order by order the amplitude exhibits in g? the exponential decrease of Regge be-
havior, the final amplitude has only power-law falloff dependent on the number of space-time di-
mensions but independent of the Regge slope. The unitarity of the partial-wave projections of the
eikonal amplitude is also studied. It is demonstrated that for D >4 noncompact dimensions, the
partial-wave amplitudes are bounded as s— o only for large values of angular momentum,
12 x,V's, where x, is the dominant value of the impact parameter. A heuristic argument is
presented that the eikonal approximation is successful in unitarizing Reggeized graviton exchange
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as t /s —0 in four dimensions but not in higher dimensions.

I. INTRODUCTION

The unitarity of closed-string amplitudes at high ener-
gy appears to be a challenging and interesting issue.
While well behaved at fixed angles O (e ~*), closed-string
tree amplitudes grow faster than s for momentum
transfers | g2?| S 1/Ins effectively because of single Reg-
geized graviton exchange. At least in more than six di-
mensions, the infrared behavior is sufficiently suppressed
to allow for a straightforward formulation of the ap-
propriate partial-wave (PW) unitarity conditions for the
exact amplitudes. The rapid growth at small momentum
transfer occurs over a sufficiently large interval that the
tree amplitudes do not satisfy the PW unitarity condi-
tions |a,(s)| <1 for a fixed partial-wave number.! This
situation is in contrast with the old Fermi theory of
weak interactions. There, the tree amplitudes do not
satisfy the relevant PW unitarity conditions (for the ex-
act amplitudes) because of growth in the amplitudes pro-
portional to Gps at fixed angles; the strong coupling of
an essentially short-distance region of momentum
transfer, indicated at the tree level, is associated with
nonrenormalizable divergences at one loop. In a closed-
string theory, the strong coupling at small momentum
transfers,? indicated at the tree level, is not expected to
be associated with ultraviolet divergences at finite order.
Nevertheless, the region of momentum transfer over
which the “bad” growth occurs increases at each order;
therefore, it is a nontrivial matter to determine the full
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range in momentum transfer that is affected and the ex-
act behavior of amplitudes at high energies.

The PW unitarity conditions (when applicable) should
be satisfied by any exact four-body amplitude of a
theory, if the theory is to be consistent. If the partial-
wave projection of a tree-level amplitude does not satisfy
the bounds on the exact amplitude, then at a minimum
one must sum to all orders to obtain an amplitude that
satisfies the bounds. The perturbative unitarity of the
loop expansion guarantees that an exact amplitude is un-
itary if the perturbation series is sufficiently well
behaved. However, perturbative unitarity or the formal
Hermiticity of some Hamiltonian alone is not sufficient
to guarantee the unitarity of the theory. Fermi theory
presents an extreme case in this regard. The precise
conditions on the perturbation series for a sensible res-
toration of unitarity are not known, in general, for a
quantum field theory.

We are led then to investigate the behavior of the
summation of string loop amplitudes. It will be evident
that Reggeized graviton exchange with its incumbent
high-energy growth arising from Regge intercept 2 and
its low-momentum-transfer singularity present special
problems in this context. Of course, a complete summa-
tion of the string loop expansion is a formidable task at
this time. However, a more modest goal is the summa-
tion to all orders of the leading power growth in s.

In this work we sum direct and cross exchanges of
Reggeized gravitons by a semiclassical eikonal approxi-
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mation. Our treatment can be motivated both by analo-
gy to previous studies and by the soft ultraviolet behav-
ior of string amplitudes. It was suggested in the 1960s
that Regge intercepts greater than 1 are not compatible
with unitarity.>* However, Cheng and Wu® demonstrat-
ed within the context of a leading-logarithm approxima-
tion based on a field theory with neutral massive vector
mesons that unitarity is restored for the example of the
light-by-light tower amplitude which has Regge inter-
cept greater than 1. Their technique involved the rela-
tivistic eikonal representation based upon the leading
contributions at high energy; it is well known that out-
side of the leading-term approximation the relativistic
eikonal approximation fails.® Since these investigations
contained the exchange of massive particles, their results
lead to amplitudes that satisfy the Froissart bound.* It
is natural, then, to investigate high-energy unitarity in
string theory by a similar technique. In the context of
string theory we will argue that the eikonal is an approx-
imation to a leading power summation in s, which may
be exact in some regards.

