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The complete supersymmetric Liouville action for a scalar multiplet coupled to supergravity in
two-dimensional x space is obtained by integrating all anomalies, and not only the conformal anom-
aly. The resulting action is supersymmetric, but supersymmetry is derived, and not merely used as a
device to extend the integrated conformal anomaly to the complete supersymmetric Liouville ac-
tion. The integration variables are obtained from the matter variables not only (as usual) by multi-
plication by powers of dete(x), but also by addition of terms containing products of matter fields
and supergravity fields. The dependence of the action on dete, y P, and S is removed by rescaling
and shifting the new matter variables. As a regulator we use a matrix operator which contains the
D'Alembertian in each diagonal entry and which is obtained from the matter action by squaring
and introducing a "twist" operator. Because the regulator contains off-diagonal elements, all three
anomalies (Weyl, super-Weyl, and "auxiliary" ) contribute.

I. INTRODUCTION

In Fujikawa's approach, ' anomalies arise in quantum
field theory when the classical action has a symmetry but
the measure of the path integral is not invariant under
that symmetry. The anomaly is then the product of the
Jacobians at all points of spacetime. One may regulate
this infinite product with the exponential of a negative-
definite operator R/M with eigenvalues —A, /M, tak-
ing the limit M ~ ~ at the end. To fix the measure, one
requires that it is invariant under some preferred sym-
metries; these are then the symmetries without
anomalies. Having fixed the measure in this way, one
may proceed to calculate the anomalies for other sym-
metries. The choice of preferred symmetries is a matter
of physical prejudice. Different choices for the measure,
i.e., different preferred symmetries, in general, lead to
different anomalies for the nonpreferred symmetries.

In this paper we discuss the measure for supersym-
metric matter in two-dimensional x space, considering or-
dinary supersymmetry as a preferred symmetry, on the
same footing as general coordinate invariance. In super-
space, local ordinary (i.e., nonconformal) supersymmetry
transformations and general x-space coordinate transfor-
mations constitute together general supercoordinate
transformations. Applying the same arguments in super-
space as in x space, one finds that the supercoordinate-
invariant measure in superspace is the direct analogue of
the general coordinate-invariant measure in x space.
Specifically, one only needs to replace the determinant of
the ordinary vielbein in the measure by that of the super-
vielbein. One of our problems will thus be to translate
this superspace measure to x space. Another problem to
be solved is the construction of a supersymmetric regula-
tor for the x-space supersymmetric matter model. Hav-
ing determined the supersymmetric measure and corre-

sponding supersymmetric regulator, we can then solve an
outstanding problem in string theory. Namely, we show
that the complete supersymmetric Liouville action can be
viewed as an integration of several x-space anomalies.
Previous determinations of the effective action in x space
using the measure ' only kept track of the leading boson-
ic term in the supersymmetric Liouville action, which is
due to Weyl transformations, and completed the effective
action afterward by requiring that it be supersymmetric. "
We compute the various anomalies separately, integrate
them, and verify afterward that the resulting effective ac-
tion is indeed supersymmetric.

We consider the matter part of the action and not the
ghost part. Consequently, we shall determine the terms
proportional to d in (d —10) times the integrated
anomalies. Our procedure should also be applicable
straightforwardly to the ghost sector, and should then
yield the same integrated anomalies times —10.

In the following sections we discuss these issues in de-
tail, but since the presentation is rather technical, we first
give a qualitative overview of which problems arise and
how we solve them. In the process of determining an in-
variant regulator we employ methods developed for heat
kernels. Although our results are self-contained and do
not necessarily need the general heat-kernel formalism,
we often give parallel derivations using the heat-kernel
formalism in order to clarify the algebraic manipulations.

The measure for a real scalar field A (x) in x space that
is free from general coordinate anomalies is

D[A]=D[A dete'~2] .

It is easy to prove coordinate invariance as follows. Ex-
panding A(x) as ga„P"(x) [where P"(x) are a complete
orthonormal set of eigenfunctions of a positive-definite
Hermitian operator, such as 0—= ( —g) 't i)„(—g)'t g"
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Xa,( —g) ' ], the measure QDA(x) becomes Pda„.
(Actually, we define the measure by ada„. ) Under an
infinitesimal general coordinate transformation,
5A =g a&A + —,'(ag") A. Hence, using the orthonormali-

ty of ((),

symmetric measure cannot be detached from the problem
of finding a supersymmetric regulator; in fact, one of our
basic problems is to define what is meant by a supersym-
metric regulator. In a previous study the superspace
measure for a scalar superfield P(x, 0) was taken to be

5a =f dx (() (x)[5A], D [P]=D [P(sdetE)' ], (1.6)

06aJ=l+ g
BQ

=1+g f dx a&[(() (x)g p (x)] .

(1.2)
where sdetE is the superdeterminant of the supervielbein,
while the regulator was the iterated action in the super-
conformal gauge

R =[(sdetE) '~ D D (sdetE) '~ ]

Assuming that fields fall off sufficiently fast at infinity, the
measure in (1.1) is thus indeed naively general coordinate
invariant, where by naive invariance we mean invariance
before regularization. Regulating the divergent sum in
(1.2) by multiplying with exp( —A. /M ) we can bring
these exponentials inside the total derivative. Since even
after regularization we have a total derivative, we thus
have genuine invariance. By replacing g by C"A, where
A is the Becchi-Rouet-Stora- Tyutin (BRST) parameter
and C the coordinate ghost, we also obtain a genuinely
BRST coordinate-invariant measure. The measure in
(1.1) has led to the correct axial and trace anomalies and
critical dimensions, for ordinary field theories as well as
for higher-derivative field theories.

Suppose one would like to construct a supersymmetric
measure, e.g. , for a scalar multiplet X=(A,X,F) in
(d=2)-dimensional spacetime. Since such a multiplet
contains only coordinate scalars, one might be inclined to
take as a measure the natural extension of (1.1):

Thus, we see that the correct integration variables
( A, X,F ) are obtained from the original variables

( A, X,F) not only by multiplication with factors (dete)'~
but also by addition of terms with the same weight. Each
of these measures, separately, is still BRST coordinate in-
variant as long as all terms have the same factor (dete)'~,
because then each term will separately yield a total
derivative. However, to study genuine (i.e., after regular-
ization) supersymmetry invariance of the measure, one
should consider the total Jacobian for ( A, X,F) including
ogdiagonal terms, and use a regulator which is super-
symmetric and which also has off-diagonal elements. We
construct a regulator denoted by (0 0) in the space
( A, X,F) which transforms under local supersymmetry as

5(0 0)= [K,O 0], (1.9)

Expansion of P sdet E'~ in powers of 8 suggests that the
correct x-space measure should be of the form

D[A]D[X+y PA)D[F+ ''']

D[A]D[X ]D[F) . (1.3) where K(x}has the property

Indeed, this measure is naively supersymmetric, since the
unregulated Jacobian for an infinitesimal supersymmetry
transformation equals unity:

a5A ' a5x a5F+
aA . , ax aF

(1 4)

5A = ,'EX, 5X= —,'(—a„A ,'Q„X)y—"e—+,'Fe, —

5F = ,'ey"[D„X ,'y'P—„(a,A ,'—pg—) ,'Fg„], ————
5(dete) =—,'Fy gdete,

where P„ is the gravitino and e„ the vielbein field. The
contributions from 5(dete) cancel even separately from
the contribution due to 853 /BA, etc. , but this does not
hold in general for covariantly quantized gauge theories.
However, the measure in (1.3) is not genuinely supersym-
metric, because different fields in general have different
regulators, thus upsetting the cancellation in (1.4). For
general coordinate transformations, the problem of justi-
fying the correct regulated BRST-invariant measure was
only recently solved in Ref. 7. In this paper we solve the
corresponding problem for local supersymmetry.

