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The decay of a false vacuum in a theory without a true vacuum is studied. Using variational ar-
guments, we find that for a class of potentials of the type a¢’+b¢’ (@ >0,b <0 and i < j) the neces-
sary condition for the existence of bounce solutions in four dimensions is 2 <i <j <4. The thin-
wall condition breaks down for these solutions, but not necessarily for the semiclassical approxima-
tion. A bounce solution associated with potential m2¢? —n¢> + A¢* is presented to discuss the tran-
sition from a thin-wall bubble to a thick-walled one. The validity conditions of using these solutions
to describe the false vacuum decay within the framework of the semiclassical approximation are dis-

cussed.

I. INTRODUCTION

Instantons' have been widely used to describe false-
vacuum decay. For a system of a single scalar field, there
are general arguments to show the existence of bounce
solutions,? if there is more than one local minimum with
unequal energies in the classical potential. Furthermore,
if the potential satisfies some conditions, the bounce solu-
tion of the least Euclidean action is necessarily spherical-
ly symmetric in N-dimensional Euclidean space.> Re-
cently, potentials without lower bounds have caused
some attention in cosmology,* higher-dimensional
theories,” and quantum cosmology.® The quantum field
theory of these potentials can be defined, but without par-
ticle interpretation. A quantum-mechanics example was
treated in detail by Barton.” Even though the general
overshooting-undershooting-type argument concerning
the existence of bounce solutions cannot be applied to
these potentials with a barrier [see Fig. 1(a)], one may ex-
pect that a bounce also exists. Then one can follow the
usual procedure to evaluate the Euclidean action of the
bounce to obtain the decay rate per unit space volume, at
least in the semiclassical limit. However, it has been
shown that a massive scalar field ¢ with a quartic interac-
tion of the wrong sign (i.e., 7\.¢4,7L<O) has no instanton
solutions.® Approximate Euclidean solutions have been
developed to calculate the decay rate of the false vacu-
um.’ Mathematically established as it is, one cannot help
but wonder what has happened physically to prevent the
formation of an instanton in this case. Is it generally true
that a potential having a barrier but unbounded from
below cannot have a bounce solution?

This paper is an attempt to address these questions
directly. Employing the same variational arguments as in
Ref. 8, we find a general necessary condition for the ex-
istence of bounce solutions for a class of potentials of the
form a¢'+b¢’ (a >0, b <0 and i <j) [Fig. 1(a)] is
2<i <j <4 in four dimensions. Thus, a potential of the
form ¢*>—¢* could have a bounce solution, but not for a
potential of the form ¢?—¢®. This result seems to imply
that the theorem of Ref. 3 holds even for potentials only
somewhere positive, if their admissible condition (4) is
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FIG. 1. (a) A typical class of potentials with a barrier but
without lower bound. Here we choose V (¢)=m?*¢$*>—n¢> as an
example and set m?=1. (b) O(4) bounce solutions for the corre-
sponding potentials of (a). p is the radial variable of the O(4)
coordinate.
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satisfied, namely, there exist positive numbers p,q,a,
such that a <B<4,and ¥V —p |6 |+q | ¢ |P>0, for all
¢. Furthermore, for those potentials which do have
bounce solutions, the ‘““walls” are never thin. The break-
down of the thin-wall condition is hardly surprising if one
considers these unbounded potentials as the large-
energy-difference limit of a double-well potential. How-
ever, by considering these potentials we can demonstrate
that the semiclassical formalism for the decay process is
not necessarily described by a thin-wall bubble, and a
thin-wall bubble may not be reliable under the semiclassi-
cal approximation.

The rest of the paper is organized as follows. In Sec. II
we review the well-known semiclassical formalism for
vacuum decay from the point of view of spontaneous
symmetry breaking. In Sec. III we use variational argu-
ments to establish three theorems about bounce solutions
and use them to obtain our criterion for unbounded po-
tentials. Examples with numerical solutions are present-
ed and discussed. In Sec. IV we use an example to dis-
cuss conditions for the thin-wall solutions and their rela-
tion to the semiclassical approximation. Concluding re-
marks are presented in Sec. V. In this paper we will use
the Planck unit, #i=c =1, except in Sec. I where # is
preserved. We choose signatures (+, —, —, —) for Min-
kowski space and (+, +, +, + ) for Euclidean space.

II. REVIEW OF THE FORMALISM

Vacuum decay in quantum field theory can be viewed
as a phenomenon of spontaneous symmetry breaking.
The unusual part is that both vacua are local minima and
there exists an energy barrier between them. Thus, clas-
sically both minima are stable, but long-wavelength quan-
tum fluctuations can ‘“‘detect” the global minimum (true
vacuum), and render the local minimum (false vacuum)
unstable. The classical analogue of this phenomenon is
the first-order phase transition,'” where statistical fluc-
tuations replace the quantum ones. Since the spontane-
ous symmetry breaking is triggered by quantum effects,
all relevant information should be in the effective action.

