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The isoentropic, but energy-nonconserving, time evolution of mixed quantum states is studied in

quantum mechanics and quantum field theory. A variational principle, which gives the

Liouville —von Neumann equation, is implemented approximately by making a Gaussian Ansatz for
the density matrix. The dynamical equations governing the parameters that define the Ansatz satis-

fy equations variously analogous to the Schrodinger equation and to mechanical problems. Interest-

ing nonequilibrium evolution is found in special cases, as, for example, when the analog Schrodinger

equation gives rise to reflectionless transmission. For field theory in an external, time-dependent

metric we obtain equations that were previously derived in the many-field (spherical-model) limit.

I. INTRODUCTION

High-temperature restoration of spontaneously broken
field-theoretic symmetries' and the calculational method
for describing this phenomenon have become widely ac-
cepted. Moreover, temperature-induced symmetry-
changing phase transitions are crucial ingredients in vari-
ous cosmological scenarios, e.g., the "slow-rollover" tran-
sition effecting the inAationary early Universe, and the
"unification" phase transition which may have been ac-
companied by the appearance of strings/vortices that
may have seeded galaxy formation. Establishing the va-
lidity of such scenarios requires examining the dynamical
evolution of the cosmos in time —before, during, and
after the transition —periods when the system was obvi-
ously changing and therefore not in thermal equilibrium.
However, the methods for studying quantum field theory
at finite temperature concern systems in equilibrium, with
no time variation. (The "imaginary time" that occurs in
some of the formalisms is a fictitious "time" related to
temperature —there is no actual time variation. ) In the
absence of anything better, the static but temperature-
dependent effective potential of Ref. 2 has been taken as
the potential energy of a dynamical Lagrangian, which is
then used to determine time evolution, once the tempera-
ture is also allowed to vary in time, according to some
physically plausible rule. In this paper we attempt a
more firmly based method.

More generally, let us observe that the formulation of
quantum field theory in terms of causal Green's func-
tions, which these days comprises a popular approach to
the subject, is not especially suited to time-dependent
problems that require an initial condition for specific
solution. Green's functions contain all the information
needed for determining transition rates, S matrices, etc.,
of systems in equilibrium, where initial data are
superAuous. Ho~ever, following the system's time evolu-

tion from a definite initial configuration is more efficiently
accomplished in a Schrodinger picture description, where
the initial data consist of specifying a pure or mixed
state.

II. SCHRODINGER PICTURE

The field-theoretic Schrodinger picture is well known,
at least for bosonic fields, but not as widely used as the
Green's-function method. The reason is that perturba-
tive divergences can be isolated and renormalized more
conveniently within the latter framework. However, by
now we have become experienced in dealing with field-
theoretical infinities, so their occurrence is not an obsta-
cle. Indeed, recent results establish renormalizability of
the Schrodinger picture, both for static and time-
dependent problems.

Let us review the functional Schrodinger picture for
quantum field theory, which we shall employ in this pa-
per. The formalism is a generalization from ordinary
quantum mechanics to the infinite number of degrees of
freedom that comprise a field. It offers, therefore, the
possibility of using physical/mathematical intuition
gained in quantum mechanics to analyze approximately
the field-theoretic problem.

En the field-theoretic Schrodinger picture, states are de-
scribed by wave functionals %(y) of a c-number field y(r)
at fixed time. The inner product is defined by functional
integration:

( 0',
~
4, ) =fXtp +*, (tp)+, (tp), (2.1)

while operators are represented by functional kernels:

8
~
4) fDg8(y, y)4((p) . (2.2)

For the canonical field operator at fixed time, @(r) (the
time argument is common to all operators in the
Schrodinger picture, so it is suppressed), we use a diago-
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nal kernel 4(r)~y(r)5(y —y); the canonical commuta-
tion relations determine the canonical momentum kernel
as H(r)~(1/i)[5/5p(r}]5(y —y); both kernels involve a
functional 5 function. Evidently 4 acts by multiplication
on functionals of y, while H acts by functional
dift'erentiation. In this way, the action of any operator
constructed from H and 4 is

(2.3)

i 4(y;—t)=H —,g %(y;t} .
1 5

dt
' i 5q' (2.4)

For time-independent Hamiltonians, the usual separation
of variables leads to a functional eigenvalue problem:

%(tp;t) =e ' '4E(y), (2.5)

The fundamental dynamical equation is the time-
dependent Schrodinger equation for a time-dependent
functional

~
4; t )~%(q&; t) The. equation takes definite

form, once a Hamiltonian operator H (II,& ) is specified:

ing quantum-mechanical formulas for harmonic oscilla-
tors with frequencies co(p), which for a conventional bo-
sonic free field theory, describing particles with mass rn,
is co(p) =+p + m .

In the translationally invariant case, there are infrared
divergences due to the infinite volume V of space, e.g. ,
—,'tree= —,

' Vf co(p). These we shall ignore. Also there are
ultraviolet divergences when the integral over momenta
diverges. For the free case, these are trivially renormal-
ized in the energy formula by normal ordering. The fact
that the normalization factor of (2.8a) may also diverge,

det'~ co=exp( —,'trinco)=exp —f into(p)
P

is ignored, because the norm disappears from all matrix
elements —it is chosen precisely so that will be the case.
More intricate questions of ultraviolet finiteness will be
addressed as they arise in our discussion of interacting
field theories.

The analogous Schrodinger picture for fermion
theories has also been recently developed, ' but we shall
not need it for the models analyzed in this paper.

H —. ,y 4E(p)=E+F(q&) .1

i 5y' (2.6)
III. TIME EVOLUTION

In particular for quadratic Hamiltonians

H =—,
' H +4h4

the ground state (vacuum) is a Gaussian functional,

0'o(y) =det' coexp ——,
' Jycoy

L

(2.7)

(2.8a)

When the initial state of a system is a pure state, de-
scribed by a definite wave functional +, the time-
dependent Schrodinger equation (2.4) determines unique-

ly subsequent evolution.
However, for the collective phenomena that we study,

initially the system is likely to be in a mixed state, de-
scribed by a (functional) density matrix;

with covariance co determined by the "first quantized"
Hamiltonian h,

(3.1a)

(2.8b) trp= cpp cp, V =1 . (3.1b)

and vacuum energy

Eo ———,'tree . (2.9)

and (2.8b) enforces co (p}=h (p) [f in d=dimensional
P

space denotes fd p/(2') . ] As a consequence our free-

field formulas are superpositions over all p of correspond-

[Throughout, a self-evident functional/matrix notation
is used: co and h are kernels, f pray
= fdr dr'qr(r)co(r, r')y(r'), tree—= fdr co(r, r), and the

determinant in (2.8a) is functional. ]
Equation (2.8) represents the conventional Fock vacu-

um in the Schrodinger picture. Higher excited (multipar-
ticle) Fock states are represented by polynomials of y
multiplying the vacuum Gaussian (2.8a); they are ortho-
normalized if taken in linear combinations corresponding
to functional Hermite polynomials.

For translationally invariant theories, kernels depend
only on differences of coordinates and diagonalization
may be achieved by Fourier transformation:

h(r, r')= f e '~" ''h(p},

Here [4„]is a complete set of wave functionals and p„ is

the probability that the system is in state n. Average
values of physical quantities described by operators 0,
which in turn are represented by kernels 8(y, y}, are
determined by the density matrix

(6)=trp8= J2)pXlq) p(g, q)0(q), p) . (3.2)

The time development of these averages is determined,
once the time dependence of the density matrix is known.

For the equilibrium problems considered in Ref. 2, dy-

namics is time-translational invariant and energy is con-
served. The complete set of wave functionals in (3.1a)
comprises the energy eigenstates with eigenvalues E„and
the occupation probabilities are given by the canonical—PE„—PE„,
Boltzmann distribution: p„=e "/g„.e " where

1/P is temperature times Boltzmann's constant k. The
initial density matrix corresponds to the canonical en-

semble and its time evolution is trivial: it remains con-
stant in time because the p„'s are constant and the time

dependence in energy eigenfunctions is a phase that
disappears from 4'+*. In this static situation the
Green's-function methods of Ref. 2 become applicable.
Calculations become similar to those at zero temperature,
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=i [p,H]+ (3.3)

The commutator on the right-hand side arises from the

time variation of the wave functions, assumed governed

by the Hamiltonian K. (Note that the sign is opposite
from the Heisenberg equation of motion. } The second

term, which by definition is

but in space-time, once the analogy between P and (imag-

inary) time is made.
More generally however, the time evolution is nontrivi-

al. The p„'s need not be Boltzmann factors, and they can

change in time. Also the 4„'s need not be energy eigen-

states; they may have complicated time dependence
which we shall assume to be determined by the time-

dependent Schrodinger equation, with a time-dependent

Hamiltonian. Evidently, a differential equation summar-

izing this time variation is

tion of p, we need three pieces of information. In order
that (3.3) be a specific equation, the form of H must be
given, and also a model for dp„/dt must be adopted so
that something can be said about dp/r}t O. nce (3.3) is

well posed, an initial condition is required for a specific
solution.

To gain further insight into (3.3), let us relate p and its
time derivative to a microscopic description in terms of a
pure state for a larger, closed system. This discussion
will be carried out in the language and formalism of
quantum mechanics; the functional Schrodinger picture
allows applying the same ideas to quantum field theory.
The density matrix p(x, , xz) arises when we consider a
system in a pure state described by two sets of variables

{P,XI and {p,x] and ignore the former:

p(x&, x2)= f d XV(X, x&)%'( X, x2), (3.5a)

trp= xpxx = X x 4Xx =1, 35b

(3 g} The Hamiltonian for the entire system is taken as

reflects the possible time dependence of the occupation
probabilities.

To solve (3.3), and thereby to determine the time evolu-

I

p2 p2
H(P, X;p,x)= + +V(X,x) .