At fixed momentum transfer and high s we find an
asymptotic behavior that is inherently nonperturbative.
The amplitude has a fixed power behavior dependent on
the number of space-time dimensions and independent of
the Regge slope, in contrast with the exponential falloff
of Regge behavior present at finite orders. This nonper-
turbative behavior at fixed momentum transfer suggests,
but does not necessarily imply, that there might be
difficulties out at fixed angles where string amplitudes
are alleged to be soft. We also investigate generally the
question of the unitarity of the amplitudes. Since we are
dealing with amplitudes involving the exchange of a
massless particle, namely, the graviton, we cannot expect
the Froissart bound to be satisfied. Instead, we rely on
the PW unitarity conditions to study the unitarity of our
result. It is shown that the eikonal amplitude is unitary
only for large values of the angular momentum in four
or more dimensions. Nevertheless, the eikonalization is
more successful in unitarizing single-graviton exchange
in four dimensions than in (noncompact) higher dimen-
sions.

The organization of the paper is the following. In Sec.
IT the eikonal method is reviewed and motivated for our
application to string theory. In Sec. III the high-energy
behavior of the eikonal amplitude is calculated. In Sec.
IV we discuss the unitarity of the eikonal amplitude. A
number of technicalities are left to the Appendixes.

II. EIKONAL METHOD

We would like to investigate whether or not the sum-
mation of the string loop expansion successfully restores
unitarity. Since a complete summation of the string loop
expansion is a formidable task, a more modest goal is
the summation to all orders of the leading power growth
in s. We will work with the eikonal series for Reggeized
graviton exchange, and argue that at least in some re-
gards it is a good approximation to the leading power
series in a string theory.

The eikonal approximation is usually associated with
quantum field theory. However, there is reason to be-
lieve that it should be useful in the context of string
theory as well. First, note that at large s and small
momentum transfer a closed-string tree amplitude is de-
scribed easily as the exchange of massless Reggeized par-
ticles with the Reggeized graviton dominating, e.g.,

M= 2B, (1)s* " L O(s'+9") |

where B,(¢)—1/t as t —0. As the momentum transfer
increases beyond the fixed-t region the simplest version
of this picture breaks down, but not before the ampli-
tude is exponentially small. It is natural to expect that
the leading powers of s in higher orders come from the
iteration of the source of the worst growth at tree level,
i.e.,, soft Reggeized graviton exchange. The eikonal
series is good in describing the iterated exchange of soft
particles.

We examine the scattering of two particles, taken to
be scalars (dilatons) for simplicity, by multiple Reggeized
graviton exchange. To preserve gauge invariance, all
possible direct and cross exchanges are included. Con-
sider the limit of large s and fixed momentum transfer g.
It is most convenient to work in a center-of-mass frame
in which the momentum transfer is approximately trans-
verse, g>= —q? (see Appendix A for more details). Then
the Nth term in the eikonal series is

N
MN=——i2s—lﬁ!-(K2s YN(2m)2-PAN -1
N
X [ dk(1) - dk(N8°~? g, — T ky(j)
j=

N F[k%(1),s]

X
,IzI, ki)

Here « is normalized so that in D space-time dimensions
the coupling of a soft graviton to a fast scalar of momen-
tum p is i2V'2kp*p”, where u and v specify the polariza-
tion of the graviton. A minimal form for F is
F[k}s]=s -k which corresponds to a form factor for
tree-level Reggeized graviton exchange at small momen-
tum transfer. More generally, F can be taken to be a
four-point tree amplitude containing the graviton Regge
trajectory divided by 2«’s?/k2. The difference between
the two will be unimportant.

The approximate expression, Eq. (1), can be motivated
by arguments largely analogous to those presented for
the relativistic eikonal approximation in particle field
theory.” We consider graphs of the type illustrated in
Fig. 1. The Reggeization of the gravitons implies that
the dominant contributions arise when the momenta
flowing through the graviton lines (dashed lines) are all
soft. The net momentum transfer to a heavy line at any
point is then assumed to be small, an assumption which
is certainly safe at fixed order. Under this assumption
the propagators of the heavy lines may be linearized.
The sum of the resulting loop amplitudes of order x*
factorizes into the form of Eq. (1) in the relevant kine-
matic region. Graphs in which Reggeized gravitons in-
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FIG. 1. Multiple exchange of Born graph in all possible
ways.

teract with each other should be relatively suppressed
because soft graviton self-interactions are weak. The
neglect of higher intermediate states in the s channel
(inelasticity) could well be justified since we are interest-
ed in the small-momentum-transfer region. In four di-
mensions only elastic scattering is singular in the in-
frared region and these assumptions for the relativistic
eikonal approximation are plausible. Inelasticity in in-
termediate states typically leads to extra powers of a'k?
in the integrand due to gauge invariance. However, in
higher-dimensional space-time the graphs are not in-
frared singular and string excitations in the s channel
may contribute in leading order as well. It is important
to note that, perhaps up to logarithms, Eq. (1) exhibits
the leading dependence on s expected from general con-
siderations of Regge theory with trajectories of decreas-
ing slope and increasing intercept.> The general, expect-
ed dependence, saNm, where aN(t)=Na(t/N2)—N+1,
is realized with linear trajectories: a(t)=2+a't.