Thus, it is clear that the problem of a genuinely super-

This follows easily from the following supersymmetry
transformation:

K(x)5(x —x')= —T 'K(x') T5(x —x'),
0 0 1

T= 0 C 0
1 0 0

(1.10)

II. A NEW DEFINITION OF JACOBIAN
AND AN ALGORITHM FOR THE

CONSTRUCTION OF THE REGULATOR

In this section we discuss the definition of the Jacobian
to be used in path integrals for generic systems, and the
question of how to regulate these Jacobians. In Sec. IV

This means that this regulator is a supersymmetric as
well as a coordinate-invariant operator. Consequently,
the regulated Jacobian for both general coordinate and
local supersymmetry variations equals unity. We can
then extend previous determinations of the critical di-
mension which were based on keeping track of only the
bosonic terms in the Liouville action, to a complete
analysis and deduce the complete supersymmetric Liou-
ville action from the integration of various x-space
anomalies. At the end we verify that the effective action
is indeed supersymmetrie, but note that this is a result
(obtained from our choice of measure and regulator) and
not input by hand.
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we apply these general considerations to the case of local
supersymmetry, and show that there is no local super-
symmetry anomaly in the scalar multiplet coupling to
d =2 supergravity.

Our main result is a new definition of the path-integral
Jacobian. Given a set of fields P and a transformation
law

(2. l)

it would be most natural to define the Jacobian matrix by

J(naive)=K(x)5(x —x') . (2.2)

Yet, as we shall argue, this is not the correct definition.
Rather, in path integrals one needs a symmetrized Jaco-
bian, to be derived below, which in some sense is the sum
of the Jacobian for the bras and the Jacobian for the kets.

Given a transformation law as in (2.1), there are, in

general, many dynamical systems which are invariant un-

der it. The infinitesimal anomaly is in each case the su-

pertrace of the regulated infinitesimal Jacobian matrix,
but the regulator varies from system to system as it de-
pends on the action of the particular model whose anom-
aly is calculated. Preferred symmetries are symmetries
without anomalies at the quantum level, independently of
any particular dynamical model. In order that this no-
tion of preferred symmetries makes sense as a purely
kinematical concept, we are led to require that the Jaco-
bian matrix should be identically the unit matrix for all
preferred symmetries before regularization. Obviously,
any sensible regularization scheme then gives zero for the
regularized anomaly. There are also classical models
which are invariant under certain symmetry transforma-
tions, such that the path-integral Jacobian matrices are
not the unit matrix but for which the regulated anomaly
happens to vanish if one employs a particular regulator
(or class of regulators) for this model. Such absence of
anomalies is not generic but rather accidental. We can,
therefore, summarize the preceding discussion as follows.

(i) Preferred symmetries are symmetries for which the

J(naive)= g (x) +a g (x) 5(x —x')
Bx Bx

—=K(x)5(x —x') . (2.3)

Clearly, J (naive) does not vanish. For a= —,', it becomes

a total derivative in some sense, as discussed in the Intro-
duction, but even this is not enough. Let us now observe
that we can construct an identity involving K(x). We be-

gin with some simple manipulations, suppressing the
spacetime index k to emphasize the essential steps

regulated anomaly vanishes for any sensible regulator.
As a consequence, the unregulated infinitesimal Jacobian
matrix must vanish identically.

(ii) Accidental symmetries are symmetries of a particu-
lar model such that for a particular (class of) regulators
the regulated anomaly vanishes.

A clear example of an accidental symmetry is chiral
symmetry in an anomaly-free SU(5) theory where the
anomaly cancellation occurs between traces of two sub-
blocks of the Jacobian that have different dimensions be-
cause they came from different SU(5) representations.
Similarly, according to our definition, chiral symmetry in
a vectorlike theory is accidental (although in this case,
because the cancellation occurs between identical blocks
in the subclass of vectorlike theories, one could modify
the definition of the Jacobian so that chiral symmetry be-
comes preferred}.

We consider general coordinate and local supersym-
metry as preferred symmetries. Thus, we wish to find a
general definition of the infinitesimal Jacobian matrix in
terms of K(x), such that this matrix vanishes identically
in the case of general coordinate transformations, without
the usual total derivative terms. Consider, for example, a
scalar field S(x). As quantum variable we consider
S(x)=e S(x), where e =dete„and a is a constant. The
naive Jacobian is then

[g(x)B"+a[8"g(x)]I5(x —y) = [ —g(x)B"+a[5"g(y)] I5(x —y)

= [ —8"g(x)+a[5"g(y)]I5(x —y)

=I —g(y)& —(l —a)[&g(y)]I5(x —y) . (2.4)

For a =—,
' we find an identity

[K(x)+K(y)]5(x —y) =0 . (2.5)

[K(x)+K(y)]5(x —y) =0 .

The path-integral Jacobian is then defined by

K(x)+K(x)—
2

5x —y) .

(2.6)

(2.7)

Let us reinterpret this simple result by first defining a ma-

trix K(x}by

Obviously, this "matrix" J vanishes for general coordi-
nate symmetry. Moreover, the correct integration vari-
able is found to be Se', which is the same result as in
previous derivations, but deduced by a different line of
reasoning.

The results obtained for general coordinate transfor-
mations are so trivial that they may not shed light on the
direction in which we are moving. Let us now consider
the case of local supersymmetry. In principle, there is no
difference between local supersyrnrnetry and general
coordinate symmetry, and we perform the same steps, but
in practice the algebra is much less trivial. We begin by
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making the observation that the naive Jacobian for local
supersymmetry never vanishes. To see this, consider the
scalar multiplet in d=2 coupled to supergravity for
which the transformation law of a scalar A into a spinor
g reads 5A =@X. No matter how one chooses the correct
integration variables

A =e A, X=e~X+e~y PA (2.8)

(there are no other possible terms on dimensional
grounds}, the matrix K never vanishes identically. For
example, K,2 ee ——&0. As in the case of general coor-
dinate invariance, we look for a new definition of the
Jacobian J, such that J again vanishes identically. We
could perhaps find (2.7) by purely kinematical methods,
but it is easier to use properties of the action to determine

the matrix K(x). We, therefore, now make a brief
analysis of the symmetry properties of invariant actions,
and then we will come back to the definition of the path-
integral Jacobian and its associated regulator(s).

Consider an action quadratic in quantutn variables p,

+0 (x')K (x ')5(x —x ') ]P(x )

+P (x )T50 (x )P(x ) =total derivative . (2.14)

Now, however, we do not need square brackets around
k(x')5(x' —x) and thus, we can perform the x' integra-
tion. We find

50(x}=k(x)0(x)—0(x)K(x) . (2.15)

[Strictly speaking, one cannot consider P (x) and P(x) as
independent fields. However, one can use "the doubling
trick" of 't Hooft and Veltman with two actions, for P,
and $2. Then p=p, +i/2 and 5/=Kg, but now p" and p
can be varied independently. ]

In the path integral, the correct integration variables
are not, in general, P but rather

where again all derivatives stop at 5(x —x'). Then we
find

f dx'P (x')T[ E—(x')5(x' x)—O(x)

X =P (x)TO (x)P(x ) . (2.9) E 1/2y (2.16)

For exainple, for a scalar multiplet in d=2 coupled to su-
pergravity, P(x)=[A(x),X(x),F(x)j and in the confor-
mal gauge [for quantizing and gauge fixing the general
coordinate symmetry, one may choose the conformal
gauge e„=5"(dete}'/ if the gravitational field is exter-
nal] one has

—e'/2y 5" B„O +more .
0 e

(2.10}

Z=yTTOy, O=T 'E '"'-TOE-

K P K E 1/25E —1/2+E 1/2KE —1/2

[[K(x')+T 'K (x)T]5(x —x') I =0,
50(x)=K(x)0(x)—0(x)K(x) .