2m
(3.6)

The time-dependent Schrodinger equation gives a
differential equation satisfied by p:

i—p= fdX

+fdX

%(X,x& ) '0'(X, xz)+ %(X,x&) 4'(X, xz)
2M

p2 p2

%(X,x, ) 4"(X,x2) +0'(X,x, ) 4'(X, xz)
2m 2m

+ dX V X x& V X x2 0 X x] 0 X x2 (3.7a)

The first term on the right-hand side of (3.7a) vanishes, because it receives contributions only from the surface boundary
of X space:

'P(X, x&) 4'(X,xz)+'P(X, x& } %'"(X,x2)' 2

fdX (}'x [4(X,x))Vx+'(X, x2) —Vx%'(X, x, )%"(X,x~}] .

The second and third terms in (3.7a) may be rewritten as

d p=i [p,H]+ fdX{[V(X,x, }—V(x, )]—[V(X,x2) —V(x~}]I%'(X,x, }%'(X,x2) . (3.7b)

Here

p2H= +V(x)
2m

(3.7c}

and V(x;} is some suitable average of V(X,x;) over the
complete wave functions %(X,x&)4*(X,x2).

Comparison of (3.3) with (3.7) shows that the former
follows from the microscopic theory of the latter, provid-

ed there exists an average potential V(x) which permits
(i) using a Hamiltonian exclusively for the p, x variables
and (ii) replacing the last term in (3.7b) by the last term of
(3.3). Let us observe that V(x) will in general be time
dependent since 4(X,x) is. Hence the effective Hamil-
tonian (3.7c) describes an isolated system in the sense that
it makes reference only to the relevant variables p and x,
but the effect of the environment is still felt through the
time dependence of H. Moreover, further effects of the
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environment are coded in the last term of (3.3}, which
represents the last term of (3.7b).

Presumably for a specific many-body system, the physi-
cal situation may be carefully examined, at least in princi-

ple, so that (3.3) can be justified on the basis of (3.7), and

appropriate expressions for 0 and Bp/Bt can be derived

by this so-called coarse-grain &ng procedure. In the
cosmological application that we have in mind, such
analysis does not appear feasible since we do not have an

adequate description of the physical "environment" in

which our cosmos evolved through its various phase tran-
sitions.

Therefore, we shall assume the validity of (3.3), with
some time-dependent Hamiltonian H, and also we shall
drop the last term, i.e., we take the probabilities p„not to
change in time. This is tantamount to the assumption
that entropy S stays constant:

S—:—k trplnp= —k gp„lnp„. (3.8)

p2 2

H= + U(X}+ + V(x), (3.9)

U(X)+ V(x) in formula (3.9) should be viewed as an ap-
proximate and average replacement for the exact
V(X,x); hence U(X)+ V(x) may carry a time depen-
dence that represents the residual influence of one system
on the other. With (3.9) the last term in (3.7b) vanishes.

When the Hamiltonian is a sum as in (3.9), the initial
wave function %(x,x) is a superposition of factorized
orthonormalized wave functions for each subsystem:

While we are led to our assumption by necessity (we do
not know how the probabilities vary in time) the end re-
sult describes physically plausible processes in which en-

ergy is not conserved, but entropy is. Precisely such tran-
sitions are thought to take place in the early Universe. In
the language of statistical mechanics we are speaking of
adiabatic processes —closely related to but not identical
with the quantum adiabatic theorem discussed later.

The approximations that we employ are realized when
interactions between the IP, XI and Ip, xI systems may
be ignored in the complete Hamiltonian (3.6), so that H is
approximated by

with a time-dependent Hamiltonian. Because we are in-

terested in time evolution through a phase transition, we
shall take the time dependence in H to reside in the quad-
ratic term —most often in the mass term squared for a
field theory, in the square of the harmonic frequency for
quantum-mechanical examples. We shall allow this
quantity to vary in time in a prescribed fashion, for exam-

ple, passing from one positive value to another, or from
positive (stable) to negative (unstable) values. We view

this time dependence as occurring in an interval

t; (t (tf. For times earlier than t;, the Hamiltonian is

assumed constant, and the initial data for the Liouville
equation will always be specified in this static regime,
where we shall take p to be given by p;(P;), the initial
Hamiltonian's Boltzmann distribution density matrix at
some initial P;, or an approximation thereto. The solu-

tion to (3.12) is then examined in the late period t ) tf,
where the Hamiltonian is again static but perhaps with
different parameters. We wish to determine whether at
late times p is static or not, and if static, whether it is
given by a Boltzmann distribution but perhaps at some
other temperature. (In some examples t; f may be + 00.

Also for field theory in de Sitter space we shall discuss in-
itial data more generally. )

The terminology we shaB use is as follows: a time-
independent density matrix is said to describe a system in

equilibrium; if its form corresponds to a Boltzmann dis-
tribution, we say that the system is in thermal equilibri-
um, but nonthermal equilibria are also possible; when the
density matrix is time dependent, we say that the system
is out of equilibrium

Therefore we are considering the problem of a system
in thermal equilibrium, which becomes disturbed by the
environment so that Hamiltonian parameters change.
We wish to know whether there is a return to equilibri-
um, in particular to thermal equilibrium after the distur-
bance ceases, and also we wish to follow the behavior of
various interesting quantities through the disturbance.
Our methods allow considering an arbitrary initial distri-
bution, not necessarily in thermal equilibrium, and we
could calculate the time evolution in this more general
situation. However, we do not examine such problems
here.

q(X, x)= yc„e„(X)e„(x). (3.10)
IV. VARIATIONAL PRINCIPLES

Here c„are constant and P /2M+ U(X) governs the
time evolution of e„(X), while p /2m+ V(x) governs
V„(x). Thus the density matrix (3.5a) becomes

p(x„x~)= gp„+„(x,}%„*(x2) (3.11a)

with constant probabilities

(3.11b)

dp
dt

=i [p,H] (3.12)

To summarize, in the absence of the last term in (3.3),
we need to solve the quantum Liouville ( —von Neumann)

equation

Our goal is now settled: obtain solutions to the Liou-
ville equation (3.12) with a canonical distribution density
matrix as initial condition. But the method for achieving
this goal must still be developed because (3.12) cannot be
integrated directly, except for linear (noninteracting)
problems described by a quadratic Hamiltonian. To this
end we use a variational principle, first stated in the
many-body context by Balian and Veneroni, " which
yields, under arbitrary variation, the Liouville equation.
An approximate application of this principle with a re-
stricted variational Ansatz, in the Rayleigh-Ritz manner,
leads to approximate but tractable equations for the den-

sity matrix that may be integrated.
The variational principle results in a time-dependent

equation; such variational methods are not as familiar as
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the static variational principles appropriate to time-
independent equations. Therefore, first we survey the
subject of time-dependent variational principles.

A. Generalities

Already in classical mechanics, one encounters time-
independent and time-dependent variational principles
for the relevant dynamical equations of mechanics. Stat-
ic solutions stationarize the Hamiltonian (energy) as a
function of p and q; this is seen from the Hamiltonian
equations

energy functional becomes the eQectiue potential, times
the volume of space. '

) The effective energy generates
Green's functions at zero energy, the effective potential
generates them at zero energy and momentum.

The time-dependent generalization of the above imple-
ments Dirac's variational principle in two steps. ' First,
we define the e+ectiue action I as a stationary value sub-

ject to the constraint that a matrix element of the quan-
tum field 4(r) is held fixed at a prescribed function of
space and time P( t, r ):

I (P}=stationary value of

BH(p, q)q=O=
ap

"dH (p, q)
aq

(4.1) fdt (4;t
)
i —H( 4—+,'t ), (4.5a)

The full time-dependent Newtonian equations are derived
by Hamilton s variational principle, which requires sta-
tionarizing the classical action I,], the time integral of the
Lagrangian L, and a functional of q (t):

I,i
——fdtL, =0.5I„(q)

5q (t)
(4.2)

E (P)= stationary value of ( 0'
~

H
~

'P ),
(q'

~

@(r)
~

'p) =p(r),

(vie)=i.
Then removing the constraint (4.3b) requires solving

(4.3a)

(4.3b)

(4.3c)

5E($}
5$(r)

(4.4)

and this point also defines the physical theory. ' (When

P is further restricted to be r independent, the effective

Notice that the static variations require no boundary
conditions, while the time-dependent ones must vanish at
the end points of the time integral that defines the action.

Both the static and the time-dependent variation prin-
ciples of classical physics have their quantum analogs.
The former translates into the requirement that expecta-
tion values of the Hamiltonian be stationary; this yields
the time-independent Schrodinger equation. The latter s
analog is Dirac s little-known time-dependent variational
principle, which results in the time-dependent
Schrodinger equation. '

The parallel to classical physics is even closer when
generating functionals are used. (We discuss the field-
theory case. ) On the one hand, generating functionals,
the field theory analogs of the Gibbs free energy, generate
(single-particle-irreducible) Green s functions. On the
other hand, they implement the above two quantum vari-
ational principles in two steps: in the first step, the varia-
tion is carried out subject to a constraint, in the second
the constraint is removed.

Thus we define the eQectiue energy E (P) as the station-
ary expectation of the Hamiltonian, in a normalized state

~

4 ), subject to the constraint that the expectation of the
quantum field operator 4(r) is a prescribed static func-
tion P(r):

(0;t ~4(r)
~
q;t) =p(t, r),

(+;t
i
q'+, t) =1.