After summing over N the relativistic eikonal ampli-
tude in terms of an impact-parameter representation is
obtained:

M (s,q%)=—2is f dP—2x '™ (e

ixzsA({xl\,s)

1.

()

Here A is the Fourier transform of F[k?,s]/k} over the
transverse dimensions. The result is manifestly unitary
in impact-parameter space. At sufficiently large angular
momentum (/), the impact parameter x = |x,| and
21/V's can be identified. Therefore, the amplitude
should be unitary at sufficiently large /. However, the
eikonal approximation was motivated at fixed ¢ and
some direct indication of unitarity at fixed momentum
transfer is desirable as well. In Appendix A it is argued
that the eikonal series is perturbatively unitary outside
of the fixed-angle region if the eikonal approximation is
self-consistent. Even if the eikonal series is not precisely
the leading series in a string theory, it is a sum which
reasonably can be expected to be s-channel unitary and
which maintains many of the relevant, characteristic
features expected in a string calculation.

It is remarkable that string theory enables us to make
this analysis in a somewhat credible way. In previous
theories of gravity, with their incumbent ill-behaved ul-
traviolet properties, this discussion would not have been

a possibility. Actually, our results rely only weakly on
the details of string theory and are true in any theory of
gravity with convergent enough ultraviolet behavior
such that the manipulations leading to Eq. (1) are valid.

There is an important caveat in this whole investiga-
tion; namely, we are investigating the high-energy limit
when s >>M}; . Consequently, implicit assumptions are
being made concerning the consistency and existence of
a theory of gravity at these energies.

III. ASYMPTOTICS OF THE EIKONAL

AMPLITUDE
An elementary calculation from Eq. (2) gives
M= —i2(27) P ~2/25q ~(D-472
X fow x\P=2D24x \Jp_4)n(x1q,)
X(eiKZsA(xl,s)_l) , 3

where J(p_4),(y) is a Bessel function of order
(D —4)/2. The behavior of the amplitude for large s
will depend strongly on the asymptotic behavior of A4
for large x .

A satisfactory form for A corresponds to single Reg-
geized graviton exchange:

dP %k, e F(KLs)

A= [ oo "

, 4)
where
—a'k?
F(k%Ls)=—s = ‘B(—k}k]

is a form factor that gives the damping at large ki
characteristic of Regge behavior. In the regions x, — oo
and x, —0, 4 behaves as

. (D — D —4 1
Jim Aleys)=gr 07D | TS
—xf/(ﬂ'lns)
+O0(e ),
(5)
lim A~1.
xl—>

These results apply for D >4 where an infrared cutoff is
unnecessary. Some details are presented in Appendix B.
For D =4 we obtain

x}linwA(xl,s)=—$ln(xlk,R) , (6)
where we have equated 1/(D —4) with —InAg, ignoring
some irrelevant constants. In general, the dependence of
A on s is weak. From Egs. (5) and (6) it is evident that
the integral of Eq. (3) is only convergent for D > 5. The
amplitudes in D =4 and 5 will be defined by continua-
tion.

We proceed with an asymptotic, large-s expansion of
Eq. (3) which is quite nontrivial. The asymptotic behav-
ior depends on the size of the dimensionless quantity K*r,
where 7=s¢? % First we demonstrate that the Born
approximation is valid in the region k’r s 1. We rewrite
the eikonal amplitude, adding and subtracting the Born
term:
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ixzsA(xl,S)

2.2
—1—ik’sA(x,,s)]+ ZKZS

M= —2i(2m) P ~2/%q2-D/2 fow xP=D%x \Jp_ap(x.q,)e ;
i

F(s,g?). (D

The first term is nonsingular as ¢, —0 for D > 6. The leading term in the expansion of the Bessel function for small
argument yields a contribution which is independent of q,. Using the asymptotic properties of 4, Eq. (5), it is

straightforward to show for large s the term independent of g, is proportional to s!*2 =2//(0 =4 Then
M =2 pgh 01402 P-4 (8)
gt 1

Through case—by-case study the result holds for D =5 and 6 as well. Therefore, the Born term dominates out to a re-
gion of size k%sg? ~* ~1.