Consider a system of a single real scalar field ¢(x) with
a self-interaction potential ¥ (¢) which has two local
minima, the false vacuum ¢, and the true vacuum ¢,,
separated by a potential barrier. The action is of the
form

S=[d**[LV2-V(4)]. 2.1)

The most fundamental quantity in the functional formal-
ism is the vacuum persistence amplitude (VPA),
(0" |07 ),, in the presence of the external source J (x).
VPA is defined by a functional integral of the exponential
of the action S[¢,J] over the function space of ¢ with a
proper measure [d¢],

(0%107), = [[dgle’st1" . @2)

All the Green’s functions can be generated by functional
differentiation with respect to J. One can also express the
VPA by the generating functional of connected Green’s
functions W[J] as

eMUVE_(0*07), . (2.3)

For a stable vacuum we would expect that after adiabati-
cally turning on and off the source J, the VPA would only
develop a phase, or equivalently that W is a real number.
However, for a metastable or unstable vacuum, we would
expect that W will yield an imaginary part,'! even when
J =0. The false-vacuum-decay probability for the whole
spacetime is, therefore,

| (0T |07 ) |2=e —2ImWI0OVA 2.4)

The effective action I' is obtained from W by a func-
tional Legendre transformation. However, for J =0, they
can be identified. Thus, we can set out to calculate the
imaginary part of the effective action of the system. The
classical analogue of the effective action is the free ener-
gy, and the free energy is the relevant quantity in the
description of the first-order phase transition. Before we
start to evaluate the right-hand side (RHS) of Eq. (2.2),
two points need to be noted. First, the functional integral
as it stands is ill defined. One way to remedy this prob-
lem is to insert an ie$? term in the Lagrangian. Howev-
er, for treating nonperturbative problems such as vacuum
decay, it proves to be convenient to make a Wick rotation
(t— —it) and define the integral in Euclidean space.
From now on we will assume that is done and proceed in
Euclidean space. It is convenient to define the Euclidean
action Sy as

Sp=[d*x[L(V$P+V($)], 2.5)
then W can be evaluated by

W=—fn [[dgle T

(2.6)
Second, one should integrate all configurations of ¢ satis-
fying the boundary condition lim,_, . , ¢(x)=4,,. where
¢,ac 1S any vacuum under study. After the Wick rotation,
we have to change the boundary of time from Min-
kowskian infinity to Euclidean infinity. If we restrict our-
selves further to finite-action configurations (anticipating
a steepest-descent approximation), the boundary condi-
tion would be changed to

i l}m d(x)=¢,, . (2.7)
We also adjust the classical potential V' (¢,,.)=0 to en-
sure the finiteness of the action.

Having defined the functional integral in the Euclidean
space, we can now evaluate the RHS of Eq. (2.6). Except
for free fields, an approximation scheme is necessary. We
shall adopt the loop expansion, because it preserves the
full symmetry of the theory; in particular, we shall apply
the steepest-descent method to expand the action about
its stationary point ¢ which satisfies the Eucidean field
equation

\ (9
<

O¢——=0. (2.8)

dé¢

The expansion parameter would be assigned as 7. The
action can then be expanded as
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The second term on the RHS of Eq. (2.9) has a Gaussian
form, and can be integrated out. Thus, we obtain the
well-known one-loop result

~ —-172
—Sg(81/4
e E

det +O(#) .

W:—ﬁln‘z

16}
(2.10)

At this point the information about the stability of a
vacuum begins to be revealed. For a stable vacuum the
only solution satisfying both Egs. (2.7) and (2.8) would be
the trivial one, =¢,. All the eigenvalues of the operator
825 /64 2 will be positive and W is real. For an unstable
vacuum, $=——¢f may not be the only solution, but already
it has negative eigenvalues and indicates the instability of
the vacuum.!? However, for a metastable vacuum, al-
though $=¢f is a solution and gives a real contribution
to W, there exists another solution, ¢y .- (Actually,
there are an infinite number of them, as long as they are
widely separated.) Each one of them will have a negative
mode for the operator 825 /8¢ 2, and will give an imagi-
nary contribution to W. We must sum over all the n-
bounce configurations in the steepest-descent approxima-
tion. In addition, since each bounce can have its center
at any point of the four-dimensional Euclidean space, we
have to integrate over the locations of the centers. This
procedure gives us a four-volume ¥V, on the RHS of Eq.
(2.10). Dividing W by V,, we shall obtain the well-known
one-loop decay rate per three-space volume given by Ref.
2:

2

B_| ~epricom),

Dy (2.11)

w_
vV,

where B =Sg[®pounce]s and D represents the imaginary
contribution from the determinant which is of the order
unity. This is the leading contribution to the imaginary
part of W.

Thus, a primary task in the study of the vacuum decay
problem seems to be finding the bounce solution. It turns
out that not all potentials with a barrier can have bounce
solutions nor can Eq. (2.11) be applied for all bounce
solutions to determine a decay rate. The first point is due
to the fact that for some potentials the only stationary
point of the classical action is at $:¢f. The second
point is more obvious. When the coupling constants are
large, higher-loop effects are no longer negligible, but we
still can have bounce solutions. Although bounce solu-
tions are pure classical and indifferent to quantum effects,
the value of the action could signal the strength of quan-
tum effects. That leads us into the topics of the next two
sections.