(4.5b)

(4.5c}

As befits a time-dependent variation principle, one also
needs boundary conditions. Analogously to the classical
case, these are set at the end points of the time integral,
here +00. One demands that the time-dependent states

~
4+, t ) tend to the ground state

~

0) of H, and the vari-
ations vanish there:

(4.6)

Finally, to regain the physical theory, the constraint is re-
moved,

5r(y)
5$(t, r)

(4.7}

and at this point I generates Green's functions, with ar-
bitrary energy or momentum. [When I is evaluated on a
tine-independent function, P(t, r)~P(r), the result is the
(negative) effective energy, used above, multiplied by the
(infinite) time interval. ]

B. Liouville equation

A variational principle that gives the Liouville equa-
tion (3.12) makes use of a Lagrange multiplier kernel.
Consider the actionlike quantity"

I= —fdt trp A+i [H, 3—] —tr(pA) ~,
d

= —f dt —A+i[H, A]) —(A) ~,
d

(4.g)

Similarly, variation of p leaves

Here A, p, and H are time-dependent kernels and the
trace is over these kernels, while the time integral ranges
from an initial time t,- to a final time tI. The Lagrangian
multiplier kernel is A, whose variation gives

5~I= f dt tr p+i[H—,p] 5A —tr(p5A) ~, , (4.9)
d
dt f
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5$ = —f dt tr —A+i [H, A] 5p —tr(A5p) ~,
d
dt

i.e., the Lagrange multiplier becomes the identity kernel
5(y, —y2) at the final time. Consequently, 5A must van-
ish there. At initial time t, , the boundary condition is set
on the density matrix, and according to our program
p ~, , will be given by p;(P;), the canonical Boltzmann

t

distribution density matrix appropriate to H ~. . . with
t

temperature P, , or an approximation thereto. Hence 5p
vanishes at initial time.

Demanding that I be stationary against both variations
gives, with the help of our boundary conditions, the Liou-
ville equation (3.12) for p, and also for A. Moreover, the
boundary condition (4.11) on A selects the static solution
A= I for all time. [Note that p;(P;) does not provide a
static solution to the Liouville equation for all time, ex-
cept when H is time independent. ] With this develop-
ment, A disappears from the discussion, ' and we are left
with a variational formulation for the Liouville equation,
which will be implemented approximately in the subse-
quent.

Notice that the Liouville equation implies that trp is
constant. Hence proper normalization of p is assured,
provided p;(t;) is normalized. It is not necessary to en-
force normalization during the variation, though one can
do so by adding to (4.8) another Lagrange multiplier
times (trp —1). Upon redefining the phase of A, this addi-
tion may be removed, leaving (4.8) once again.

Let us further observe that the specific condition (4.11)
(viz. , A becomes the identity rather than some other fixed
kernel) is also needed to make contact with the effective
action formalism. This is seen by implementing the
above variational principle in two steps, where at the first
step subsidiary conditions are iinposed; compare (4.3b)
and (4.3c), (4.5b) and (4.5c):

t p-,'IA, C j=(,'IA, @j ) =P(t, r),
trpA=(A) =1 .

(4.12a)

(4.12b)

(The first of the two above equations reads explicitly

Vl 92 A Vl V2p 92'}j 1 Vl r +02

(4.10)

Next we impose temporal boundary conditions to elim-
inate the last terms in (4.9) and (4.10). We shall require
that

(4.11)

dp +i [H,p]+ f dr J(x)—,
' Ip, @j—w(t)p=0,

dA +i [H, A] —f dr J(x) ,'I A—@j+w(t)A=0.

(4.15a)

(4.15b)

The last elements in both equations may be removed by a
redefinition:

r

p=p exp — dt'w (t')

A=A exp —f dt'w (t')

(4.16a)

(4.16b)

while the commutator may be eliminated by introducing
the evolution operator U, which satisfies

i U(t) =HU—(t). a
r}t

(4.17)

subject to the boundary condition that U( —ao ) is the
identity

p= UPH U (4.18a)

A= UAH U (4.18b)

The transformation (4.18) is recognized as passage to the
Heisenberg picture relative to the Hamiltonian H, where
states are still time dependent due to the source J. Evi-
dently, pH obeys the same boundary condition as p at
t = —ao, similarly AH coincides with A at t = ao prouided
the latter becomes the identity. The equations satisfied by

pH and AH are

subject to the above boundary conditions and constraints,
is also the single-particle-irreducible generating function-
al, obtained as the usual Legendre transform of the con-
nected generating functional, the field theory analog of
the Helmholtz free energy. The argument parallels the
derivation of the analogous zero-temperature results
(4.5}—(4.7} (Ref. 15}.

We begin by introducing Lagrange multipliers J(x)
and w ( t), which ensure the constraints (4.12a) and
(4.12b), respectively; that is, we consider the quantity

I'=I+ x J x trp —,
' A, 4

—f dt w (t)trpA . (4.14)

(The collection of variables t, r is denoted by x. ) Varia-
tion with respect to A and p produces, respectively, the
equations

with the time dependence arising because A and p are
tiine-dependent kernels. ) We shall show that the none
quilibrium ejective action I (P},defined as the stationary
value of I in (4.8),

dAI (P) =stationary value of dt trp — —i [H, A]
dt

dpi' drJ x —PH @H

dAH = fdr J(x}—,
' IAtt, 4&tt j,

(4.19a}

(4.19b)

d=stationary value of dt ——A —i H, A
dt

(4.13)
where hatt(x} is the operator 4(r) in the Heisenberg pic-
ture 4&(x)= U '(t)4(r) U(t). The solution to these is
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p = T exp ——,
' f dx J(x)4H(x) p;(P; )

&& T exp ——,
' f dx J(x)@&(x) (4.20a)

AH=Texp —f dx J(x)4H(x)
t

(4.20b)

Now we can prove our statement. We define the
Helmholtz free energy W( J) by a Heisenberg picture ex-

pression, which evidently generates connected Green's
functions:

e ' '=tr p;(P;)T exp —f d x J(x)@H(x)

T exp — d x J x 40 x (4.21a)

5W(J)
~( )5J(x)

Consequently, from (4.21c) it follows that

5r(y)
5$(x)

(4.22)

(4.23)

which must vanish in the absence of sources.
It is seen that an effective action formalism is available

for our problem, indeed it is equivalent to the variational
principle, provided trivial boundary conditions on the

I

As seen from (4.20), the right-hand side is also trpHAH,
which may be evaluated with the help of (4.12), (4.16),
and (4.18). Thus, we establish that W(J) is related to the
Lagrangemultiplier w(t):

W(J)= f dt w(t) . (4.21b)

The quantity w (t) is obtained from (4.15) either by multi-

plying (4.15a) by A or (4.15b) by p and taking the trace.
Therefore, with the help of (4.12), W( J) is evaluated as

W(J) =I (P)+ fdx J(x)P(x) . (4.21c)

This completes the argument, when it is recognized that
(4.21a) implies that

Lagrange multiplier kernel [A, , =3.] are imposed.f
At zero temperature or in equilibrium, the effective-
action and efFective-energy formulations of the relevant
variational principles suggest approximation techniques
other than the parametric (Rayleigh-Ritz) restricted vari-
ation, which we employ below. Specifically, the loop ex-
pansion and semiclassical method give various perspec-
tives on the problem, and allow for systematic improve-
ment of an initial approximation. Thus far, a systematic
expansion for the nonequilibrium effective action intro-
duced here has not been developed, but would be most
welcome.

A. Gaussian density matrix

The Ansatz that we make for p is Gaussian. Thus we

make contact with the well-known approximations of
zero-temperature physics: two-loop effective action,
time-dependent Har tree-Fock, large-n limit, etc. In
quantum mechanics for n-component vectors x we take

p(x„x2)=N exp[ ——,'(x', A, x', —2x IB,xz+xzC, x~z )]

(5.1)

where by virtue of Hermiticity, p(x&, x2) =p'(xz, x~),

A'=C, B =B, (5.2)

while the real normalization factor N ensures

fdxp(x, x) =1. To accommodate (5.2) and for later con-
venience we reparametrize p as

V. CALCULATIONS

We shall solve the Liouville equation (3.12) for various
time-dependent H, both in quantum mechanics and in

simple quantum field theories. For nontrivial problems,
H is not quadratic, the dynamics is nonlinear, and (3.12)
cannot be solved exactly. However, by making a restrict-
ed variational Ansatz within the exact variational princi-
ple (4.8) formulated above, tractable equations are ob-
tained, which still retain some of the nonlinearity of the
complete problem.

G-'
p(x„x2)=e rexp ——x',

2 2

—1

—2i 11 x~+x', +2i 11 x~ —x', (G-'"gG-'), ,x~
lJ IJ

(5.3)

The matrices G and 11 are real sytnmetric, and g is Hermitian, i.e., g=gz+4iG'~ )IG', where g„ is real symmetric
and gz is real antisymmetric. The density matrix is properly normalized when

—lnN=y= —,'lndet2m. G' (1 —gz ) 'G' (5.4)

Observe that nonvanishing g is a measure of the amount by which our density matrix differs from a pure state. For
/=0, p(x, , x2)=%(x, )4*(x2), with

1 G%(x)=(det '~ 2~G)exp ——x'
2 2

—2iH xJ

Therefore we call g the degree of mixing
With the above density matrix, it follows that averages of x and p vanish:

(x) =f dxxp(x, x)=0, (s.sa)
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(p) = f dx —V~(x, x')1

X =X
=0, (5.5b)

while averages of bilinears are

(x'pj) = fdxx'x'p(x, x)=[G' (1—(„) 'G' ],,

( ; , ) f O'P( , ')

x Bx~

(5.6a)

& [G
—t/2( 1+/ )G

—t/2] +g[(H+( )G1/2( 1 g )
—1G t/2( H g )] (5.6b)

(x'p/) = i f—dxx' .p(xx') = —6; +2[G'/ (1 —g ) '6' (H —g )],
X =X

(5.6c)

When we take the dynamics to be invariant against rotations in the n-dimensional vector space, all the symmetric
matrices are proportional to 5;J, and the antisymmetric matrix g~ vanishes, except for n =2, where ((~);J could be pro-
portional to e;, but we ignore this exception. (The antisymmetric structure arises, for example, in planar systems mov-

ing in a constant magnetic field, perpendicular to the plane. '
)

Formulas for field theory are analogous. We consider an n-tuplet of scalar fields 4'(r), and assume O(n) symmetry
throughout. The density matrix becomes

1
p( pi V'c)=e exp '

0'&
2

6 —1

2
—2l H g)+{P2

6 —1

2
+2iH q, q, G '"—gG- (5.7)

G, H, and g are kernels are r space and matrices in the n-dimensional component space.
Translation invariance allows diagonalizing the kernels:

(5.8b)

G(r„r~)= f e ' ' G(p), (5.8a)
P

H(r„r, )=f e ' 'H(p),
P

g(r„rz) = f e ' ' g(p), (5.8c)
P

where G (p), H(p), and g(p) are still matrices in component space. By O(n) invariance, they are proportional to 5;, ex-
cept at n =2 where the tensor e; is also available, but we do not consider that exception. It therefore follows that bilin-
ears of the form cp, Ocpz—= f dr dr'p'(r)O; (r, r')cp'(r') becomes f cp*, '(p)O(p)qp~(p), where cp'(p) = f dr e'~'y'(r).