To investigate the amplitude’s behavior outside of the interval 0 <gq, (k%) , we proceed with a stationary
phase analysis since we expect rapid oscillations of the integrand in Eq. (3) except where the phase is statlonary A
stationary phase point of 4 will lead to a contribution to the amplitude that can grow no faster than V. Therefore,
we search for a stationary phase point where the oscillations of the Bessel function beat against the phase « 25 A; this
can only occur at large values of x| as 4 approaches 0. Use the asymptotic expansion of the Bessel function in Eq.

1/(4 D)

(3),
172

J(D,_4)/2(y)= Cos

T
y— 4(D~3)l-—

y

For our definition of couplings, it is clear that only the
exponential in the leading term of Eq. (9) proportional to
e” will lead to a stationary phase point. After a rescal-
ing of Eq. (3) and after use of Eq. (9), Eq. (3) becomes

M ~2e ~i(P=Dn/4( 37 )(D =372y —(D =23 (D —1)/2
X f“’ du u'P=372gir ) _1) (10)
Here A=c(k*r)!/'? =3 is a large parameter,
e |P=4 w2 | D=4 e
4 2
and

4-p__ 1 _
flu)=u+u D4

An analysis with the stationary-phase technique yields

(D-2)/2
—itpas4) (27C)

lim M =2ie

K27—+w ‘/D -
% K2s22 (KZT)—(D —4)/[2(D —3)]
91
x[e™ " yo-1)1, (1)

where u, is the point of stationary phase: uy=1. The
stationary-phase analysis is slightly unconventional be-
cause the term “—1” in the integrand of Eq. (10) is
necessary for good convergence of the integral at large
u. A careful examination of the integral shows that
indeed the contribution from the region of u >>1 is rela-
tively suppressed by a factor of O (1/V'1), as is the con-
tribution of the —1 term for u S 1.

The result in four dimensions is defined by the limit
D —4. The only quantity in Eq. (11) singular in the lim-
it is f(uy). Again, as in Eq. (6), we interpret the pole,

(D —4)*—
8y

1

1
sin 2

y

+0 9)

4(D -3)

1/(D —4), as the logarithm of an infrared cutoff Ap.
Then, in four dimensions,

2.2 2 )ik /(4m)
lim M=—2i"3 q—;
k%5 — oo qy }"IR
2 2
. K’s K’s
Xexp | —i%Z i [££ | _
exp{ io— |In o 1] ] . (12)

Note that the limit k>r— oo is simply the limit k% — oo;
the form holds for all g, .

The same result at sufficiently small ¢ can be obtained
from the work of Cheng and Wu on QED in four dimen-
sions.” They worked with an explicit infrared cutoff.
Using the substitution e?— —k’s one can convert their
result for the sum of soft-photon exchanges into the
above result for the sum of soft (Reggeized) grzaviton ex-
changes. The presence of the phase (A%g)=/ /4™ was
argued for long ago by Wemberg on general grounds.’
The magnitude of the amplitude is simply that of single
non-Reggeized graviton exchange. The reader will recall
that this circumstance is similar to the case of Coulomb
scattering, which is dominated by single-photon ex-
change even when the Coulomb phase is taken into ac-
count in the scattering wave function.

There are a number of comments to be made concern-
ing Egs. (11) and (12). Remarkably, although Regge be-
havior is present order by order, it is absent after sum-
mation. The amplitudes exhibit only power-law falloff in
g, in a way which depends on the dimension of space-
time but is independent of the Regge slope. On the oth-
er hand, the amplitudes are power bounded in s in the
physical region; for fixed ¢, the amplitudes do not grow
faster than s? for real s in any dimension. However, at
fixed g, the amplitudes do grow faster than s, which is
not in accord with the Froissart bound. The Froissart
bound, though, is not applicable both because of the
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masslessness of the graviton and because the amplitudes
are not power bounded in the complex s plane. The am-
plitudes do not satisfy fixed-¢ dispersion relations. These
relations are quite different than those given by Cheng
and Wu* where the Froissart® bound is saturated by an
absorptive amplitude with finite-range interactions. The
nonperturbative nature of the result in D >4 is under-
scored by the feature that the amplitude is proportional
to «? raised to a fractional power. These results are at-
tributable to the high-energy growth and infrared singu-
larity of Reggeized graviton exchange. They suggest
that the all-orders, leading, high-energy behavior of am-
plitudes in a perturbatively finite theory of gravitation is
fixed solely by the dimension of space-time and the grav-
itational coupling constant.