(2.17)

We can express K(x} in terms of E(x}at the same point
[but not in terms of K (x) at the same point] by using the
relation between E(x') and K (x). One finds

where E' is a matrix to be defined. The same argu-
ments as before show us that

This action is invariant under simultaneous transforma-
tion of the matter fields, 5/=K/, and of the supergravity
background fields contained in 0(x). Thus

(5g —1/2)E 1/2+E —1/2' 1/2

g —1/2 T—1E—1/2, T
(2.18)

We now link these considerations concerning the ac-
tion and the basis choice determined by E ' to the
question of how to define the Jacobian and what to
choose as regulator.

We rewrite the transformation rule of 0(x) as

5X =5/ TOP+QTT50$+P T05$=B„k" . (2.11)

50(x)=[K(x),0(x)]+[K(x)—E(x)]0(x) . (2.19)

Preferred symmetries are now by definition symmetries
for which

(2.20)K(x)—K(x}=0 as a matrix .

Using our previous expression for E and K, we find the
following master equation" for E ' and T:

+ 0(x')K(x')5(x —x')IP(x)
E1/2(5E —

1/2)+El�/2EE

—1/2 (5g —1/2)g 1/2

T=T TIn 5$ =P K, where T denotes matrix transposition,
there are derivatives acting to the left (to P ). We now
insert a 5 function and partially integrate and then re-
place 8" by 8". This allows us to let the derivatives in K T

act to the right without change in sign (There . may be
terms in E with derivatives and terms without deriva-
tives. Clearly, it would break the general discussion in
terms of K only, if only the terms with a derivative would
acquire a minus sign. ) We thus, obtain

5X= f dx'P (x')TI T '[K (x)5(x x')]TO(x)—

+P T50$(x )= total derivative . (2.12)
(2.21)

The square brackets around [K (x)5(x —x')] incan that
x derivatives in K (x) do not act to the right on
0 (x)P(x). Let us now define a matrix k(x') by

[[E( ' x}T+'K (x)T]5(x —x')I =0, (2.13)

This equation selects the basis (E '/ and T) one must
choose for certain preferred symmetries. We have here
an equation for the matrices E and T. In our exam-
ple of local supersymmetry we are able to completely
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determine T by other means, and hence K =K is then an
equation for E '; i.e., it will determine the correct in-
tegration variables in the path integral. (Those variables
which lead to vanishing anomalies of the preferred sym-
metries. ) More generally, we dePne the path inte-gral
Jacobian by

K(x—)+K(x)
(2.22)

2

We will shortly discuss the regulator, but it may be
useful to first check our results for 50 in a simple case.
Consider again a scalar field S and define S =Sg . Then
To =a~"'&—g a, and since the supercharge-
conjugation matrix T is unity in this simple case,

variable is, therefore, in this case

S=E'~ S =e' S . (2.27)

I"s= fdx str ' '+ ' '
ex [OO(x)/~']

%'e now turn to the question of which regulator one
should use to regulate this Jacobian.

As regulator we propose

exp(R/M )=exp(0 0/M ) . (2.28)

(Note that we do not use the iterated action TOTO, for
reasons to be explained. ) The regulated anomalies are
then defined by

0 =a„&—gg~'a„, o=z-'"oz-'".
To verify that E =K, we must show that

(2.23)
y5(x —x') . (2.29)

50=[K,O] . (2.24)
The anomaly is closely related to the gauge invariance of
the regulator. Under a symmetry

This will fix E ' . We will assume that E ' =g
and compute 50. From 50(x)= [K(x)—K(x)]0(x)+[K(x),0(x)] (2.30)

50 =5(g 'a„&—gg"'& —g a@ ),
5g'= [0'a~ g']+20(ad')g',
5g~"= [g"a,,g"]—g "(ag")—g"'(ay~),

5a„=[g'a, , a„]+(a„g')a, ,

we find that

5o = [0'a~+-,'(a~4'» o]+(-,' —2&) [(aA"» o ]

(2.25)

(2.26)

Clearly 50 =[K,o] if a= —,
' and the correct integration

the supertrace of the regulator varies into

— O Oe'~'~'
5 stre =str2(K —K )

M
(2.31)

(det To )
' = (detT) ' (deto 0 )

and exponentiating we find for the efFective action

(2.32)

Hence, preferred symmetries are also gauge invariances
of the regulator and vice versa. In fact, this regulator is
the effective action because integrating over P in the path
integral yields

exp(if )=exp i ——' f" fd x[stre" "5(x —x')]
~ „

0
(2.33)

[Use 3 '= i fo"drexp(ir—A) and integrate over A. ]
This result yields in the case of a Dirac field the Laplace-
Beltrami operator 0 0 =B8 and by analogy one expects
that one should use as regulator 0 0 and not TOTO.

Up to this point we have not yet discussed in detail the
properties of the supercharge conjugation matrix T. We
only mentioned that the equation K =K was an equation
for E involving T and claimed that in actual problems, T
can often be determined independently from E. This is
the case in local symmetry, the subject to which we (final-
ly) turn.

In local supersymmetry, the coupling of a scalar multi-
plet to supergravity has a kinetic term of the form

[ ~ l =o [&1=—,
' [F]=1 . (2.35)

Clearly, the dimensions of the (ij ) entry of the Jacobian is

(2.36)

Clearly, (To) would not be a good regulator as it would
overregulate in the A sector, and underregulate in the I'
sector. Some sort of "twist" is needed to equally distri-
bute the D'Alembertians along the diagonal of the regu-
lator.

A dimensional argument brings further insight. The
dimensions of the fields are as follows:

1
TO =— 0

2
—e ' 8"Cy„0 +more .

0 e

(2.34)

The entries of the regulator should have the same dimen-
sional character, in order that all terms in the supertrace
of J times exp(R) have the same dimension. The ex-
ponent of the regulator must be a square of matrices in
order that the variation of this square be a commutator
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under the preferred symmetries. Thus, the regulator
must be of the form

R =N(TO)N(TO), (2.37)

where TO is the field operator on the basis P and N some
as yet undetermined matrix. The dimension of the entries
of TO/M is ——,(i+j). It follows that the dimension of
the entries (NTO )1/M must satisfy the condition

where both effects are present but it is a preferred sym-
metry. It would be nice to have an example of a nonpre-
ferred symmetry where our new definition of Jacobian
would not be equivalent to the old definition. In the ab-
sence of such examples the results of the general formal-
ism developed in this section are only that they justify the
choice of regulator, in general, and allow us to prove in
Sec. IV that local supersymmetry is a preferred symme-
try.

[N,.„(TO)„,]=-,'(~' —j}=2—
—,'(k+j ) .

Clearly

(2.38)
III. THE SUPERSYMMETRIC x-SPACE

AND MEASURE AND GAUGE COMPLETION

i =k=4,
which means that N has the form

(2.39)

0
Sc-'

0
(2.40)

0 0 1

T= 0 C 0, R =00/M2.
1 0 0

(2.41)

Note that in this form, 0 0 has the following properties.
(i) It contains 0 in the diagonal; hence, the "twist" ma-

trix T has eliminated the over-regulation/under-
regulation problem: the regulator R indeed regulates all
sectors.

(ii) Gauge invariance: the supertrace of the variations
of R vanishes for preferred symmetries.

(iii) For other systems, such as the coordinate and su-

persymmetry ghosts and antighosts of the string, one has
used in the past the operators 0 0 and 00t as regulators
for the conforrnal symmetries. When one chooses a
basis of (anti)ghost fields such that 50=[%,O] for the
preferred symmetries, one finds also 50 =[K,O ] as
long as K is anti-Hermitian, and the same analysis would
seem to go through.