Averages of field operators follow (5.5) and (5.6). Linear averages vanish, bilinear averages are

(4'(r)4J(r') ) =[6' (1—ga ) 'G' ]/(r, r'),

(H'(r)IP(r')) = —,'[G '/ (1+(a )G '
], (r, r')+4[(H+g~)G' (1—ga ) 'G' (H —gz)]; (r, r'),

(5.9a)

(5.9b)

(4'(r)H'(r')) =—5,,5(r —r')+2[6'/ (1—g„) 'G'/ (H —g~)],, (r, r') . (5.9c)

In Appendix A we present a more general Ansatz that leads to nonvanishing averages for the coordinate and rnomen-

turn.
To develop further understanding of the Gaussian Ansatz, let us simplify to one quantum-mechanical degree of free-

dom:

1
p(x, , x ) =e rexp — (x, +x z

—2x, xzg) exp[i H(x, —x z )] .
46

(5.10)

This is equivalent to the operator Ansatz

p(x~, x&)=(x&
~ p ~

x&), p= 2m.
sinhbw

]/2

e rexp ——[p —2H(xp +px)+ax ~)
b

2
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with the following identification:

6 = tanhbw,
1

2w

=coshbw

w =+a —4II

Proper normalization is ensured when y is taken from (5.4):

(5.12a)

(5.12b)

(5.12c)

p =2 sinh exp ——[p —2II(xp +px ) +ax ]
bw b 2

2 2
(5.13a)

1 —gp(x&, x2) =
2mG

exp — (x, +x2 —2x,x2() exp[i11(x, —x 2 )]2 ~ 2 2

4G
1/2

bw—tanh
7r 2

exp — . [(x~+xz)coshbw —2x, x2] exp[iH(xf —x2)] .
2 sinhbw

(5.13b)

From (5.13) it is easy to evaluate the entropy (3.8):

bwS = —k ln 2sinh
2

[a,a ]=1 .

We may therefore form the orthonormal states

~~„(a")"O„=e "
&n!

(5.17)

(5.18)

b

2
——p +bII(xp+px) — x

ba

2
(S.14a)

The averages are given in (5.6), and with (5.12) we get

which apart from x-independent phases are related to
harmonic-oscillator wave functions given by Hermite
polynomials H„:

bw
S= —k ln 2sinh +k coth

2 2

OR
4'„(x)=i "e

77

1/4

2"n!

1/2

=kz —ln(2 sinhz)2 d 1

dz z z =bw/2
(5.14b)

1/2

iso R —xQx/2%'0——e e (5.15)

Here yo is a position-independent phase. This state is an-
nihilated by

1
a = (p —iQx)

+2n„
whose conjugate

(S.16a)

a = (p+iQ*x)
+2n„

satisfies the expected commutation relation

(5.16b)

Since by (5.12b) bw is functionally related to g, constant
entropy means that the degree of mixing g stays constant
during the Liouville evolution, and only G and H can
vary in time.

Note further that (5.13) may be diagonalized as fol-
lows. Consider a Gaussian wave function with covari-
ance Q=QR+iQI, which may be complex and time
dependent:

( +II x)e —xnx/2 (5.19)

Standard summation formulas' allow one to conclude
that (5.13b) may be written as

y e
—bw(n+1/2)y (x )ye(

n
p(x»x2) = —bII)(n + 1/2)e

(5.20)

when QR is chosen to be w, Al = —2II, and bw is related
to g by (5.12b). Therefore, the occupation probabilities

e
—bwn e

—bu(n + 1)
pn —e (5.21)

are solely determined by the degree of mixing.
Within the parametrizations (5.3) and (5.7) we can de-

scribe the classical limit as the situation when the next-
to-last terms in (5.6b} and (5.9b) are dominated by the last
terms, and when the next-to-last imaginary terms in

(5.6c) and (5.9c) are dominated by the real last terms.
The reason is that the next-to-last terms are O(A'), while

the last terms are —l. (Remember that in our units fi= 1

and, hence, is invisible in the above formulas. } Indeed the
next-to-last imaginary terms in (5.6c) and (5.9c) give rise
to the Heisenberg commutator. When the classical limit

holds, then (for one quantum-mechanical degree of free-
dom)



3566 O. EBOLI, R. JACKIW, AND SO-YOUNG PI 37

(x ) =(Ax) = —:&x'), , (5.22a)

4H 6
(p ) =(&p)'=—:&p'&, =411'&x'), (5.22b)1—

(xp ) = = (xp ), =2II(x'), , (5.22c)

and bpbx = (xp ). The imaginary contribution to (xp )
that is ignored in the classical limit has magnitude —,.
Hence, the classical limit is alternatively characterized by
hphx ~& —,', which expresses the fact that one is far from
the minimal quantum uncertainty. Evidently II must not
vanish in the classical limit.

A classical distribution function f (p, x) can be con-
structed to reproduce the classical expectations (5.22):

f (p, x) =5(p —2IIx)p(x, x) . (5.23)

One easily verifies that (x2), =f dp dx x2f (p, x),
&p'&, = fdp dx p'f (p, x), &xp ),= f dp dx xpf (p, x).
For another perspective on this matter we calculate the
Wigner distribution function fn;

fn, (p, x) = e't'~p(x ——'y, x +—'y) . (5.24a)

With the Gaussian p in (5.13), this becomes

26fw(p~x)

y, exp — (p —2llx) p(x, x).26 2

1+
(5.24b}

B. Quadratic Hamiltonians and linear dynainies

The Gaussian density matrix is an exact solution to
Liouville s equation when the Hamiltonian is quadratic
and dynamics is linear, without self-interaction. It is in-
structive to examine the solvable cases, but first we must
assess their relevance to probleins of equilibrium/non-
equilibrium behavior.

When an external agent acts on a system and destroys
its equilibrium, it is natural to believe that after the dis-
turbance ceases equilibrium will be reestablished due to
self-interactions. Conversely, in the absence of self-
interactions, one would not expect a return to equilibri-
um. It would therefore appear that linear systems,
without self-interaction, though solvable, never exhibit
initial equilibrium, out-of-equilibrium evolution in the
presence of a disturbance, return to equilibrium after the

For large 2G ( I+/), this coincides with (5.23).
It still remains to choose an Ansatz for A, select a

Hamiltonian, evaluate I in (4.8), and vary all the parame-
ters to obtain equations for them. Before doing this we
observe that the Gaussian density matrix exactly solves
the Liouville equation for quadratic systems; hence, we
discuss these first.

disturbance.
Our explicit calculations support the above observa-

tions in most, but not all, cases. We find for generic
quadratic Hamiltonians that equilibrium indeed is not
reestablished. However, for a class of very special mod-
els, which bear a mathematical relation to reflectionless
potentials, the system does settle into thermal equilibrium
again.

For a quantum-mechanical example, we chose a har-
monic oscillator with time-dependent frequency:

0= —,'p + —,'co (t)x (5.25)

The frequency is constant, equal to co, in the past, and
again constant, cof, in the future. (We consider first only
real frequencies. } Substituting the Gaussian Ansatz for p
into (3.12} shows that the Liouville equation is satisfied
(the exact solution is Gaussian) when the following equa-
tions hold:

—=tr A I

AR —BR FBI~ AR——BR 1 ( AI~ AR —BR l

B =tAr» 1+tB t~AR~

I ~R +BR + '4I +BI+

(5.26a)

(5.26b)

(5.26c)

(5.26d)

(=0,
6 =4II6,

2 2

11= ' —
& -211'—

86

(5.27a)

(5.27b)

(5.27c)

Thus we need to analyze only (5.27b) and (5.27c) with
constant real g. Recalling that g is a measure of how
much our state di6'ers from a pure state, we see that the
degree of mixing remains constant in time, as is expected
since entropy does not change. Note that the classical
limit, which requires 4GII »I —g, is eqivalently charac-
terized by G/(1 —g)»1.