A few remarks on the limitations of the results should
be made. The singularities in Eq. (11) at D =3 are spuri-
ous because the stationary-phase analysis is not valid in
three dimensions. This case must be treated separately.
The behavior at fixed angles is not reliable. Neverthe-
less, it is surprising that the sum exhibits only power-law
falloff at fixed angles while at fixed order there is ex-
ponential decrease. Apparently, in this instance it is
preferable for the large momentum transfer to be shared
in many soft exchanges rather than a few hard ones.

The amplitudes carry special phase information. The
particular form of the phases and power-law falloff in ¢,
will be important in the next section.

IV. UNITARITY

In this section the unitarity of the relativistic eikonal
amplitude, Eq. (2), is analyzed. As mentioned previous-
ly, it is demonstrated in Appendix A that the eikonal
series is perturbatively unitary outside of the fixed-angle
region as long as the eikonal approximation is self-
consistent. However, even if it applies, perturbative uni-
tarity in this sense does not guarantee the unitarity of
the PW amplitudes in the eikonal approximation because
of possibly large contributions from fixed angles. The
unitary conditions, |a;(s)| <1, for the PW amplitudes
are examined using stationary-phase techniques. Al-
though for large / we find that the unitarity conditions
are satisfied, for small / they are not. In the eikonal ap-
proximation there is not enough phase oscillation or
strong enough decrease in momentum transfer to pro-
duce unitary in all partial waves. While the trajectory
ay(t) is less than 1 at some large spacelike ¢, the region
of “bad” growth in s is pushed out to successively larger
t. In fact, the source of the worst unitarity violation is
traced to the behavior of the eikonal amplitude at fixed
angles. We will also consider the asymptotic behavior of
the partially integrated amplitudes, obtained by integrat-
ing only out to a limited region of momentum transfer.
We find for small / that only in four dimensions are the
partially integrated amplitudes bounded as s — .

The PW projection of the eikonal amplitude can be
treated in a very general way. Firstly, recall the expan-
sion and projection formulas given in terms of Gegen-
bauer polynomials:!
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M(s,t)=Aps*~ P2 3 %C,V(I)Clv(cosﬂ)a,(s) ,
/=0 N;
(13)
sD/2—2 -
a,(s)=—"—— ["d6(sind)® ~3C}(cos@IM(s,1) .
ApCH(1) Yo
Here
ap=2T |2 _1 |(16mP721

N 212 (] 42v)
N[ = )
L +1)T4v)(v+1)

’

and

v DU +2v)
C’(”_r(1+1)r(2v)

with v=(D —3)/2.

If the eikonal formula, Eq. (2), is substituted into Eq.
(13), the angular integration can be performed with the
aid of a formula due to Sonnine (see Ref. 10):

- Vs

fo dB(sin0) 2 =272C{P=I"2(cos0)] 412 l" 5 sin@

1/2 -

| 4w N xV's

= ! —;\/T C[(O)J1+(Dﬁ3)/2 T Py (14)
where
r —;—-%—v
CHO)=1[1+4(—=)](—)"
F{é+1 I(v)

Then the PW amplitudes can be written exactly in terms
of an integral over impact parameter.

(47T)(D~1)/2 C,V(O)

a(s)= —il+1 (D—1)/4
! Ap cr(1)
®© _ x\/;
X fo dx x P~y p 3 - ]

X (eiK*sAxs) _1y (15)

We next study the extent to which the PW amplitudes
are bounded (as s— ). It is again appropriate to em-
ploy stationary-phase techniques in order to examine the
asymptotic behavior of ag,(s) at large s. Using the stan-
dard asymptotics of the Bessel function in Eq. (9) we ob-
tain
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i+ (471,)(D——1)/2 CIV(O)

(S)z s(D—Z)/4
o Vikp  CH(1)
°°d D/2-2
X fo X X
Vs _
Xexp {i xzs —% I—}—Dz2 l
X (eiWsAxs) _1) (16)

An analysis along the same lines as that of the last sec-
tion yields the result that the PW amplitudes at large s
are of order

a,(s)~sP=24cr0)/Ccr(1) .
Consider first the case when / is large. Then
CH0)/Cl(1)~1~ P =372
and
a;(s)=0(1~P=3/2(D=2/4) (] |arge) . 17