Our new definition of Jacobian in (2.22} coincides with
the naive definition in the case of chiral symmetry since
Cy5C '=@5. Also for algebraic symmetries (sym-
metries whose transformation laws contain no deriva-
tives) the old and new definitions coincide. Examples are
local Weyl invariance and local conformal supersym-
metry. The new definition can only differ from the old
one whenever a nontrivial matrix T and/or derivatives
appear [the latter prevent x' from being equivalent to x
in E(x ) = —K (x ') ]. Local supersymmetry is a case

for a, b, d dimensionless constants. Furthermore, Lorentz
covariance requires that C is the charge-conjugation ma-
trix in spinor space. By rescaling the fields in P, we can
arrange that a =b =1=1. (If P'=DP, then
P'=E' ' P' with E' ' =DE ' D ' and P'=DP.
We can assume that we have chosen the scale of P such
that a =b =d= 1 and call E' henceforth E.}

The field operator F was written as TO. Calling
N =T ', we thus find for the regulator exp(OO/M )

where TO is the field operator, and T is given by

P
~

——A, sdetE
~

——dete, (3.1)

where the vertical bar denotes the 0=0 projection. The
compatibility equation for P that the superspace and x-
space transformations agree reads

(3.2)

where 5 are x-space variations with P(x) and e (x). At
order 8=0, from (1.5) one has

(3.3)

Clearly

P= A +—,'8X+88 terms . (3.4)

At the next level in 0 we need:"" and:- to order 0.
These are obtained from the compatibility equation for
the superparameters.

The compatibility requirement that the gauge algebras
in superspace and in x space agree reads

(3.&)

In this section we construct the measure by expanding
P(sdetE)' in powers of 8. The dependence of the scalar
superfield P and the superdeterminant of the superviel-
bein, sdetE, on the fields of the x-space theory is deter-
mined by the program of gauge completion. One
identifies at order 0=0 certain superparameters and
superfields with corresponding x-space fields and x-space
parameters, and then compatibility requirements deter-
mine the content of superparameters and superfields at
higher orders in 0. Thus, gauge completion is an initial-
value problem. Of importance is the question of unique-
ness: is the mapping from x space into superspace unique
or are there arbitrary integration "constants" (where the
"constants" are constants with respect to 0 but fields
with respect to x space). For a discussion of the gauge
completion program we refer the reader to Refs. 9 and 2,
but here we start from the compatibility equations and
solve them. (Instead of gauge completion, one can begin
in superspace and fix enough gauge freedoms to reduce
the system to a Wess-Zumino gauge: this is entirely
equivalent, and the integration "constants" in the gauge
completion program should correspond to the freedom in
making gauge choices. )

At order 8=0, the most natural identification is as fol-
lows:
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where =,z equals = (e=e,z, g=g&z, &=A, &z) with

e,z, g, z, A, &z the composite gauge parameters of the x-space

gauge algebra. For d=2, %=1 supergravity, these com-
posite gauge parameters follow from (1.5} and are given

10

where V (x) is again an arbitrary fermionic integration
"constant. "

The integration constants V"(x) and V (x) must have
particular dimensions. Since the dimensions of the vari-
ous fields and parameters are given by

~lz f28v~l+ gk2 ymn~1 —
4 Ezy elf@—(1~. 2)

Pz =Ãz~A i+ -.'&zy"&i —(1 (3.6)

[e„]=o, [y„]=-,', [s]=I, [a„]=I,
[A, ]=0, [8]= ——,', (3.1 1)

2[~v I(+ 2[(~a l)~ ( ) lz[ (3.7)

There is no term due to 5,(:-~z) since =~z~ —
Pz is field in-

dependent. With the identification in (3.1) and the expli-
cit expression in (3.6) for Pz we easily find a particular
solution: namely, ")"=48@"e. However, the homogene-

ous equation for ="(8),

ez8:-",(8)—e, B:-~z(8)=0,
also has a solution: namely, ="(8}=FHV" with V" arbi-
trary. The "integration constant" e8 V" satisfies
ezB:-",—1~2=0, because Fze, —1~2 vanishes indenti-

cally. Thus, the general solution of:-"to order 8 reads

:-I'=p+ ,'(eyrie)+(8e—)v~+0 (8 ) . (3.8)

The corresponding fermionic problem concerns the
A =a part of (3.5}at 8=0. One now has

I+ I( 0 (3.9)

The solution of this fermionic partial difFerential equation
1s

+8(hazy "e&)s —(1~2) .

We first solve the compatibility equation for the pa-
rameters in (3.5) at successive 8 levels, taking the cases
A =@and A =a separately. (The index p, is a curved bo-
sonic index and a a curved fermionic index in super-
space. ) Afterward we return to the superfields P and
sdetE.

At 8=0 one finds, for A =}u,

it follows that V" has dimension zero and V dimension

+ —,'. There is no Lorentz-covariant candidate for V", so
V"=0, but for V we have a possibility: namely,

V =k(y g) (dete)', (3.12)

where k and t are constants to be determined at levels
which are of higher orders in 8.

%'e now turn to the order 8 level. For A=@ the com-
patibility equation (3.5) becomes

=-;(8)ag~+pa„=-;(8)+=',(e)[ap;(8)],
+ezBp"",(8 )+5,(:"~z(8)=—,'ey"ez) —(1~2)

=:-iz(8)=-.'Hy"&iz . (3.13)

Now the 5,(:-z ) terms contribute because =z to order 8
is x-space field dependent. A particular solution of the
inhomogeneous equation for "& (8 ) is easily found, al-

though the algebra is somewhat lengthy. The homogene-
ous equation reads

e~~BP",(8 ) —e~tBP~z(8 )=0

and can be solved by noting that, in general,
:-~&(ez)=88(e,W"). Substitution into the homogeneous
equation yields (F,Oez FzOe, ) H—OIV"=0 for 0=1,

7 3 hence, y 8'"=v 3
8'"=0. Thus, 8'"=0, and the

solution for the complete ="(8) is unique except for the
dependence on V . The ambiguity in =&(8) leads to an
extra term in =~~(8 ) given by —,'88(Fy" V). The complete
:-"is then

:""(8')=p+ ,'ey"e+ ,', (H—y"g")(ey—„8)+,'88(ey"V) .—

=e + —,'Fy"8$„——,'A, "'(y„&8) +(He) V'

+O(8 ), (3.10)

(3.14)

The analogous analysis at order 8 level for A=a in
(3.5) leads to the equation

-""(8)~.e +4'~.:" (8}+:-(8)~:- (8)+& & =;(8')+&,(:-,(8)= ,'t.,y el/i„,'A, ,'y„,e+e—E,V ) (1——2)—
12(8) (~lzy"HW„——.'~lz(3 kie} +(ee]z) V . (3 15)

e discuss in turn the homogeneous solution, a particular solution and the dependence on V.. We claim that the
homogeneous equation

e~a,=-;(ez)—pa, =-;(ez)=o (3.16)

has no solution. Indeed:-z(8 ) =88(Mez) must satisfy My 8=Mr 8=0 for arbitrary 8, which implies M=o. The
particular solution is found as follows. All terms involving P and A,

" cancel separately. The remaining terms involve
only rand, for V =0, a solution is

:- (8')= ,6[(ey"g")(ey„e)—f„+(~y"8)~„"(e,g)(y „8) ] . (3.17)
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In particular, no S terms survive. They appear as

S ( e2y 0)1 el + Se2y ely kl 0

and this expression vanishes in d= 2. [In d =4 it does not vanish, and one indeed finds S terms in =, (8 ) (Ref. 9).]
To investigate the dependence of:- (8 ) on V, we retain all terms from (3.15) which depend on V . (Since all equa-

tions are linear in = one can solve the problem first for V =0 and then for V &0.} They read

g a (ee V )+(ee2)v ap(ee, v )+(e e2)v ap ,'[e—1y elf 1—1(ykle) ]

+—( e y 8+ A—y,kle )Bp(ee V )+ cap (8 )+5 (8e V ) —(1 2)=(8e )V

The terms with g"(x) cancel

+~a,(ee, v )+(ee2)(5V =p)a„v }—(1~2)=8(e,2=+~a„e, )v —(1~2) .