The two equations (5.27b) and (5.27c) may be presented
in various ways. H may be eliminated and a second-order
equation for 6 results, which is conveniently expressed in

terms of a new variable Q =—(1—g)
' G ', whose

definition is motivated by the fact that (1—g) G is the
expected value of x, and the classical limit sets in when

(d/dt)Q»1. Q satisfies

The overdot signifies di8'erentiation with respect to time,
and we use the parametrization (5.1), with subscripts R
and I denoting the real and imaginary parts, respectively,
of the matrices. As a consequence of (5.26b), Eq. (5.26a)
is satisfied by (5.4), where the argument of the logarithm
is recognized as deter( Aa Btt ) '. Th—e equations simpli-

fy if Bt can be taken to vanish. Then (5.26c) requires Ba
and AR to be simultaneously diagonalizable, and (5.26b}
shows that AI can be taken diagonal with AR and BR.
This complete diagonalization, which we shall henceforth
assume, of course, holds in the one-dimensional case (no
matrix structure) or in the O(n)-symmetric n-dimensional
case, with all matrices proportional to the n X n unit ma-
trix. The diagonal equations read
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~ ~

Q—
12

+co Q =0, (5.28a)
static solution is at the minimum of the "potential. "
Upon introducing temperature through g,

1 1+$
4 1

(5.28b)
we get

' =coshPco (5.29)

which may be analyzed by a mechanical analogy to a
"particle" moving in the "potential" —,'I /Q + —,'co Q .
The "angular momentum" in the "centrifugal term" is

determined by the degree of mixing. For constant co, the

G = tanhPco, II =0,1

2' (5.30)

and regain the canonical density matrix for a harmonic
oscillator in thermal equilibrium:

p(x „x2 ) = —tanh
co Pcv

2

1/2

exp
2 sinhPtv

((x, +x ~ )coshPa) —2x, x~ ) . (5.31)

With (5.31), the expectations are the familiar ones:

(x2) = coth

(p2) =—cath
2 2

(xp}=—'
2

(5.32a)

(5.32b)

(5.32c)

to the static initial value co; and the density matrix is
I CO ~ t

p, (P, ), D =e '. In the future, t) tf, tv becomes static
again, cof, and D in general will be a superposition

Ae +Be,with the constants A and B determined

by continuity, and satisfying

(5.38)

—2i II
1 —g (5.33)

the two real equations (5.27b) and (5.27c) combine in a
single Riccati equation for the complex quantity 0&,

A classical limit is never attained, because H =0. At zero
temperature f3= ~, ( vanishes, and the state becomes
pure.

The time-dependent problem may be analyzed with
(5.28), but another rewriting is preferable. Upon defining

by virtue of the time-independence of the Wronskian
( I /2i ) (DD' D'D ). T—he temperature enters in the ini-

tial period through the definition of g:

'=coshlj, co, (5.39)

and ( remains constant throughout the time evolution.
In the general case, both A and B are nonvanishing

and the final density matrix remains time dependent—
equilibrium is not regained. Upon parametrizing A and

Bby

i 0(——0(—~

which is linearized by the definition

d
0, = —i—lnD,

dt

(5.34)

(5.35)

/A [=
1/2

cosh —,
2COf

1/2

sinh —,arg AB ' =25,2'

(5.40)

D+co D =0 .

For static co the general solution is

(5.36)
where 6 and 5 depend on the details of the problem we

find

D= Ae' '+Be ™ (5.37)
G = tanhP;co;[ coshh+sinhb, cos2(toft +5)],1

2' f
This corresponds to the static density matrix p, (P) in

(5.31) only if A or B is zero. Taking 8 to vanish we
define 0&——co, which reproduces (5.30) and (5.31) from
(5.29), (5.33), and (5.35) (Ref. 19).

Equation (5.36) is especially suited for discussing the
general case, because its structure is that of a familiar and
well-studied equation: the time-independent, continuum
Schrodinger equation for a unit-mass particle moving on
a line t in a "potential" v (t } and energy e, with
co (t)=2[e—v(t)]. In the past, for t (t, where cu is equal

(5.41a)

cof sinhb, sin2(tvf t +5)
2 cosh', +sinhh cos2(toft +5)

(5.41b}

which together with (5.39) determine the density matrix
from (5.13). The various expectations, which become
classical at high temperatures for limited periods of time
[i.e., when Il is not close to zero) are
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&xz) = coth [cosh', +sinhh cos2(cpf t +5)],
2cof 2

(5.42a)

~i'Coi
&p ) = cotll

2 2

1+sinh b,sin 2(coft +5)
cosh'. +Sinhb, cos2(cof t +5)

(5.42b)

i 1
&xp ) =———coth [sinhb, sin2(cof t +5)] .

2 2 2
(5.42c)

However, for very particular forms of c0 (t), 8 and b,
can vanish, and the density matrix becomes static, corre-
sponding to a Boltzmann distribution, whose temperature
is determined from g, which remains time independent
regardless of the form of aP(t): coshp;c0; =g

coshpf cof For these very special disturbances,
thermal equilibrium is reestablished at a shifted tempera-
ture: pf (co Ico—f )p;'.

It is clear from the Schrodinger equation analogy that
reestablishment of equilibrium is equivalent to
reflectionless transmission in the corresponding
Schrodinger problem. Reflectionless transmission can
arise in two ways. For very special potentials, there is no
reflection at any energy. Alternatively and less restric-
tively, for a wide class of potentials, the reflection
coefficient can vanish at a particular energy (Ramsauer-
Townsend effect). Both mechanisms provide a con-
struction of coz(t) that leads to restoration of thermal

equilibrium.
For an example of the first mechanism, consider the

reflectionless Poschl-Teller potentials. For our problem,
these give rise to a frequency profile

Co (r) =CPp+
n (n +1)p,

cosh pt
(5.43)

G = tanhPpip 1—1 p
2coo (cop+@ )cosh pt

(5.44a)

1 p, tanhp, t
2 cppcosh pt+p sinh pt

and the expectations become

(5.44b)

where p, is a parameter and n any positive integer. The
initial and final times are —cc and + ap, respectively, and
co' —

cliff
—cpp The results for n = 1 are

1 ~cop
&xi) = coth

2coo 2

1 ~cPp
&pz) = coth

2cop

p sinhpt

op(cPp+P ) cosh Pr

These can be classical for a limited time at high temperatuies.
The second mechanism is exemplified by the profile

p
(cop+P }cosh Pt

P sinh Pt +cop(cop+@ ) cosh Pt

(cop+@ )cosh pt(cppcoshzpt+p sinh pt)

i 1 PcPp
&xp) =—+—coth

2 2 2

(-5.45a)

(5.45b)

(5.45c)

2
N],

Co (t)= ' Cgp,

t&t;

t; &t &tf,
t)tf .

(5.46)

When cop
——cp;cof and (tf t; ) =(n +1/2)—n Imp, the corresponding Schrodinger transmission problem is reflectionless at

one value of the energy —the Ramsauer-Townsend effect ocurrs. For intermediate times t,. & t & tf, we find

1 COt.

G = tanhp;co; 1+4'; cof
—( —1)" 1— sinCpp( 2r r —Cf ) (5.47a)

( —1)" 1 — coscop(2t —t, —tf )

(5.47b)

1+
Nf

CtP(—( —1 }" 1 — sincop(2r —r —rf )

For t & t, and t ) tf,-p is the Boltzmann distribution density matrix, at p; and pf (cp; Icpf )p;, resp——ectively.



37 QUANTUM FIELDS OUT OF THERMAL EQUILIBRIUM 3569

A.n example, ~here equilibrium is not restored, is given by a single sudden jump in frequency:

co, , t (0,
co (t)= .

Nf, t )0. (5.48)

I CO- t
The solution (5.37) for t &0 with co=cof is matched to e ' for t &0. The continuity of D and D at the origin allows

evaluating the parameters in (5.40): 6=!lnco, . /cof !,5=0.
It is interesting to follow the transition from co; when it occurs more gradually than in (5.48), and to examine the

dependence of the final density matrix on the rate of transition. This we do numerically. Assuming that

t(t;,
(cot cof )t +cof tc coj tf

co( t)=,t; & t & tf, (5.49)

cof, t) tf,

we solve for G (t). Figures 1(a)—l(d) exhibit the behavior in time of

G(t) —G„(t)
AG(t)=

G,q t)
(5.50)

where G, (t) =tanhp;co;/2co(t). At a given time t, b 6 (t) measures how far the state is out of therlnal equilibrium. As
can be seen from Fig. 1, for fixed co; and cof, the departure from thermal equilibrium diminishes as tf —t; —=~ increases.
From the numerical results we can learn that the amplitude of oscillation of b, G (t) (for t & tf ) is roughly proportional
to I /r We sha. ll prove below that for an infinitely slow transition from co; to cof equilibrium is always regained.

When the time evolution carries an initial frequency into a final imaginary frequency —mf ——v )0, so that the har-
monic oscillator becomes unstable, equilibrium is never restored because there are no static solutions to (5.27) with neg-
ative co and g & 1; the latter being constrained to this domain because it is constant and initially equal to sechp;co; & l.
The final time-dependent density matrix is found from (5.33)—(5.37):

D = Ae"'+Be (5.51)
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FIG. 1. 56(t) as a function of (t —t;)/~ for different values of ~: (a) ~=5; (b) ~=10; (c) ~=15; (d) ~=50. In the numerical work
we took co; = I, cof ——2, and p= l.
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The constancy of the Wronskian here fixes the imaginary part of AB *:

1 ~i
Im AB

2 v

which ensures that the magnitudes
~

A
~

and
~

8
~

are nonvanishing; they are determined by continuity. Thus

6= tanh/3 td(
)

A
~

e "+ )8
~

e "+2ReAB'},1

2';
V ~2 2vt 8 ~2

—2vt

~A
~

e"'+~8~ e "+2ReAB'

These give rise to the expectations

(5.52)

(5.53a)

(5.53b)

(x )= coth (~A
~

e "+~8~ e "+2ReAB*),
2'; 2

(S.S4a)

(p2) = coth
2 2

Q2
1+ (~A~ e"—~8~ e ")

C0.
l

~

A
~

e "'+ I 8
~

e "+2ReAB* (5.54b)

(x/2) =—+ coth
'

(
~

A
~

'e'" —
~

8
~

'e '"') .
2 2'; 2

(5.54c)

Owing to the growing exponential, the expectations become classical at late time, where they can be approximated by

(x')= coth
' '

i
A i'e'"=(x'), ,

2coi 2

(p') =v'(x'), ,

&xtt2&=v&x2&, .

td; /3;td;
tanh

7T 2

1 P;td;
, exp — co; tanh

)
A /e"tf (x,p) =5(p —vx)

This is equivalently described by a classical distribution function
1/2

(s.ssa)

(5.55b)

(5.55c)

(5.56)

td (t}= . co;, t (0,
2—v, t&0,

for which

C013 =B*=— 1+i
2 v

A more gradual evolution,

t (0,

An example is given by the sudden jump

(5.57)

(5.58)

namics of the scalar field 4 is governed by the Lagrange
density L:

ddt[ t j)2 le 2IT(qq))21(m2+gR)(P2]
2 2

(5.61)

where g controls a nonminimal coupling to the Ricci sca-
lar R, given by R =d(d+1)P in de Sitter space. [The
scalar field is conformally coupled when g = —,'(1 —1/d). ]

It is convenient to introduce a new field by
4=e "~' 4. Apart from a total time derivative, which
we drop, the Lagrange density, expressed in terms of +,
reads

td'(t)= '

lt(~2+v2) v2 t)0, (5.59) 1 d 7t (It 2 1 —2I t
( g (f) )

2 +2 2 2 4
—m —gR2

ds2=dt' —e'~'d x' . (5.60)

The Universe is expanding at a constant rate X. The dy-

leads to equations that may be integrated in terms of
known functions. The analysis of this problem is the
same as for free field theory in de Sitter space, which we
now examine.

