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Hamiltonian formulation of a gauge-invariant massive spin- —theory
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A gauge-invariant theory describing a free massive spin- —particle, obtained previously by dimen-

sional reduction of a massless theory, is quantized using Dirac s procedure. The quantum theory is

shown to be free from negative-norm states despite the absence of constraints obtained from
differentiating the Lagrangian equations of motion (i.e., "secondary constraints"). This is in direct
contrast to all other half-integral-spin theories avoiding secondary constraints, which invariably
have indefinite metric.

I. INTRODUCTION

The study of theories for higher-spin particles has had
a long and interesting history, mainly due to the presence
of inconsistencies in the interacting theories for such par-
ticles. ' Of the successful attempts made to solve the
problem of inconsistencies, one of considerable interest is
that of supergravity, incorporating an interacting theory
of spin- —', and spin-2 particles, later extended to include
spin-1 particles as well. Dimensional reduction as a pro-
cedure for obtaining a consistent theory of massive
higher-spin particles has been suggested recently. ' In
particular, causality of classical propagation modes has
been shown for spin-1 and spin- —, particles in interacting
theories obtained by dimensional reduction. That such a
spin- —,

' theory can be quantized in a manner free of the
usual inconsistencies anticipated in half-integral higher-
spin theories as yet remains to be shown.

The procedure of dimensional reduction from five to
four dimensions, when applied to gauge-invariant mass-
less theories, gives rise to gauge-invariant massive
theories. This feature of gauge invariance, which in the
case of massless supergravity renders the theory con-
sistent, is expected to play a useful role also in the case of
massive theories. The concomitant feature of the absence
of secondary constraints (i.e., constraints obtained by
differentiating the Lagrangian equations of motion),
occurring in these massive theories, may be desirable, as
it can lead to a causal classical theory. These features are
present in the free as well as the interacting theories.

At the same time, theories describing half-integral spin
in which secondary constraints are absent have invariably
been found to have negative-norm states, even in the ab-
sence of interactions, in agreement with a theorem by
Johnson and Sudarshan. All these theories, moreover,
are multispin theories. Any procedure mainly developed
to avoid secondary constraints in the Rarita-Schwinger
theory for spin- —,

' particles also leads not only to an

indefinite metric, but also to rnultispin equations.
It is therefore of great interest to investigate if the mas-

sive spin- —, theory obtained by dimensional reduction
leads to a quantum theory with positive-definite norm,
and whether the constraint structure is consistent with a

unique spin. Though our ultimate aim is to study the
physically more interesting case of interacting spin- —, par-
ticles, it is of sufficient interest to investigate even the free
massive theory for the above-mentioned reasons.

In this paper we study the quantization by Dirac's pro-
cedure' of the free massive spin- —,

' theory obtained by
dimensional reduction of the massless Rarita-Schwinger
theory. Although the Dirac quantization of the massive
spin- —', theory has been discussed in the past, "our theory
has the new feature of gauge invariance, which in Dirac's
formulation leads to first-class constraints. This, together
with the absence of secondary constraints (which in our
Hamiltonian formulation would be seen as the absence of
tertiary constraints), makes the study interesting. We
find the significant result that despite the absence of
secondary constraints, there are no negative-norm states.
Moreover, unlike in the earlier examples which avoided
secondary constraints at the cost of having multiple
spins, our theory describes a unique spin, viz. , —,'.

II. CONSTRAINT STRUCTURE
OF THE SPIN-2 THEORY

The free massive spin- —, particle is described by a La-

grangian which we obtained in Ref. 3 by dimensionally
reducing the gauge-invariant Rarita-Schwinger Lagrang-
ian for a massless spin- —, particle in five dimensions, and

retaining only a single massive mode. Without reiterat-
ing this procedure here, we start with the Lagrangian ob-
tained in Ref. 3:

i g„y"' d„g —i g„y""t) P —i ttpy"'B„g—
—m P„y""g„,

where g„ is the vector-spinor representing the spin- —,
' field

and P is an auxiliary ("Stueckelberg") spinor field neces-
sary for gauge invariance. Our notation is that greek
suffixes represent the four-dimensional Lorentz indices,
and in what follows, latin suffixes (taking values 1,2,3)
will be used for three-dimensional space indices. The
metric used is (+,—,—,—). A y with two or more in-
dices denotes an antisymmetric product of that number
of Dirac y matrices.
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l(„(x)~l(„'(x)= i}'j„(x)+a„e(x),
(2)