The terms with A, "(x) are

(ee2)( 4~1 Ykl V) ge1~2 YkleV +(ee2)( 4~1 Ykl V ) (1 2} 0( y~2 "y .e1}V —(1

and cancel too. The remaining terms yield

(ee2)(e1V) V + ,'(8e2)(—ely"V)1('„+ ,'(e2y"8—)(e,p„)V'+ ez Bp, ( 8)+(ee2)5(e, ) V —(1 2)

(3.18)

(3.19)

(3.20)

Since V -y g while 5(e)y.g-ae, we see that

V =0.

,'(8$„)—(e2—y"e,) —(1~2) . (3.21)

(3.22)

Hence we have found the general solution for the supercoordinate parameters:

:-"(x
1 0)=p+ ,'(ey "e)+ ,

—',(ey"g")(e—y„0),
:- (x,8)=e ,'(Hy"e)p„,'—A.—"'ykle+ ,', (—ey—"p")—(ey,e)$„,', (ey"e—)co—„"'(e,p)y«, 8 .

(3.23)

(3.24)

The interested reader may discover regularities. (Higher
orders in 8 follow from p~ —,'eye'e, e~ —,'ey&ep, and
A,"'~

—,'ey"em„"', while the transition from =" to = is
eff'ected by e"~ e"f„.) Thes—e regularities convince us
that the results for " to all orders in 8 are correct.

We now return to the gauge completion for P and
sdetE. From " B~$=5$ at level 8 we get

=-~(0}a„~+pa„(-,'ex)+ =.(e)a.(,ex)

+e a p(82)= —,'85X . (3.25)

We easily deduce

B«(:- sdetE)( —) =5(sdetE}, (3.28)

where the left-hand side contains the transformation rule
of a density in superspace. At 8=0, we set sdetE

~

——dete.
(If we were to do the much harder problem of determin-
ing Ez, we would begin by setting E„I

——e„and
E„'

~

——g&. We would then find that E
~

——0 and
E'~ ——5'. Thus, we would indeed find sdetE~ ——dete. )

The compatibility equation becomes

B„(pdete) —a [:- (8)dete+e sdetE(8)]

=5(dete) =B„(Pdete)+ —,'ey tP dete . (3.29)

This equation reduces to
(3.26)P= A + ,'A'+ ,'HOF . -—

e B sdetE(8)+ —,'ey Pdete = —,'ey f(dete),

so that
As a check we note that at order 8 one finds the require-
ment that

( ,', ee)(ey y"y—,)—(a„~)+,'(ey e)(ea„x)—

,
', (8$„)(8y~e)F—+—,'g:-(8')

,' 88(5F = ,' e8 "—"X), (3.—27)

sdetE =dete [1+,'8y f+0(8 ) ] . —

At order 8, the compatibility equation leads to

B& ""(0)dete+p ey g —a [:- (0 )—dete
4

(3.30}

which is indeed satisfied, confirming both the results for
:-"in (3.23) and (3.24) and those for P in (3.26}.

The last field to be determined by gauge completion is
sdetE. The compatibility equation for this case reads =5(—,'ey Qdete) . (3.31)

+" (8) ,'ey f+e sdetE(0 )]—
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This equation reduces to

a —'gy" + '(e—y"8)(g y.P)+KB sdetE(8 )P 8 P a

5" e ~ —iy' e~D e~
(3.38)

+ 6ey"~„"'(e 4)ykl8= —,6(gy P)(ey„4.)
16

+ (ey P)(gy. f)+ gy—"(D„e+„'Sy—„e) .

Using that

(3.32)

where EMB~ = D~D~ with D„ the covariant derivatives
of rigid supersymmetry. Since sdetE=sdet@ '=e
and this is equal to (dete)' at 8=0, one may determine
sdetE from the initial condition sdetE~ ——dete' . The
final result is

and

B„(ee") = —co„"(e)(e„"e)

~, "(e 4) ~;"(e)=.'(0„y -0" 0„y"—0 +0 y„0"),

P= A + —,
'e' 8X+ —,

'e' 88F,

e 1/2
sdetE =e' 1+—'e'~ gy g+ Sgg

(3.39)

only covariant terms remain, and from here on, one easily
obtains

sdetE =dete [I+—,'gy 1(t+ ,', ( ,'g„y"—"Q—„+S)gg]. (3.33)
1/2+, gg4„y""0,

32
(3.40)

As a check we note that fd 8 d x sdetE is indeed pro-
portional to the supercosmological term

f„yI"'g„—+eS, (3.34)

which should be, and indeed is, invariant under the fol-
lowing local supersymmetry transformations:

'&.= "+l y"
5S = ,'ey —g—S+ay""D„g, .

(3.35)

y(sdetE)' =e' A +—'e' 8(X+—'y qA)

Having obtained P and sdetE, it is straightforward to
compute PsdetE' . We find

These results can be explained by noting that a scalar
field in superspace must also be a scalar in x space since
b, P =@8„$+ while from the dimensional analysis in
(3.11) it follows that ="~ ——P(dete)'. Compatibility of the
parameter composition law at 0=0 for =,2 then reveals
that s=0 (Ref. 2). Hence, P(8=0) is indeed an x-space
scalar. Furthermore, the 00 term in sdetE is again pro-
portional to the supercosmological constant, as it should
since f d 8 d x sdetE is gauge invariant. In fact, the re-
sults in P and sdetE differ from these derived previously
only by a conformal rescaling 0~e 0.

We can, in fact, consider a one-parameter class of mea-
sures which includes both the usual gauge completion re-
sult and the superconformal gauge completion result. It
is given by

+ e'"88(F +-,'—1( yX+-,' AS

+ ,'0„y""W-.A ,', 0 y—y —WA)

(3.36)

p(sdetE)' =e'~ ~A + —,'e'~28(g+ —,'y 1(A)

+ ,'e' + 8—8(F+,'g yg+ ,' AS——

sdetE
~

——(dete)' (3.37)

rather than sdetE~ ——dete. The identification of the pa-
rameters at 0=0 is also different. In the superconformal
gauge, the supervielbein assumes the form

Taking the coeScients of the various powers in 0 as the
fields which determine the measure, the measure in (1.8)
is fixed, and in particular the terms to be added to F are
now known.

Let us discuss whether these results are unique. The
gauge completion program yielded unique results once
the initial data at 0=0 were given. However, these initial
data are not unique and an important other set of initial
data is the one compatible with the superconformal gauge
in superspace. As discussed in detail in Ref. 2 this gauge
requires the initial condition

+ ,
' A 4„y"-'4.

(3.41)

This is the measure we consider henceforth. Since the
square of this superfield is a density, its f d 8 integral
should give an action that is a independent, and this ex-
plains why the 00 term has a factor e ' if the 0 term
contains a factor e, and why the 0 term is a indepen-
dent.

One could try to find the most general solution to the
gauge-completion program, i.e., all possible ways of map-
ping the x-space theory into superspace. Below, we in-
stead confine our attention to (3.41), which contains the
two superspace gauges most often used.
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IV. LOCAL SUPERSYMMETRY
AS A PREFERRED SYMMETRY

written in matrix form

We apply the general formalism developed in Sec. II
for Jacobians of preferred symmetries to local supersym-
metry transformations in two dimensions (the spinning
string). The method can, in this instance, be regarded as
a generalization of that used in Ref. 11 for the computa-
tion of spinor current anomalies.