Consider a scalar free-field theory in de Sitter space-
time, with d spatial dimensions, described by the metric '

(5.62)

(The tilde has been suppressed. ) The Hamiltonian densi-
ty corresponding to (5.62} is quadratic:

d2X2= —,tH +—,'e '(V@) +— — +m +gR

(5.63)
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so the Gaussian Ansatz (5.7) for the density matrix is a
solution to Liouville s equation, provided that the kernels

g, G, and II satisfy appropriate equations. Translation in-

variance of the dynamics allows diagonalizing all kernels

by Fourier transformation as in (5.8); thus the relevant
equations become

—2Xt 2D(p)+ e 'p — +m +gR D(p)=0
4

(5.66)

As in (5.59), co, becomes negative in late times because v
is assumed positive. To analyze the system we solve

g(p) =0,
G(p) =411(p)G (p),

(5.64a)

(5.64b)
and obtain

D(p)= A (p)H'„"(r
I p I

)+B(p)H„(r p I
), (5.67)

II(p) = —2II (p)
8G'(p)

d 2y2

2 4
—2Xfp2 + pyg

2 +gR (5.64c)

and gt (p) vanishes. For each momentum mode, these are
identical to (5.27), with to(t) given by an effective de Sitter
frequency to, (t):

to2( t ) e 2ztp2 v2y2

(5.65)
m gV R .

4 X'

where r—:(I/X)e r' is called the conformal time and
H", ' are the two Hankel functions of order v. The
coeScients A and 8 are specified by imposing an initial
condition. In keeping with our procedures thus far, we
could cut off the effective de Sitter frequency co, (t) at
some initial time t;, replace it by a constant co;=to, (t; )

l CO

for t (t;, and chose a Boltzmann distribution, D =e
for the early epoch before the expansion begins, compare
(5.59). Then A and B are determined by continuity. Al-

ternatively we can let t; = —~ and impose physically
plausible conditions at the beginning of time on the de
Sitter solution (5.67). At t ~ —oo, r~ oo, and

D(p)
2

m.
I p I

r

1/2

A (p)exp i p I
r ——v ——

2 4
+B(p)exp i

I p—I

i——v ——
2 4

(5.68)

D approaches the form (5.37), but in conformal time r rather than real time t It is .therefore plausible to insist that only
one exponential is present, so that II&=——iB,lnD is dominantly real; hence, G (determined by II~~ ) dominates 11

(determined by Q&t). With this point of view, one would set A (p)=0—a choice that is the density matrix analog of
the pure "Bunch-Davies" vacuum, which is the unique de Sitter-invariant solution to the time-dependent (functional)
Schrodinger equation.

To retain generality we remain with arbitrary coefficients in (5.67) and reparametrize as follows. First define the
modulus and phase of the Hankel function:

e i v7T/2H(1 ) M
' v

7 (5.69a)

M'„(z)8'„(z)= (5.69b)

[The formula (5.69a) differs from convention by the additional factor e'" ~ . With our definition, 8„remains real as v
becomes imaginary. The second formula is the Wronskian relation, where the prime signifies differentiation with
respect to the argument. ] Apart from an irrelevant multiplicative constant, (5.67) is

D(p) =M„cos(8„+a), (5.70)

where a is a ~-independent, complex integration constant. This then leads to

G(p)= M +I—g [1—(1—r )sin (8„—9)],47r
(5.71a)

M' (1—r )tan(8„—0)
11(p)= ——r

I p I
& +—r

I p I
&8'.

2 M 2 " 1+r tan (8 —8)
(5.71b)
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We have defined 0= —Rem, r =tanhImo. g0, and r =1
corresponds to A =0 in (5.67}. The argument of M„and
e isr)p/.

If the frequency is time independent before an initial
time t, ,co; =co, (t, ),. then as usual the constant degree of
mixing g may be related to an initial temperature by

with bw identified with P;co, , satisfies the Liouville equa-
tion. This provides an alternative derivation of our re-
sults for quadratic systems.

C. Ansatz for A

+1—g =tanhPco . (5.72)

M ~—
2

—V

r(v), e,-—(v —1) .

Therefore

G( )
1 r

I P I

4mgr 2
')/1 —g (1—e), (5.73a)

II(p)~—X,
2

(5.73b)

(The subscript i is suppressed. ) On the other hand, if ex-
pansion extended from t = —~, there is no well-defined
concept of temperature, although a plausible strategy
is the following. For large negative time co, (t)
=e '~ p ~

=co. Hence allowing a time dependence in
the temperature so that 13co is time independent,
Te x'—:1/kP, we can still remain with (5.72).

For late times ~~0, and in this limit

Choice of a variational expression for A is dictated by
several considerations. Because the action to be varied is
linear in A and p, variation of the former produces equa-
tions determining the latter. Consequently, there should
be as many parameters in the trial expression for A as in

p, so that a sufhcient number of equations determining
the parameters of p is obtained. From the boundary con-
dition (4.11) A ~, , =3., we know that the solution for A

f
is A= I. Therefore the trial form for A must accommo-
date this possibility. A should be parametrized in such a
way that )=0 emerges as a variational equation; this ex-
pression of constant entropy should characterize the ap-
proximation. Finally note that while the exact variation-
al equations for A and p decouple, this need not be the
case for the approximate equations. But it would be most
convenient to preserve decoupling, and this also
inAuences the selection of A.

To motivate the choice we make for A, let us first con-
sider a static variational principle that determines the
Boltzmann distribution density matrix in the case of
time-independent Hamiltonians. As is well known, one
minimizes the expected value of lnp, proportional to the
entropy, subject to the subsidiary condition of constant
average energy U =—trpH. Thus, one varies the
Helmholtz free energy F= U —TS:

where e is (1—r )sin [(n./2)v —m/2 —8]. For e & 1,
Gll/(1 —g) dominates —,

' at nonvanishing p, so that the

classical limit holds, a result obtained previously for r = 1

(Ref. 21).
To conclude this discussion of quadratic systems, note

that the Riccati equation (5.34) is also obeyed by the co-
variance of 0 of a Gaussian wave function +o that solves
the time-dependent Schrodinger equation, with the quad-
ratic Hamiltonian (5.25). This Gaussian is annihilated by
the annihilation operator (5.16a), which also satisfies (we
write formulas for 1 degree of freedom)

PF =trp lnp+P trpH = (lnp)+P(, H ) . (5.76)

—PHe
—PH

(5.77}

Here P serves as a Lagrange multiplier enforcing constant
average energy; an arbitrary additive constant in the
Hamiltonian is adjusted to absorb a further multiplier,
which ensures trp= 1. Setting the variation of p in (5.76)
to zero gives

Ba
i [H,a]+ — i QRa . —

at
(5.74)

Therefore, the states (5.18) and (5.19) with

n I Q„(r')dr—'
0

(5.75)

solve the time-dependent Schrodinger equation as well.
Hence the density matrix constructed as (5.19) and (5.20),

which maximizes the entropy at constant energy. Clearly
p=e ~ /tre ~ maximizes the entropy when the aver-
age of an arbitrary operator 6 is kept fixed.

We now recognize, with the help of (5.10)—(5.12), that
the Gaussian density matrix (5.3) is of the maximum en-

tropy form, where the constrained operator 0 is a linear
superposition of x'x~, p'p~, x'p~+pjx', and the identity
operator I, with time-dependent coeScients related to y,
G, H, and (. Therefore, it is natural to take A in the
same space of operators. A choice advocated by Balian
and Veneroni" is

A(x, ,x2)=A'"5(x, x2) A'j~ ', . —5(x, —x2)+A;'," 'i(x', +x2—) . 6(x, —x2)+A', " 'x', x', 5(x, —x~) (5.78a)
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D. Interactions and nonlinear dynamics

We evaluate the action with p as in (5.3), A as in (5.78),
and H describing an n-component anharmonic oscillator,
with a time-dependent frequency:

g( 2 2

H = —,'p + ,'co (t)x—+
2(n +2)

(5.79}

or, in operator notation A(x, , x2) = (x,
~

A
~
x2),

A=A"'I+A'{' 'p'pj —A ~'(x'p'+p'x')+A'" x'x'
V V V

(5.78b)

Here, A" are variational parameters. They all depend
on time, and satisfy the condition at final time t =tf that
A" ' becomes 1, and the others vanish. The advantage of
(5.78) is that the action (4.8) to be varied is linear in the
A", so the equations for the parameters in p do not in-
volve A". The equations for A" remain coupled to the
parameters of p, but we need not solve them.