The Lagrangian in (1) is invariant under the gauge
transformations

tioned earlier. The appropriate definition is'

a"fi a'f2 a'f2 a'fi
a~, aq, +ap, aq,

(13)

P(x)~P(x}'=P(x)+ime(x},

where e(x) is an infinitesimal parameter. At the classical
level, one can choose a gauge in which P(x) =0 leading to
the standard Lagrangian for a massive spin- —', particle.

To study the Hamiltonian approach, we use
Casalbuoni's modifications' of the definitions of the
canonical rnomenta and Poisson brackets, suitable to a
theory with anticommuting field variables.

Starting with the Lagrangian (1), we first determine the
canonical momenta m„, m„, E, and m conjugate, respec-
tively, to P", g", P, and P:

where the lower sign is used if both f, and f2 are fer-
mionic, and the upper sign in all other cases.

We find that f; =0, f; =0, f=0, and f=0 lead to the
determination of the multipliers v', V', v, v, whereas

fo=0 and fo =0 lead to new. constraints. The equation

f; =0 gives

i y—(y' v +y'u ) = i y—'1"a g„iy—' a p m—y'"g„,
(14)

whereas f=0 leads to

a'z
=&0 ri.o„+&Pro„

ajp (3)
i y y; v'=i y'"a; g„. (15)

Equations (14) and (15) serve to determine v' and v. The
condition fo ——0 gives the secondary constraint

=0,
aj~

(4) g:— iyva, —fI iy'—a;p my—'lf; =0 . (16)

(5)

~=0, (6)

f„=m„=O,

f—=8—if "y„o——0,
f =m. =O .

(8)

(9)

(10)

where a'/a denotes the "left" derivative. '

As this is a theory with only first-order time deriva-
tives, the conjugate mornenta define primary constraints:

(7)

i —i 0 t — Q
V =V P, V =V/ (17)

Thus, henceforth, we need not worry about the quantities
v

' and v; they may be obtained from u' and v by the stan-

dard Dirac conjugation. Finally, equating fo to zero
gives a constraint, which we call g, and which is obtained
by taking the Dirac conjugate of both sides of Eq. (16).

Equations (14) and (15) determine u' and u to be

Incidentally, this would have been the primary constraint
in a Lagrangian formulation.

Equating the time derivatives of f; and f to zero leads
to the equations obtained by taking the Hermitian conju-
gate of both sides of (14) and (15), respectively, with the
identification

The Hamiltonian density obtained from (1) using
(3)-(6) is

u'=r' , r'g r—&a—,y'+a—'r q+a'y imq'— (18)

P„p"+g "~„—Fp+ pn. — v=y —g yja p—+imy f (19)

= & 4„r"'"a;0.+ i 4„r"'a,y+ iyy'"a, y„+m y„y""y„.

In view of the constraints (7)—(10), the full Hamiltonian
density is given by

f„v"+u "f„fv—+vf, —(12)

where v", u ", u, and v are undetermined Lagrange-
multiplier spinors. The overbars on the v's are as yet just
notation, and do not imply Dirac conjugation, though it
will turn out to be so.

We would now like to know under what conditions the
constraints (7)—(10) are unchanged under time evolution.
These conditions are obtained by setting to zero the Pois-
son brackets of the constraints with the Hamiltonian
H'= f d x &'. We have to be careful in defining Pois-
son brackets for our fermionic field variables as men-

We should now investigate if the constraints g.=0 and
g =0 are time independent. Evaluating the Poisson
brackets t g, H'

I and I g, H' I, and using the above expres-
sions for v' and u, we find after some algebra that the
brackets indeed vanish, imposing no further constraints.
There are thus no tertiary constraints (equivalent to the
absence of secondary constraints in the Lagrangian for-
mulation). Also, the Lagrange multipliers v and v

remain undetermined predicting the first-class nature of
the constraints fo and fo.