Equation (17) implies that for / 250 ~2/[2D =31 the pPW
amplitudes are bounded. Actually, for / >>1 the asymp-
totic expansion of the Bessel function J;(y) is as in Eq.
(9) only as long as y R /; if y S/ the Bessel function is ex-
ponentially small.'"® Denote the stationary phase point
of Eq. (16) as x,(s)~s'/[*P=31 When I is not too
large, [ less than

\/SXO(S)~S‘D —-2)/[2D -3)] ,

the stationary phase point is in the region where the
Bessel function oscillates and the above form is good in
leading order. Otherwise, q,(s) is smaller than indicated
because there is actually no stationary phase point.
Thus, the PW unitarity conditions indeed are satisfied
for I 2 V'sx,(s). This type of result is to be expected'!
because for such I’s the long-range peripheral nature of
graviton exchange is sampled.

In contrast, the PW amplitudes at fixed / and large s
are not bounded.

a;(s)=0(sP=27%) ([ fixed) . (18)

In Appendix C we demonstrate for the / =0 partial wave
that growth of this order arises only from the contribu-
tion of the fixed-angle region. The eikonal amplitude
cannot be expected to be accurate or unitary at fixed an-
gles. A proper treatment of the fixed-angle region in-
volves short-distance physics and more detailed informa-
tion about string multiloop amplitudes than is available
presently.'?

The eikonal approximation was motivated in Sec. II as
a technique to unitarize Reggeized graviton exchange in,
e.g., the fixed-momentum-transfer region. As argued in
Appendix A the relativistic eikonal amplitude should be
unitary outside of the fixed-angle region if the eikonal
approximation is self-consistent. It is desirable then to
have some test of unitarity outside of the fixed-angle re-

gion. The usual check of unitarity at fixed momentum
transfer is the Froissart bound; however, as remarked
above, the Froissart bound is not applicable to the case
at hand. If the theory is to be well behaved in the ultra-
violet, then the fixed-angle region probably should not be
so strongly coupled that some partial wave receives an
unbounded contribution from the fixed-angle region.
Typically, one expects the amplitude to fall on the aver-
age as t decreases from O out to the fixed-angle region.
It then seems difficult for distinct regions of momentum
transfer to make unbounded contributions to some par-
tial wave which in fact cancel. Therefore, as a non-
rigorous check of unitarity, we examine the boundedness
of the amplitude if it is integrated out to a particular re-
gion of momentum transfer, as opposed to a complete
PW projection. We will refer to this quantity as the par-
tially integrated amplitude,

2D —3SD/2—3

) = 1 - !
a,(s to) [ +( )] )\,DCIV(I)

2 D/2-2

0 t t
X frodt [—-;—;‘2-

X C(14-2t /s)M (s,t) . (19)

Crossing symmetry for M (s,t) has been assumed, so that
a,(s)=a,(s,ty= —s/2). Heuristically, the amplitude in a
region of momentum transfer about ¢, will be considered
to violate unitarity if that region makes an unbounded
contribution to a(s,t,) for some /. We will focus on
ay(s,ty) below.

We can now obtain a heuristic understanding of the
observation of Sec. III that single Reggeized graviton ex-
change dominates only in the interval 0<k*rS 1, where
ras(—1)27272 If M(s,t)~k%2*%"/t, then, for small
to, agls,ty) ~k*r,. Consequently, a,(s,t,) would become
unbounded outside of this small interval in ¢ if the am-
plitude still were to be dominated by single exchange.

It is shown in Sec. III that the eikonal amplitude in
the region k*r>>1 differs markedly from single Reg-
geized graviton exchange. It is interesting to investigate
whether the amplitudes of Egs. (11) and (12) are unitary
in the heuristic sense explained above. At first sight the
growth faster than s of the amplitudes in the fixed-¢ re-
gion would appear to imply that ay(s,t,) would be un-
bounded for ¢, fixed, in any dimension. However, the
phase oscillations are very important in this context.
Looking back at Eq. (11), the integration over ¢ neces-
sary to construct ay(s,t,) effectively brings down a
power of (k%s)~'P?=3 from the phase in the leading
term. It is not obvious that the subleading terms of Eq.
(11) do not dominate in the calculation of a,(s,t,).
However, it is shown in Appendix D that the correct
leading result for a(s,t,) is given just by using the lead-
ing form of the eikonal amplitude. Substituting Eq. (11)
into Eq. (19) gives the result that, for ¢, outside of the
fixed-angle region, but k275 >> 1,

ao(s,to)=0((K2T0)(D —4)/[2(D—-3)]) . (20)
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In order to make sense out of the continuation of this re-
sult to D =4, it is necessary to make the (reasonable) as-
sumption that after the S matrix is defined properly in
four dimensions, it is possible to perform a PW analysis
in essentially the usual way. Then in four dimensions
for ty outside of the fixed-angle region,

ks K%s
aQ(S,to)zeXpl—l; In o —1
. .Kzs 2 2
Xll_r&) exp |i— In(e*/AiR)
KZS 2
—exp [i——In(—1ty,/AfR) 2n
41