Upon setting the A" variations to zero, the resulting
equations determine p. The equations are the same as in
(5.26) except that (5.26d) acquires a further term arising
from the self-interaction:

[tr(A„B~—) '+2(A~ B~—) '] .
n+2

As before, we take the matrix structure to be trivial, and

find

/=0,
G =4HG,

2 2

211
8G

kG
1 —g

(5.80a)

(5.80b)

(5.80c)

Before analyzing (5.80) we mention another natural

Ansatz for A. Since p and A satisfy the same equation,
one could take a Gaussian for A as we11:

A(x„x2)=e exp ' ——x',
2

G
—1

A—2ilI x', +x' +2iII xj —x', (G '~
g G '

),,x~
U

2 IJ

(5.81)

we

Ig 3+F2 ] O
CO

(5.82)

where / is given by (5.28b). The cubic equation for g may

However, with this form the equations for the parameters
in the density matrix involve the parameters of A. Also it
is difficult to incorporate the final boundary condition
A(x&, x2) ~, , =5(x& —x2) in the expression (5.81). Both

problems can be overcome by the following trick. We in-

troduce a formal expansion parameter e and expand the
variational parameters in p and A in an e series. All the
parameters in p as well as IIA and g~ begin with O(e ).
The first term in G~ is O(e) while y~ begins with lne.
The relevant equations are derived, and e is set to zero.
In this limit p continues to be a Gaussian described by its
O(e ) parameters, while A(x&, x2) tends to 5(x& —x2). We
omit details, because the equations obtained in this
fashion coincide with (5.80).

Our variational equations (5.80) exhibit several desir-
able and expected properties. The degree of mixing g
remains constant, while in the absence of mixing, /=0,
the equations reduce to the time-dependent Hartree-Fock
equations that have been studied previously. For the
static problem, when co is time independent, a static
solution to (5.80} is found by setting the left-hand sides of
(5.80} as well as 11 to zero. The resulting equation for G
coincides with that obtained from the static variational
principle (5.76) with a Gaussian Ansatz for p; see Appen-
dix B.

When co is time independent define
G =(+I—g /2')g, and g satisfies

be solved; for weak coupling it gives

g=1 — t
CO

for strong coupling,

(5.83a)

CO CO

611
(5.83b)

while in the absence of the harmonic term, co=0, we find

(1 —g)'"(1+g)'"G=
2K1/3

(5.83c)

The density matrix is static and, hence, describes equilib-
rium, but it is not the canonical Boltzmann distribution
for the anharmonic oscillator. Although p may be writ-
ten in the form (5.20), the static 4„'s are not exact energy
eigenfunctions nor are the energy eigenvalues equally
spaced in units of some w. (The 4„'s even are not varia-
tional approximations; see Ref. 26 below. ) Presumably
though, the static Gaussian density matrix with G given
by (5.83) is a good approximation to the true canonical
density matrix. That b occurring in (5.20) should, in fact,
be identified with P, proportional to the inverse tempera-
ture, is not obvious from the formal development present-
ed here, but is justified by the static variational principle;
see Appendix B.

For the time-dependent problem, we remain with
(5.80). Equations (5.80b) and (5.80c) cannot be combined
into a single equation for a complex quantity as in (5.33)
and (5.34), but one may still get a second-order equation
for Q {1 g)

—1/2G 1/2. 25, 26
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l2
+co Q+2AQ =0 . (5.84}

This equation may alternatively be derived as follows.
Upon differentiating the defining equation Q =- (x ) we

get

~ 1
Q = trpx

2Q

1

2Q
tri [p, H]x

1

2
trpi[H, x ] . (S.8Sa)

For a Hamiltonian of the form H =p /2+ V(x), the
above becomes

(px+xp) .
2

Differentiatin once more and evaluating the relevant
commutators with H gives

Q = — (px +xp )'+ —(p')
4Q3

p;(x, y) = g p„%„(x;co,. )4„(y;co, ), (5.88a)

and equilibrium at initial times, i.e., (5.82) and (5.83) hold
for t & t, with co =v . The profile (5.87) describes transi-
tion from a stable potential with minimum at the origin,
to a bistable potential with two minima and instability at
the origin. The numerical evaluation of subsequent evo-
lution is shown in Figs. 2(a) —2(d) and Figs. 3(a)—3(d).
The following conclusions are drawn. While equilibrium
is not attained, increasing tf —t, :—w at fixed A, decreases
the oscillation about equilibrium. Similarly, at fixed ~, in-
creasing the strength of the self-interaction decreases the
excursions from equilibrium.

The return to equilibrium with increasing ~, anticipat-
ed from the analysis of the linear problem, can be also es-
tablished on general principles, with the help of the quan-
tum adiabatic theorem. Consider the defining expression
for the Boltzmann distributed density matrix at the early
times:

1 d——x V(x) (5.85c) —P,.E„(co,- j —i3, E„(~,)

n'
(5.88b)

The first two terms on the right-hand side are evaluated
with our Gaussian density matrix from (5.6), and they
combine into l /Q . The last term, of course, depends
on the form of the potential, for an even monomial
V(x)=k,„x ", we need the expected value of 2n A, „x "; in
the Gaussian approximation this is A.„[(2n)./
2" '(n —I )!]Q ", and with this result (5.84) is regained.

The classical limit, 4G 11 yp 1 —g, continues to be
characterized by G/(1 —g) && I by virtue of (5.80b),
which does not see the interaction. Equivalently, the
classical limit sets in when (d ldt)Q )) l.

The intricacy of the nonlinear problem renders analytic
solution unfeasible. [Elliptic functions solve (5.84).] A
mechanical analogy for (5.84) aids understanding. In par-
ticular note that at late times, when co becomes constant,
the motion of Q —(x )' is governed by an effective
"potential, " with "centrifugal" repulsion whose strength
depends on the degree of mixing:

(2
(5.86)

Generically Q will oscillate about the minimum of (5.86)
and static equilibrium is not regained. Presumably there
exists specific time profiles for co (t) such that Q settles at
the minimum of V,z. With such generalizations for the
reflectionless potentials of the noninteracting case, equi-
librium is regained, but we have no explicit examples.

It is expected that increasing the strength of the in-
teraction dampens the oscillation, suppressing departures
from equilibrium. This is confirmed by numerical
analysis. Consider co {t) given by

Dependence on the parameter that will vary with time
for t, &t &tf is explicitly indicated. If the variation is
sufficiently slow, the quantum adiabatic theorem states
that apart from position-independent phases, the wave
functions evolve into qi„{x;~(t));hence, at intermediate
times the density matrix is

p(x, y;t) = g p„%„(x;co(t)}4„'(y;co(t)} (5.88c)

and in late times attains equilibrium:

pf(x, y)= g p„%„(x;cof)4„'(y;cof ) (5.88d)

2+ ] e 2xt(qq&)2—
2 2

But this need not be thermal equilibrium. The occupa-
tion probabilities remain given by (5.88b}, and involve

p; E„(co; ) which in general cannot be written as
pfE„(ra&). Only for energy eigenvalues of the form
E„(co)=f (co)e„, as in the harmonic oscillator, can a final
temperature be defined by Pf [f(co; )/f (cof )]/P;. (O——f
course the argument holds for arbitrary slowly varying
parameters in the Hamiltonian, not just frequency. )

Next consider the de Sitter field theory (5.61) with an
additional quartic self-coupling. Extracting the factor
e "x' from the field as before, we obtain the Hamiltonian
density

co (t)= .2

v, t(t;,
(5.87)

+—— +m +gR 4+—e
82g2

2 2 ~ —dX& 4

2 4 6
(5.89)

After diagonalization, the variational equations with the
interaction term become
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FIG. 2. 4G (t) as a function of (t —t; )/r for different values of w: (a) v=2; (b) ~= 5; (c) ~= 10; (d) ~=40. In the numerical work we

took /=0. 5, v =1, and A, = l.
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FIG. 3. EG(t) as a function of (t —t )/~ for different values of A, : (a) A, =0.5; (b) A, =2; (c) X=5; (d) A, =25. We took ~=2, v =1,
and )=0.5.
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G(p) =4H(p)G(p),

H(p) = —2H (p)
1 —g'(p)
8G (p)

(5.90a)

g~ =g [1—2k~I~(M)]+ —,'A~Ii(M),

(5.95b)

(5.95c)

1 d X
2 4

e p — +m +gR
where M is an arbitrary renormalization mass, and I&,I2
are defined by

G(k)
"«1—g(k)

(5.90b)

and g is constant (gt ——0). Of course, these reduce to al-
ready studied examples in various limits. '

The equations must be renormalized to remove an ul-
traviolet divergence in the k integral. This is achieved
more easily by passing to the second-order equation,
which results when (5.90) are combined to

1 —g'(p) 1 G'(p)
2G(p) 2 G(p)

(5.95d)

Ii(M}= f1 I. 1 1
(5.95e)M' "q 2

~ q ~

2(q'+M')'"

Using (5.95), one can show that p ( t ) satisfying

p (t)=mti+X ——+12gii+ Ii(M)
4 2

—2Aii I, p(t—)Iz(M) e—
«1 —g(k)

2[e2xp2+p2(t)]G(p) (5.91) (5.96)

G(p) = 1
—2j'tp2+ 2( t) ]1/2

0 (t)=m + g —— 1 —— R
1 1

4 d

(5.93a)

+2k,e
«1 —g(k)

(5.93b)

where we have defined the time-dependent mass p(t):

p (t)= — +m +gR +2Ae
d X

4 «1 — k

(5.92)

In order to analyze the divergence in the above k in-

tegral, we obtain the high-p behavior of G (p):

is finite.
For the cases d =2 or d = 1 it is suScient to perform a

subtraction only in the mass:

2= 2 1
R m +2k

2 2 1/2q2(q +M )
(5.97)

The solutions of (5.91) and (5.92), renormalized as in

(5.96) or (5.97), can be achieved only numerically. How-

ever, we have not succeeded in the numerica analysis, be-

cause the exponentials in those equations give rise to
large numbers, which overwhelmed our computational
resources and rendered our results unreliable.