The action in two dimensions of a scalar multiplet
( —A, X,F) in a supergravity background (e, g, S) can be

I = fd x —,'pOp, p=
F

0 0 1

p=p~T, T = 0 C 0
1 0 0

where the matrix operator 0 is given by

(4.1)

0 =
2ypy

-"W„B. eely+ -8 y"y "e.e.+ 8 eg'y "r" 0 (4.2)

, a„V—„y"r"

In the terminology of Sec. II, p transforms under a local supersymmetry transformation according to

5p=Kp,
where the matrix operator K can be read off from (1.5):

(4.3)

—
—,
' y„eB"

1—
2

1

2 (4.4)

From K as given in (4.4), and (2.13) that defines the matrix operator E in general, and the specific form of the matrix T
given in (4. 1), one determines k in this specific case

4&r"0„ 1—
2

,' 8"ey„—0
(4.5)

K is obviously not equal to K. Thus, in order to avoid
the breaking of local supersymmetry at the one-loop lev-

el, one has to introduce tilde fields p according to Sec. II:

where K is introduced for p in analogy to (4.3):

p=K p, (4.11)

p=E' p

with E' a matrix to be determined. Obviously

(4.6) and where K is determined by

[K(x)+T 'K (x')T]5(x —x')=0 . (4.12)

where

I/2 T—
1(+ 1/2)TT

and the tilde operator 0 is

O=E ' OE

(4.7)

(4.8)

(4.9)

According to Sec. II, the condition for local supersym-
metry being a preferred symmetry is

Combination of (4.12) with

K ~ 1/2( gE —1/2 )+g 1/2K' —1/2 (4.13)

K (QE
—1/2)g I/2+@ —1/2K@ 1/2

E 1 /2( gE —I /2
) +E I /2KE —1/2

If (4.14) is supplemented with the condition

g —1/2 E—1/2

(4.14)

(4.15)

following directly from (4.3), (4.6), and (4.11) leads to Eq.
(2.21) for the determination of F.

(410) one obtains, as we shall see, a unique solution that, in
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dim(E '/
),, = ,'(i——j) . (4.16)

From (4.16) follows that E ' has only diagonal and
subdiagonal entries. This circumstance simplifies (4.14)
enormously. Likewise E, k, and EC are polynomials in g„
and e linear in e, with

fact, is the Wess-Zumino gauge value of E ' . It is pos-
sible also to have more general solutions, where (4.15) is
not valid; we shall comment on this point below.

We now turn to a direct, entry-by-entry determination
of E '/ by combination of (4.4), (4.5), (4.14), and (4.15).

E ' will be a polynomial in the background gravi-
tino field g„, and its occurrence is restricted by the fol-
lowing relation discussed in Sec. II:

+11= —,
' ~y "0„

+22 r3 ~+3y" (i„+,' r—2.~r 'r "0„,
&33 = —

8 ~'r"1'„.

(4.26)

[E 1/2( fiE —1/2
) ] + ( E1/2' E

—1/2
)

For K», one gets by means of (4.4), (4.5), (4.19), and
(4.22), the following expressions to first order in g„:

[(fiE
—1/2)E 1/2] +(E —1/2' 1/2 )

=(5E ' ')„e' + ,16(FB—)8'P„+—,'BA„y"y"e

(4.27}

dimK;, =dime;, =dimE;, =—,'(i j) . — (4.17) (5E '/'—)„e'/' ,', P„—y—"(8 e)+ ,'Fy"y—P„r}

It is convenient to start the determination of E
with the part of (4.14) of zero order in g„, i.e., the 21 and
32 entries. Taking first the 21 component we get that are equal for

,'p—„—y1'y"er) + ,'eg—y1'l(„(4.28)

(5E ' )„e' = —
,', 1t/„y"(g—e) S1(r—}„g—„y"y"e)

= —(5E '
)21e

' —
—,
'
y "sr}„,

whence, by 5$„=D„e,

(4.18)

whence

+ ,'er'y"(D—,P„), (4.29)

(4.19)
&» .'&r——"y—"P„d.+ ,'(~.&r"-r"4„), (4.30}

I( 21
—rEB ——(8 —E)

while (4.29) is solved by
(4.20)

(E '
)31———

,', f„y"y"g„—,', g„y"y"—f„—+,'S, —(4.31)
Likewise for the 32 component,

&32-(~E '")32e'"+ ,'d„er"-

(fiE —1/2) &1/2+ i &y 0

whence

(E —1/2} e
—1/21 year

(4.21)

(4.22)

(4.23)

where the auxiliary field S transforms under local super-
symmetry transformations according to

~s = ,'&3y" r "—]D—,0„. (4.32)

So far, all components of E ' have been determined. It
remains to be found that some terms of E that are quad-
ratic in i(1„and to verify that this can be done consistently
on the basis of (4.14) and (4.15).

To do so, one needs the complete transformation for-
mula of the background gravitino field under local super-
symmetry transformations,

fi&„=D„E+,'y„&S D„=D-'„,'&8'2r &3—P„—

We then turn to the diagonal elements of E to first or-
der in g„, where we verify

and the vielbein

&ea„= ,'&ra0„- (4.34)

(E —1/2
) ( E —1/2

) (E —1/2
) e

—1/2 (4.24)
as well as the complete transformation formula of the
auxiliary field S:

The transformation formula for e ' under local super-
symmetry transformations is fis = ,'~Jr", y—"]—D.4„,', 4„r"r—"4—.f~r'~+.'~y'4, s .

fie
—'"=——,'ry„~ . (4.25}

(4.35)

By means of this, in connection with the explicit expres-
sion for E and E in (4.4) and (4.5) and the two entries of
E '/ determined above, one obtains, from (4.14) and
(4.15),

After straightforward but laborious calculations, one
determines the three entries in the lower-left corner of K
and verifies their consistency with (4.14) and (4.15).

The final result for the matrix operator K for local su-
persymmetry transformations for tilde fields is
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, &y 0„
—,'(—y"D'„~) —,'y—"~D'„+,',—P„yy"4.~

l—
2

~ Pqy y "&y
g Pqy ri~ri

,'(D—„ey")+,'e8——,', g—„y'3"g„c

(4.36)

with

P=4„y"y"~

while the outcome for E ' is

(4.37)

E—1/2 —1/2=e 0 (4.38)

Even cursory inspection of (4.36) displays striking re-
gularities. To explain these [and as a check on the
correctness of (4.36)] we note that K satisfies (4.10), which
means that E is antisymmetric with respect to reflection
about the minor diagonal (up to charge conjugation) ex-

cept that free derivatives are treated as follows: they
stand in K always on the far right but for (4.10) one
should move them to the far left and add an extra —sign.
Thus

—,'(B„ai')+a"B„~——,'(B„ai')+B„a" (4.39)

which is equal to itself. For example, for nonderivative
terms one has

—B5 A /X =K, = 35X/BF =—B5X/BF =—K—
(4.40)

while for the derivative terms one has, for example,

d5F/N =(85F/BX) after partial integration. Hence,
indeed (4.39) holds, and K3z and Kz, are equal up to a
partial integration.

Next, we verify by direct computation that the result
for E ' when inserted into (4.6), for a local supersym-
metry transformation indeed produces K in (4.36).