Presumably, the ill-defined oscillatory nature of aq(s,?)
as €e—0 would be amended in a more careful treatment.
The eikonal approximation has successfully unitarized
Reggeized graviton exchange outside of the fixed-angle
region apparently only in four dimensions even though
the argument of Appendix A did not distinguish explicit-
ly four dimensions. A possible explanation is the follow-
ing. The behavior of the eikonal series appears to be
determined by high orders. In four dimensions there is
an infrared enhancement when the cumulative momen-
tum transfer is small if consistent with the external kine-
matics, because of the infrared logarithmic singularities
of the graphs. On the other hand, for D >4 there is no
such enhancement. Each interaction tends to transfer
momentum of order 1/Va'. In large orders, the accu-
mulation of the individually small momentum kicks ap-
parently can become large with high probability.

V. CONCLUSIONS

Perhaps the most striking conclusion of this investiga-
tion is the nonperturbative character of eikonalized am-
plitude. In particular, simple Regge behavior is violated
as well as the Froissart bound and fixed-momentum-
transfer dispersion relations. In fact the J-plane singu-
larity of our results is an essential singularity due to an
accumulation point of moving Regge cuts at J=co.
There are suggestive but certainly inconclusive indica-
tions that the behavior of the string loop expansion in
the fixed-angle region is nonperturbative as well; this is-
sue is also a challenging and interesting one. The partic-
ular infrared properties of four dimensions appear to fa-
cilitate the unitarization of Reggeized graviton ex-
change. Therefore, it is attractive to speculate that uni-
tarity is the general principle that allows for a consistent
theory of gravity in four dimensions and excludes this
possibility in higher noncompact dimensions.
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APPENDIX A

The perturbative unitarity of the eikonal series is ex-
amined in this appendix. The term of order N in the
series is given in Eq. (1). To clarify the notation, write

MN=<n,|MN|n>. (Al)

Here |n') and |n) are two-body states describing elas-
tic scattering. Each two-body state defines an axis in the
center-of-mass frame, e.g., | n ) defines fi. Transverse is
defined relative to the axis fi, so that the momentum
transfer is approximately transverse outside of the fixed-
angle region. Perturbative elastic unitarity at order N of
the eikonal series would imply the equality of the two
quantities

1 b2 *
W(Sﬂ“ j§1 fdﬂn(nle|f>
X{n |My_;|i) (A2)
and
Im(f|My|i). (A2)

Here Q, are the solid angles specifying the axis fi. The
equality cannot be exact, but should hold to a good ap-
proximation if two conditions are met.

The ﬁ;\st condmon is an external one, that the angle
between i and f should not be fixed as the center-of-mass
energy goes to infinity. If this condition is not satisfied,
then the axes used to define transverse for the various
matrix elements cannot be essentially identical. There-
fore, the eikonal amplitude cannot be expected to be uni-
tary when describing fixed-angle scattering.

The second condition is relevant then for scattering
outside of the fixed-angle region. It is the dynamical
condition that the dominant intermediate states are
those for which i is nearly parallel to i and f. Again
this is required for the relative consistency of the notion
of transverse in (A2) and (A2’). Furthermore, if this
condition is met than the integral over solid angle can be
approximated by

fdﬂ S/4lD/2de2 ,

where the integral over transverse momentum is unre-
stricted. The approximate equality of (A2) and (A2’) fol-
lows. Note that the second condition should be met
when considering scattering outside of the fixed-angle re-
gion if the eikonal approximation is self-consistent.