An interacting field-theoretic problem that is still tract-
able can be obtained from the above by working in Hat
space (X=R=O), but allowing a time variation in m:
positive for early times, negative for late times. We take
mii(t) tobe

1

«2[(e «'k) +gi(t)] ~
(5.94a)

We have assumed that for large p, the time-independent

g(p) goes to zero sufficiently fast to be neglected. (For
example, we take 1/g(p) =cosh[e 'p +p;(t)]'
Therefore, the ultraviolet behavior of the k integral is ma(t)=

2mo, t&t, ,

2t —t; —tf
mo, t; &t &tf,

—mo, i &tf2

(5.98)

It is convenient to integrate over the variable q=—e 'k,
which is the physical momentum. This leaves a particu-
larly simple form for the divergent integral:

and assume that, at t, ,

G(, )
[1—4'(p)1'"

i+Md�)i (5.99a}

I =2k, 1

q2 q+cr t
(5.94b)

2
mg —2I],

R
(5.95a}

ln order to render (5.92) finite we use the same renor-
malization procedure that renormalizes the Hartree-
Fock approximation for pure states. In the case of
(3 + 1)-dimensional spacetime, this prescription is

=cosh(f3;+p +M ),
g(p)

(5.99b)

and that H(p, t, } vanishes. Figures 4 and 5 present the
results of our calculation for mo =M =10, t, =0,
tf ——80, P,. =1,1=2, and A, =10 . From these figures we
see that the low-momentum modes behave as upside-
down harmonic oscillators for t ) tf until the time when
their growth makes the last term in (5.92) compensate the
fact that mz (t & tf ) is negative. The high-momentum
modes (i.e., those with p »mo) remain approximately
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expansion, based on the nonequilibrium effective action.
Second, improvement in the conceptual basis of our ap-
proach is also desirable; specifically one should relax the
isoentropic restriction, by considering a more general
equation than the Liouville —von Neumann one, which
forms the basis of our work. In other words, one wants
to allow time dependence in the occupation probabilities,
as discussed in Sec. III. While this can be done in a
variety of ways, a dynamical model is required for the
evolution of the environment and for the interaction of
the environment with our system. When the Universe it-
self is our system, it is unclear what one should take for
the environment. When attention is focused on one as-
pect of our system, for example, the inflation-driving ax-
ion field, the environment can be the other elementary
particle and radiation fields. Yet a question still remains
on how the influence of one on the other should be
parametrized. Alternatively, one may compute the isoen-
tropic density matrix, as we have done, and then divide
its variables into "environmental" and "systematic. " In-
tegrating over the former, coarse graining, produces a
density matrix for the "system" with time-dependent oc-
cupation probabilities.
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APPENDIX A

density matrix of an O(n) quantum field theory in

(d+ 1)-dimensional Robertson-Walker space time, de-
scribed by the metric

ds =dt a (—t)dx (Al)

——(m +gR )4'4' — (4&'4')2
2 n+2 (A2)

whose canonical momentum is

H'=— = 'e'.
+ l

(A3)

The special case of de Sitter space-time, dealt with in the
text, corresponds to a (t) =e~' This .factor, raised to the
power d /2, was scaled from the field 0& to obtain simpler
equations. Here we shall postpone the rescaling until the
variational equations are derived. At that stage we shall
rescale the variational parameters. This alternate pro-
cedure is entirely equivalent to what is done in the text,
and is offered here merely for variety.

The Hamiltonian density corresponding to X is

= —'a dH'II'+a" —a V4'V4'+ —(m +gR)4'4'd1-2

(4'4')'
2 n+2 (A4)

which leads to the curvature R =2dd/a+d(d —1)a /
a . The dynamics of the fields 4' is taken to be governed
by the Lagrange density

~ ~ ~

X =a —4 '4 ' ——a VO'V4'
2 2

For completeness we record in this appendix the equa-
tions relevant to the most general Gaussian Ansatz for a

In order to implement the variational principle (4.8) we
make the following Ansatze for p and A:

tP(cp& —
cp2 j

P(V1 V2) =e e ' ' exp( ——2'[((t 1
—V»A (V 1

—0»+(V2 —0 }A *(V2—0» —2(tl —
() }B(V2

—9»]l (A5a)

(q)A(@tt)H+ HA'+n'(P)+ q)A(@@'Ig) (Asb)

The factor y in p is given by Tindetm. ( A„Bt( ) . —With the above density matrix, linear averages no longer vanish,

(A6a)

(A6b}

and bilinears become

(@;(x)@,(y) ) =y;(x)q, (y)+=;, (x,y),
(H, (x)II (y) ) =P, (x)P (y)+ —,'( Az +Bt( ); (x, y) —[(Bt—A; ):-(Bt+At)]; (x,y),

(A6c}

(A6d)

(4, (x)H, (y) ) =—5,,5(x —y)+@,(x)PJ(y) [:-(Bt+At )],, (x, y—),1J
(A6e)

where

'=2(A„Bt() . — (A7)
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Upon demanding that the variations of the action with respect to the A" vanish, the following equations result:

jp, (x)=a P, (x), (ASa)

P, (x)= —a a V tP, (x)+(m +gR)(p;(x)+ p;(x)yk(x)gk(x)+ g;(x):-kk(x, x)+ ";k(x,x)yk(x)d —2 2— 2A, 2k
n +2 n+2 ' ' n+2

(ASb)

A„+BR+a "[Br,AR+B„]=a [ Ar, AR+BR ],
Br =a ( I Ar»r I + [B„,AR ]),
A, (x,y)= a ( —A„'+B„'+Ar +Br )rj(x y)+a ( —a 'V'+m'+gR)5, 5(x"y)—

2A,a+
2

[~ijV k( xV'k( x)+ 2f'( x)gj( x) +~'j kk(x, x)+2:-;,(x,x)]~(x—y)n+2

(ASc)

(ASd)

(A8e)

Translation invariance allows us to diagonalize the kernels through the use of (5.8) and also we assume that the ma-

trix structure is trivial; thus 81——0. In order to make contact with the notation of Sec. V we define

1

2AR(p)

H(p)= ——,
' Ar(p),

B„(p)
g(p) =

AR p

(A9a)

(A9b)

(A9c)

In terms of tp, P, g, G, and II the equations of motion read

jp=a P,

P= —a m +gR+ p +2k fd 2 2nA, 2 G(k)
n +2 k 1 —g(k)

(A 1oa)

(A10b)

G(p) =a 4H(p)G(p),

H(p) =a "
2

—2H (p)
SG'(p)

G(k)
2

a p2+m +gR +2Ap +2Af,
k 1 —g(k)

(A10c)

(Ajod)

and g is constant. Next we change variables

+=a

P=a P ———y
d a
2 a

G =a "G,

(Al la)

(A 1 lb)

(A 1 lc)

aH=a H ———
4 a (Al ld)

In terms of these variables Eqs. (A10) read

j=P,
P=— 1 d a 2 2n d 2 d G(k)

4
——+g R+ — +m + A,a y +2k,a

4 a2 n +2 k 1 —g(k)

G(p) =4II(p)G (p),

( )H= P —2H (p)= —a p + ——+g R + — +m +2Aa qr +2Aa
SG (p) 2 4 4 a2 k1 —g(k)

(A12a)

(A12b)

(A12c)

(A 12(l)
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with the tilde suppressed.
Equations (A12b) and (A12d) are potentially ultraviolet

divergent. In order to analyze better the divergence let
us eliminate H from (A12d) using (A12c):

G(p) = - +— —2[a 'p'+p'(t)]G (p) .1 —Z(p) 1 G (p)
2G (p) 2 G (p)

(A13)

Sec. V and consequently we can obtain finite equations by
using the renormalization prescription presented there.

APPENDIX B

In this appendix we use the static variational principle
(5.76) to obtain the same static density matrix as in (5.82)
for an anharmonic oscillation whose Hamiltonian is

The time-dependent mass p (t) has been introduced:
2 2

H= + x+—xP CO 2 k 4

2 2 6
(Bl)

2

p (t)= ( ——,'+g)R + — +m +2la
4 a'
G(k)+ 2A.a (A14)

G(p) = . . . „,I:1+o( lp I

')1
2[ p + (t)]'

with

(A15a)

The asymptotic (large-p) behavior of G can be obtained
from (A13):

+ —w+—P Pro
4 4 w

H
bw +—I(3

2 w

bw
coth

2

We need to evaluate the Helmholtz free energy (5.76)
with the Gaussian trial density matrix (5.13). The first
«rm, the entropy, was already found in (5.14).
remainder is straightforwardly computed. The result is

13F=(1 pn+PH )

bw= ln 2sinh
2

o (t)= m + g —— 1 —— R +2k,a
4 d

&bwcoth
8w

(B2)

G(k)+2za- J', (A15b)

I =2k,a —d 1

k 2[(a
—lk )2+ o 2( I ) ]1/2

(A16)

It is convenient to change the integration variable to
q=k/a (q=physical momentum), which leaves the ultra-
violet divergence in a form identical to (5.94):

I =2k, 1

q 2[q +o (t)]'
(A17)

As expected, the ultraviolet divergence is the same as in

where we assumed that ((k) goes to zero sufficiently fast
to be neglected. Therefore, the ultraviolet behavior of
the k integral in (A12) and (A14) is

b=P, (B3)

as a consequence of (5.80). This relates the variational
parameter b to the temperature, which enters in the
definition of the Helmholtz free energy.

[We have used the normalized trial density matrix (5.13).
Alternatively one may use the Ansatz (5.10) with an arbi-
trary normalization parametrized by y, and vary
PF +N (trp —1), where N enforces the normalization.
Upon stationarizing with respect to y and N, and elim-
inating these variables (B2) is regained. ] Rather than ex-
pressing (B2) in terms of G and (, via (5.12), it is simpler
to view w, bw, and H as the variational parameters.
Varying H shows that it vanishes in the static case. Set-
ting to zero the variation with respect to w, at fixed bw,
and using (5.12), produces an equation that coincides
with the static limit of (5.80), viz. , (5.82) is obtained.
Variation with respect to bw shows that
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