For local supersymmetry variations we find, after
I

5X= + 2y "eD„A +——,
' (9 e ) A —,', g„y"y—"p,E A +

5F= ,' Fy"D „X+—,
' (D„~y")X —,', Q„y"y"Q—g~—+

(4.41)
auxin~ =ac»

e

eD„,'(Y D„e)—+—,', p„y'y—"g„e,

B5F/BX=Ki2

I

straightforward but rather laborious computations for
5A and 5X

5 A = ,'ey"g„—A+ —,'e~,

5X= ,'y"ee—'/ 8„(Ae '/ )+ ,'y"(D„—e)A

,', P—„y—"y"4.A ~+ ,'(O„y-"y"~)yX

(4.42)

,', (FX)(g„y"y—"P—,) ,'~y"P„F—— (4.44)

with P given in (4.37).
If the constraint (4.15) is relaxed, more solutions of

(4.14) exist. Thus, instead of (4.24) we can allow

(E—i/2) e
—1/2+a (E—1/2) e

—1/2 —a (4 45)

with a an arbitrary parameter, since

(E —1/2
) (E—l /2

)

(g —1/2) (E —1/2)
(4.46)

so the a-dependent parts of (5E '/ )E '/ and
E' (5E '

) a—re equal. The constraint (4.15) can
thus, be considered a gauge-fixing constraint selecting the
Wess-Zumino gauge.

We conclude this section by d&scussing the regulator
e" . The explicit form of the operator 0 0 is
U+ more:

,'(g„y—"r—3e)rg+ ,'Fe . — (4.43)

Not only have the torsion terms in D„(co)e canceled, but
since (e' B„e ' )=——,'I „",where I ~ is the Christoffel

symbol, we can combine the first two terms in 5X as

,'[D„(y"e)]—A'+ ,'y"eD„A ' —where D„ is the covariant
derivative without torsion.

The computation of 5F is quite tedious but the final re-
sult is very simple and reads

5F= ——,'pB A ——,'(B„g")A + ,'(D„Fy")X+—2Ã8X—

,' f8f+ ,'S'———
—,'¹0——,

' @&

8B ,' QP8 ,'8fP————

,' &g+ ,'g8N——,'N8$+-
Q¹+¹+ ,', $88/+ —,',S—

2¹+—,', 41(

——,'&0+-,'A
——,'Qgtt+ —,'S

(4.47)
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g=y P; i)/=— f—y, g=——,'S+ —,', gP. Although it is not
difficult to evaluate 0 0 in general, we have only record-
ed it in the gauge P„=—,'y„g because that is what we need
in Sec. V.

The choice of 0 0 is also suggested by superspace
where one uses as regulator

R =exp [( @
—I /2D 2 @

—1 /2
)
2 y~ 2 j (4.48)

In this section we come to the heart of the matter, and
compute the various terms appearing in the supersym-
metric Liouville action. We use two methods which give
the same answer.

(i) The Fujikawa method, in which one uses the path
integral and rescales and shifts fields such that the origi-
nal action becomes a free field action, while the sum of
the infinitesimal Jacobians becomes the effective action.

(ii) We start directly from the heat-kernel representa-
tion of the effective action, compute its variation and
show that this variation is proportional to the variation
of the Liouville action.

We begin with the first method. We use the measure
and the regulator previously obtained and compute the
effective action for the scalar multiplet in a background
supergravitational field in the superconformal gauge. We
compute this effective action as follows: First we write
the action in the form

in the superconformal gauge. Here e is the superdeter-
minant of the supervielbein and 6, —=(8) ', while D is
the covariant derivative of rigid supersymmetry and
D =—D D . This regulator has a term Cl and equals the
iterated action in superspace on a tilde basis. It should be
possible to translate this superspace regulator to x space
directly, thus picking up the matrices 0 along the way,
but we have not succeeded in this. Rather, we have ar-
gued directly in x space that the regulator in (4.47) is the
correct one.

V. THK KFFKCTIVE x-SPACE ACTION
FOR A SCALAR MULTIPLET

= 1+ ,'5t lne —'5t —P 0—0

S Q 0

(5.2)

where y g=g and g:——g y. As regulator we use
R, /M

e ' with

E+ ' . This removes the supergravitational dependence
from the action. The final action is the standard Wess-
Zumino model in Oat spacetime, and describes a free field
theory, but the Jacobians for these rescalings are
nonzero, and summing these infinitesimal Jacobians (i.e.,
integrating over 6t from t=O to 1) yields the effective ac-
tion for the supergravitational modes. One expects that
this effective action again describes a rigidly supersym-
metric scalar multiplet because the original action was
rigidly supersymmetric, but we want to see this emerging
as a result, not by imposing it a priori as a property of
the effective action. In this sense we are really computing
the various anomalies having to do with the change of in-
tegration variables ( —A, X,F)~( —A, X,F ).

The fact that one can find a transformation of the basic
variables such that ( A, X,F) is rescaled by a multiplica-
tive factor depending on e~, 1(„', and S is nontrivial, and
is only true in the superconformal gauge (because one
cannot remove the vielbein from the D'Alembertian by a
simple rescaling of A, for example). Moreover, in this su-
perconformal gauge, if one puts Q„=S=O, the action in
terms of variables rescaled by powers of (dete) is free.
The removal of these dete factors from the action leads to
an effective action proportional to o Clo where dete =e;
we refer to Refs. 2-4 for a further discussion. Here we
look at the complement of this problem, namely, what
happens after the dete factors have been scaled away, or,
computationally equivalently, we consider vielbeins satis-
fying dete= l. In this case 0 in (5.1) is field independent.

If at a given moment the rescalings have decreased
E ' to E" ",then the infinitesimal Jacobian for a
further rescaling is given by [see (2.22) and (4.15)]

J=E ' =1+25t lnE

0 0 0

I= fd x(FX A)E ' OE —' X (5.1) R, =—0 O„Ot ——E ' OE,

g —1 /2 g —(1—t) l2
E

(5.3)

Then we rescale ( —A, X,F) in little steps by factors Since

1

1/2 E —(1 t)/2 ] (1 t)q
0
0 (dete) " ", g, =(1—t)( —,'S —

,', P„y"y"P„) —,', (1—t)P yy g—, —

—,'(1 —t)i)/ 1

(5.4)

it follows that in the superconformal gauge E, '/ is related to E '/ by rescaling g~(1 —t)P, S =(1—t)S, and
o ~(1 t)o where o—=ln dete. Thus, the superconformal fields are multiplicatively modified by the same factor (1—t),
just as the scalar superfield p is in superspace. Outside the superconformal gauge the term p„y y i)/„violates this sim-
ple pattern, but one could still compute anomalies in this general case. (Anomalies use the regulator at t=O, and are
from this point of view the first infinitesimal Jacobian. Effective actions use the regulator at t and are the sum of
infinitesimal Jacobians).
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From now on we set dete= 1; the regulated infinitesimal Jacobian at t is thus given by

0 0 0 0 0 0—5t
4 4 (2n)

S Q 0 S 1( 0

Bringing the plane wave exp(ik. x) to the left is equivalent to replacing 8„ in 0, by 8„+ik„.Next we rescale k„by
1/M, i.e., we replace k„by k„M. The Jacobian has a factor M and expanding O, O, in terms of k„we arrive at

0 0 0
J —1= fd xM J t)'j 0 0 exp —k (1+L)+i + 2

—5t 2 2 dk k R (]] R [2]

4 (2~}' M M2
S Q 0

(5.5)

(5.6)

where L, R []],and R [2] are given below.
We now use the Baker-Campbell-Hausdorff theorem to decompose exp(0 0/M ) into a Gaussian regulator

exp[ —k (1+L)] times another exponential which we expand and of which only a few terms survive in the limit
M~ ~. Then we perform the k integration.