APPENDIX B

In this appendix we examine the detailed behavior of
the amplitude 4 in Eq. (4). Quite generally, 4 can be
written as

dP- 2k e F(k%s)
A= —ik-x > s (B1)
f (2m)P k?
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where F(k2s) is of the form —k2 SB(—k?)s***. The

sum is over the various Regge trajectories contributing
to the string tree amplitude. It is obvious that

V2A(x,s)=—F(x,s)

p-2
=— f(‘;ﬂ—)D_l%F(kz,s)e’ik”. (B2)

This equation can be solved by Green’s function tech-
niques:
1 ~

WF(X',S ) ) (B3)

A(x,s)=c’de”2x' |
x

where ¢’ is the constant

D —4

1,—(D—-2)/2
+7 r 5

It then follows for nonsingular F that A4 (x,s) is O(1) as
x —0. In addition, if F is a member of L, it then fol-
lows that A(x,s) is O(x* P) as x — . These results
are certainly satisfied by string tree graphs with their in-
cumbent soft high-energy behavior. For the particular
case of the form factor in Eq. (4),
F(k%s)~ —kB,(—k?)s —«**

F(x,s)~exp(—x2/4b) ,

where

’ d 2
b=a ]ns+wln[kzﬁg(k )] o

APPENDIX C

Although the analysis of the full PW amplitudes for
fixed [ sketched in Sec. IV is concise, it does not eluci-
date how various regions of ¢ contribute to the overall
violation of the PW unitarity conditions. In this appen-
dix, the asymptotic result of Eq. (18) for a(s) including
the prefactor is compared with the / =0 projection of
the stationary-phase point amplitude, the leading term of
Eq. (11). The two results are shown to agree. The
second method of calculation makes it clear that the re-
gion of ¢ in which the worst violation of unitarity occurs
is the region about t = —s/2

The I =0 projection of the stationary-phase amplitude
is
2D —2,D/2-3

aovsp(s): }\'D

2 D/2-2

0 t ot
X dt | ————
f—s/Z ‘ s s?

XMgp(s,q?), (c1

where Mgp(s,q?) is given by the leading term in Eq. (11),
and —q?=t+1t2/s. After the change of variables
z=1+42t/s,

1
aqspls)=dp f dz(1—z2)~1+klk+1/2k +1)
0

|2k +1 2)k/(2k +1
1— +1)
Xexp |i Y &(1—z7)
(2
where k =(D —4)/2,
£ 22K /2K + 1)) 2/ 2K +1)g1/241/[22k +1]
[c is given after Eq. (10)], and
do o i —ikm/2pak 4122k 41 (2
b Ap V2k +1
k12 )k +D/@k + Dk +12/2k +1) (C3)

The integral has a good stationary-phase point at the
boundary, z =0. Evaluation of the contribution of the
stationary-phase point gives the result

g sp(s)=2(—4mi )P~ D72 il(D=3)/(D—4)]¢
172
2 P2
x ks T TTT L (CA)
D -3 Ap

This is precisely the result given in Eq. (18) if the con-
stants in that analysis are kept. Note that the point
z =0 corresponds to scattering at 90°.

APPENDIX D

Below, a calculation of ay(s,ty) for t, outside the
fixed-angle region is sketched in which the errors can be
controlled. It is difficult to give explicitly the leading er-
rors in a stationary-phase analysis. Therefore, it is ad-
vantageous to organize the calculation of a,(s,?,) so that
only one integration is performed using stationary-phase
techniques and it is the last one.

The calculation begins with a rewriting of Eq. (19).
Use a representation of the Bessel function due to Hank-
el (see Ref. 10):

L =4H 0 +HP Y],

exp |i _km _m
(1) R 2 4
H =
=1 T(k+1) D
. Yk—172
°°d —u, k—1/2 1 u ,
X fo ue ‘u +2y
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where H{*'(y) is given by the substitution of —i for i in
the above. Substituting Egs. (3) and (D1) into Eq. (19)
gives ay(s,ty) as a threefold integral. The integration
over impact parameter x, should be performed last, by
stationary-phase techniques. By familiar arguments the

dominant stationary-phase point should exist at large x .
Therefore, the other two integrations only need to be
performed in the limit of large x,. The required identity
is

1 o T i (D—5)/2
0(’du e " Uyk—122 dt(_t)(D—S)/4e'X1 - _
Ik +1) fO f’o + 2xl\/—t
. R (D—3)72
2 (v Ve Lo L _llio||—L— . (D2)
X1 x,V —t, x,V —t,

The result of performing the integration over impact parameter in the stationary-phase approximation is

_ipna 20 (2m)P 272 P-4
o VD 3

ay(s,ty)=~e (k*7y)

(D —4)/[2(D —3)

D :i c (k27

]exp i )1/(D=3)

Here c is given following Eq. (10). This is precisely the result in Eq. (20) if the prefactor there is evaluated.
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