The constraints on the system are the primary con-
straints f„,f„,f, f, and the secondary constraints g and
g. An examination of the Poisson brackets among these
constraints reveals that fo and fo are indeed first class,
with vanishing Poisson brackets with each other, as well
as with all the remaining constraints. The other Poisson
brackets are as follows (of course, only Poisson brackets
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of barred quantities with unbarred quantities are
nonzero):

[f, (x, t),f ~(y, t)}= —i(y y,, ) ~5'"(x —y),
[f, (x, t),f ~(y, t)}= —i(y y, ) ~5"'(x —y),

[f (x t»f (y t)}=i(r'1', ) ~5"'(» —y),

[f (x, t),f t'(y, t) }=0,
[g (x, t),f ~(y, t)}=(iy', Bi+my, ) ~5(3'(x —y),

[g (x, t),f (y, t) }=i(y') ~B,5' '(x —y),

[g (x, t),g P(y, t) } =0 .

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

(20g)

In these equations, a,P denote Dirac indices. The
remaining Poisson brackets are obtained by taking corn-
plex conjugates of Eqs. (20). Even though g and g do not
have nonvanishing Poisson brackets with the other con-
straints, we notice that the combinations

and

i =r g+B'f, +imf (21)

h =gy B'f;+imf— (22)

5P (x)= f d y h (y)e(y), g(x)

= —B'e(x )5", ,

5,$(x)—:f d y h(y)e(y), P(x)

ime(x), —

have zero Poisson brackets with all the other constraints,
and with each other. Hence h =0 and h =0 are first-class
constraints.

We have therefore the first-class constraints fo, fo, h,
and h, and the second-class constraints f;, f;, f, and f.
The first-class constraints generate gauge transforma-
tions:

number of independent degrees of freedom. We started
with the five spinors ttr„(p=0, 1,2, 3) and P, and their five

canonical momenta. With the constraints f„,f, h, the
number of independent spinors is reduced to 10—6=4.
We have to choose a gauge corresponding to the first-
class constraints fo and h. This will constrain two spi-
nors, leaving two free. The resulting phase space thus
has 8 degrees of freedom, 4 corresponding to each of
these two spinors. This is correct for a particle of spin —,.
More concretely, the constraints f„and f serve to fix the
conjugate momenta, the gauge condition corresponding
to fo should fix $0 in terms of other fields, the constraint
h together with its gauge condition reduces f;, P, and
their conjugate momenta to two independent spinors.

Equipped with a detailed classification of the con-
straints, we will now quantize the theory after choosing a
gauge.

qo p qo p

/=0, /=0 .

(24a)

(24b)

To ensure that Eqs. (24) are permissible gauge conditions,
and that no gauge freedom is left, we must verify that for
the augmented set of constraints 7, , the determinant
det( [X;(x),X (y) } ) is nonzero. We have done this by ex-
plicitly inverting the matrix C of Poisson brackets:
C;, (x,y) = [X,(x),X, (y) }.

To complete the matrix C, we need the Poisson brack-
ets of $0 and go,

[$0(x, t),f ~&(y, t)}= —5 ~5"'(x —y),

{f (x, t), P~(y, t)}= —5 ~5"'(x —y),

(25a)

(25b)

the rest being zero, and the Poisson brackets of P and P,

III. DIRAC BRACKETS IN THE GAUGE f =/ =0

To enable us to construct the anticommutation rela-
tions, we must (i) choose a gauge and then (ii) determine
the Dirac brackets corresponding to the augmented set of
second-class constraints 7, , viz. , the original set of
second-class constraints together with the first-class con-
straints and the gauge conditions.

We choose the gauge conditions

5&+(x):— fd y fo(y)e'(y), Q(x) .

=e'(x)5g,

(23)
[P (x, t),f ~(y, t)}= —5 ~5' '(x —y)

= [f (x, t), P~(y, t) },
[P (x, t), h ~(y, t)}= im5 ~5"—'(x —y)

=[A (x, t), P~(y, t)},

(26a)

(26b)

5pp(x) = fd'y fo(y)e'(y), p(x) =0,

and similar relations obtained by considering Poisson
brackets of h and fo with f" and P. The above corre-
spond to the transformations (2), under which the La-
grangian is invariant, only for e (x)= Boe(x). This is

quite analogous to the situation in the case of electro-
dynamics, for example.