Using

e'+ =e'exp(b ——,'[a, b]+ ,'[a, [a—,b]]—
—,', [b, [b,a]]+ ' ' '

)

we have, with a = —k 2(1+L) and b =ik R ()) /M +R(2)/M, using symmetric integration and retaining only terms

which do not vanish in the limit M ~~,

OO/M
&

—k (1+L).1+ + i
'

+ iR(2) [k L,R(2)] [k L, [k L,R(q)]]
M2 2 M2 M

4 RP RP
[R~(, ), [R~(, ),L]]——,'k + —,

' k L, (5.7)

Next weexpandexp[ —k (1+L)]as exp( —k }(1—k L .
) andfind

J dk e
—('()+L)(k }) —(1+L)—() +))1-(p+1)

In this way we obtain

(5.g)

1 "2 M

+ —,'(1+L) [L,[L,R(p)]]——,', (1+L) [ ~R( ),)[R~( ),)L]]

——,'(1+L) IR3~( ), )[L,RP(')) ]]——', (1+L) [L,R~(() ][L,R~()) ] (5.9)

In the supertrace only few terms contribute because lnE and L are "lowering operators":

0 0 0 0 0 0
1 —t

2
—21nE= g 0 0, L=

S Q 0

0 0 (5.10)

S+ gg g 0

For example, the divergent term M (1+L) ' cancels as expected for a supersymmetric system, while in (1+L) 'R(z)
only R(2) —LR(z) contribute, and in (1+L) [L,R(2)] we may even drop the whole factor (1+L) . A further
simplification arises because R(())' has no (1,3) entry (no derivatives appear in the right upper entry of 0 0). Hence, we

may replace (1 + L ) (R I')
)

) by ( 1 —2L }(RI') ) ) and drop the [L,R I') ) ][L,R I') ) ] term.
All terms rearrange themselves into the symmetrized expression

R(2) —
—,
' [R(q),L j

—,'(R~()) ) + ,'(RI'()R(("))—L+R(('))LR—~())+LR(('))R~())) . (5.11}

Moreover, the last term in (5.11) also vanishes in the supertrace since it is proportional to (g) . The final infinitesimal
Jacobian to be evaluated is, thus,



3602 LINDSTROM, NIELSEN, ROCEK, AND VAN NIEUWENHUIZEN 37

0 0 0
'6t

1 p 2

16~
d x str g 0 0 [R(2) ——lL, R(2) l

—(R—(, )) ] .
2 7

S f 0

For the final computations we record the relevant parts of R (, ) and R (2).

(5.12)

2a

R(i) = 0 2() (5.13)

0 ftt()+— SP4
1 —t

R(2) = 0
2

S+

—&1(/+ Sg +1 —t
4

(5.14)

Straightforward matrix evaluation yields

1 —t
R(2) ——,'lR(2), L] —4(R~())) = 0

0 0

(5.15)

As in the analogous computation in superspace, all (1 t) terms —cancel, and the derivative terms combine to commu-
tators [8„,P], i.e., no free derivatives are left.

The final step is to take the supertrace. We obtain

J —1=fd'x
16~

(S' P8f)— (5.16)

After integration over t from 0 to 1 we find the effective action

(5.17)

If one adds to this result the purely bosonic part of the Liouville action as obtained in Refs. 2 —4

1(eff) (rO(r (dete" =e )
16~

(5.18)

then one obtains indeed a supersymmetric result, since o, —,'r ()/ and —,'S form a scalar multiplet of rigid supersymmetry.
The effective action can also be calculated using a heat-kernel approach. " The starting point is the representation

(2.33) of the one-loop-induced action I:
I = ——f fd x str(e" )(x)5(x —x')

i
„.

4 0
(5.19)

Varying the matrix E ' one obtains, using the cyclicity of the supertrace, the following result, valid when 0 is field-
independent

5I = —,
' f

deaf

d x str[(6E ' )E' 0 0+0 OE' (5E ' )](e" )(x)5(x —x')
i „0

=—lim f d x str[(5E ' )E' +E' (6E ' )](e" )(x)5(x —x')
i „2 7~0

(5.20)

This expression obviously has the same structure as the Jacobian encountered in Sec. II and can itself be interpreted as
a Jacobian.

In the superconformal gauge (f„=—,
' r„P) where 0 0 is given by (4.47), we have, using (4.38),

0 0 0
($E —1/2)E1/2+El/2(QE —1/2) fq 0 0

2
5S 5g 0,

(5.21)
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(cf. the definition above of the matrix lnE), which inserted into (5.20) leads to

5I =—lim fd x[5S(e" )» —tr5$(e" ),z+5$(e" )2, ],„,5(x —x')
~r~0

This expression can be evaluated by means of the explicit expression for 0 0, writing

0 0

(5.22)

OO= 0 88 0 +BOO (5.23)

0 0

and treating 50 0 as a perturbation. Only a few terms will be nonvanishing for ~~0. The expansion in terms of 500
is performed by using 5e"=fodae "(5A)e" '" repeatedly. For example, (1/2!)55e" yields two terms which, after
suitable redefinitions of integrations variables, yields

—55e"=f f f dadPdy 5(1—a —P—y)e "5Ae~"5Aer" .
21 o o o

First consider the term containing 5S; it becomes

(5.24)

—lim x S e" &3x x x'
4 r-o

= ——,
' lim rf d x 5Sf da[e' ( ,'S+ —,'P—P)e'" ' ]i„i5(x —x')

~ „

lim r f d x 5Sf f f dad13dy 5(1—a —P—y)(e' gge'~' gge'~ )(x)5(x —x') ~,.16 r-0 0 0 0
(5.25)

The right-hand side of (5.25) is evaluated by means of the plane-wave representation of the 5 function. In this way
(5.25) becomes

d'k d k
,'sf—d —x5S(—,'S+ 8$$)~—„if ze"" ,' ,', r—f—d—x5SQQ(x) f 2k e"" = — f d x(5S)S . (5.26)

The term in (5.22) involving 5$ is found in the same way, by applying the plane-wave representation of the 5 function in
the expression

——lim fd~x tr5$(e" )„(x)5(x—x')
~ „4 r-o

=—,
'

lim sf d x tr5gf da[e' ( ——,'Pg+ ,'QS)e" ' —]i„i5(x—x')
~ „r-0

+—' lim 2f d x tr5$f f f dadPdy5(1 —u —f3—y)

&& [e' ( —,'S+ ,'pg)e'~ ( ,'O—f+,'f8 )e—'r' ]—(„)5(x—x')
~ „

——,
' lim~ f d2x tr5&f f f f da, da2da3da45 1 —g a;r~o 0 0 0 0 &=1

i rg
X [e '

( ——,'$8)e '
( ——,'8f)

ia rg
)& e '

( —,'HP+ —,'Pg )e '
]I ~5(x —x')

~ „

' limf d x tr5&f f f dad13dy 5(1—a —P—y)[e' ( —
—,'$8)e'~'

X ( 8ggS ——,'Bfir'j)e'—~'—]~„~5(x —x')
~ „

(5.27)

Here all terms containing three P's vanish because of the identity

obtained by a Fierz transformation, while the two terms containing S cancel each other, so (5.27) reduces to

(5.28)
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—,
' limrf d x tr5gf du[e' ( —2$—8)e" '

]~,~5(x —x') ~,

d k= ——,
' lim ir f d x tr5$ f u da2(B„Q)y,f 2

k "k'e"" = — f d x g85P .
T~O 0 64' (5.29)

The part of (5.22) containing 5g contributes equally to 5I as that containing 5l(, so we obtain

5r= ' fd x(pr)5$ S—5S) .
327T

(5.30)

By integration one obtains the same result as before.
We conclude with a short discussion of the "auxiliary field anomaly. " In the basis of ( A, X,F), the action is indepen-

dent of the auxiliary field S of the d=2 supergravity multiplet, but in the tilde basis F contains a term —,'e' AS. It fol-
lows that 5F=A(x)e' A is a local symmetry. The Jacobian is proportional to

0 0 0
0 0 0

A(x) 0 0
(5.31)

and the infinitesimal anomaly is thus proportional to A(x)S. This is in agreetnent with the result that the variation of
the effective action is proportional to the variation of the Liouville action. Hence, the S term of the Liouville action
can be interpreted as the integrated auxiliary field anomaly.
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