At this stage, it is good to pause and take stock of the

with the remaining ones vanishing. We do not give here
any further details of the inversion of the matrix C, which
is straightforward, but only quote the results for the
Dirac brackets defined by

[X(x),Y(y)}*=[X(x),Y(y)}

—g f d z d z'[X(x),X;(z)}

X Ci '(z, z') [XJ(z'), Y(y) }, (27)
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where Cl '(z, z') satisfies

fd z "C,„'(z,z")Igk(z"),X, (z) j =5, 5' '(z —z') . (28)

Note that all the above quantities are defined at a corn-
mon instant of time. In actual practice C and C ' also

have Dirac indices a and P, which have been suppressed.
It is sufficient to state the Dirac brackets of 1(; with 1(i.

and 1(t, since the constraints and gauge conditions can be
used inside Dirac brackets, and they serve to define all
other quantities in terms of g, and 1() .

We get

jl(, (x, r), p(y, r) j'=0= j1(/, '(x, r), p'(y, r) j*, (29a)

I 1(, (x, t), P'(y, t) j
"=

' aP

(),8 — (X,B.—y, ~;)+l (g; —
—,);1' ) 5 (x —y) . (29b)

(30a)

We can now make a transition to the quantum theory by replacing all the Dirac brackets by 1/i times the anticom-
mutators. From (29) we get the anticommutators

Ig;(x, t), p(y, t) j„=0=I'(, (x, t), p(y, r) j„,
aP

5(3)(x —y) . (30b)

The spinor which transforms under spatial rotations as a spin- —, object is the combination

,'r—1"—0,

and we determine its anticommutation relation to be

(31)

I
y(3/2)a(X l) y(3/2))3 (y r) j

pk
aP

2 I (3)

3 2 ~k ~l gkl J (32)

where P; is the projection matrix for spin —,':
P, =5; ——,y;y

k k & k (33)

spite of the absence of secondary constraints (i.e., tertiary
constraints in the Hamiltonian formulation) is a new
feature of our theory.

+yia*(X)
I
q(3/2)a(X) p(3/2)l3 (y) j

x P'~(y), (34)

where

M =f d x P( ")l3"(x)yjl3(x),
J

the expression

(35)

T

M M+MM =f d ~B„P"
~

—P" (()„, (36)

where pk is the spin- —,
' projection pk Pkpi Because——of.

our metric (g, = —5„),the right-hand side of (36) is posi-
tive definite as required. We can similarly check that
even the general anticommutator (30b) leads to positive-
definite norm. This absence of negative-norm states, in

Note that despite the fact that the constraint (16) implies
a nonlocal relation between y'P; and P'; / ', Eq. (30b) im-
plies that anticommutators of all components of 1(; are
local.

We can check that the anticommutators (30b) and (32)
are positive definite, as required for consistency. For ex-
ample, folding (32) with test-function spinors (I),*(x) and

(t), (y) we get, for

MM+MM =—fdxdy

IV. CONCLUSIONS

We have performed the quantization of the massive
gauge-invariant spin- —,'theory. An important result is the
positive-definitive nature of the anticommutator between

g; and 1(l, necessary for a consistent theory. This is espe-
cially significant in view of the fact that secondary con-
straints are absent in the theory, since this feature was
generally found to lead to the presence of negative-norm
states. We presume that this is due to the redeeming
feature of gauge invariance. For example, the theorem of
Johnson and Sudarshan is not directly applicable when
the theory has gauge invariance, and hence there is no
contradiction of our result with the theorem.

In addition, our theory describes a unique spin, unlike
other constructions, which avoid secondary constraints at
the expense of negative-norm states and multiple spins.
In these cases, primary constraints are not enough to re-
strict the spectrum to a unique spin. Our theory, in
which extra ("Stueckelberg") fields are used for gauge in-
variance, the primary constraints, together with the
gauge-fixing conditions are enough to restrict the spec-
trum only to spin —,'.

It would be of great interest to extend this study to the
interacting theory. Since the interacting theory obtained
by Kaluza-Klein reduction, which has been shown to be
classically consistent, also has the properties of gauge in-
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variance and the absence of secondary constraints, we

conjecture that negative-norm states will be absent, re-
sulting in a quantum theory which is consistent. Work
on this is in progress.
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