[6(x)—d(x)][d(y)—d(») ]+ O (#) .
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III. VARIATIONAL PRINCIPLE
AND BOUNCE SOLUTIONS

We shall summarize three simple theorems in N-
dimensional Euclidean space about the scaling properties
of the bounce solutions and discuss their implications.
We list them here not because they are new, but because
they are illuminating and useful for our discussion.
[Theorem 1 has appeared in Ref. 1, and a special case of
Eq. (3.8) has been used by Linde."*]

Theorem 1 (a virial theorem). The action of the bounce
is positive definite. In addition, the kinetic part and the
potential part have the relation

(3.1

_ N N
J3vratx = |2 | [V(gdx .

The proof of the theorem is parallel to that of the Der-
rick theorem.'* Let us imbed @(x) in a one-parameter
family of functions,

6 (x)=d(xV)=d(y) ; (3.2)
then the action of ¢,, from Eq. (2.5), becomes
S[6:0)]= [d¥W(LV, 60 PR V1A VU(@) . (3.3)

Because ¢ is the stationary point of S under general vari-
ations, we should have, in particular,

s

5 |, =0 (3.4)

=1

and the relation (3.1) follows.
bounce can be written as

Thus, the action of a

()=~ [ 1VFrax (3.5)
which is, of course, positive definite.

Theorem 2. If ¢,(x) is a bounce solution of a potential
U,(¢), and @,(x) is a bounce solution of the potential
AU, (), then ¢y(x)=¢,(xA) and S[,]=A>""S[4,].

The proof of this theorem is a trivial exercise of the
variational arguments of those in Theorem 1 and Eq.
(2.8). The application of this theorem is that we can ex-
plore a class of bounce solutions by scaling the potential
which corresponds to scaling coupling constants. We can
estimate, for example, when the thin-wall assumption or
the semiclassical formula (2.11) fails.

Theorem 3. If the potential V consists of only two
terms, V(¢):ai¢i+_aj¢j, then the bounce solution
¢ai,aj(X) is related to ¢; ;(x) by

Bupa (V=0 \[x(au' D], (3.6)

where
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1/0i —j)
a;

a;

u=

The action S (a;,a;) is linearly related to S(1,1) by
1/ —j)
S(1,1) .

a}2~i)N/2+l

Staia) =\~ a=nas;
1

)= (3.8)

J

Furthermore, in four dimensions, if i <j, and a; >0,
a; <0, then nontrivial monotone solutions with finite ac-
tion and vanishing at infinity cannot exist unless
2<i<j <4

To prove the first part of the theorem, we can redefine
our field ¢ by a dimensionless field ¥ as ¢(x)=u(x), fol-
lowed by a scaling of the coordinate x,

i 1726 =)

2—
4a;

x =y (3.9

af'/

Equations (3.6) and (3.8) follow directly after the substitu-
tion into the field equation (2.8) and the action (2.5). To
prove the second part of the theorem, we can consider a
family of functions ¢,(x)=A¢(xA). By the same pro-
cedure as we did for Egs. (3.3) and (3.4), we have, in four
dimensions,

[ Ui —%)a,6(x)+(j —4)a;¢(x)]d*x =0 . (3.10)
Since ¢ is required to be monotone, the only possible
solution is either i,j >4 or i,j <4. Now let us study the
asymptotic behavior of the bounce solution, assuming
they exist. Let §~ax® and V(¢)~¢’ near ¢ ~0. Then
from Eq. (2.8), we find s =2/(2—i) when x approaches
infinity. From Theorem 1 we know the action can be ex-
pressed solely by a four-volume integral of the potential
V. Therefore, asymptotically the action approaches
lim, , x**% From these two relations one can con-
clude that only when 2 <i <4 can we have a finite action
of bounce solutions. For the case of i =2, the asymptotic
solution is of the form e ~*, so the action is also conver-
gent, proving the theorem.

It is easy to see from Eq. (3.10) that if i =4, any non-
trivial solution could occur only when a;=0, and one
particular family of solutions has been found by Fubini.'
Another way to understand this is that it is not possible
to have a dimensionless action (in Planck units) formed
by a single mass scale a;, since g; is dimensionless in this
case (unless dimensionful boundary conditions are intro-
duced). Therefore, we would not expect to find a bounce
with a finite but nonzero action for any “flat” potential'®
of the form V = —¢' except for i =4. For different di-
mensions, e.g., N =3, a massive k¢4 theory could have
bounce solutions, because now two dimensionful con-
stants can make up a dimensionless action.

As an application of these theorems, we consider a
four-dimensional system with potentials m?%¢?—n¢?
where m2, >0 [Fig. 1(a)].!” Bounce solutions with O(4)
symmetry are obtained numerically as illustrated in Fig.
1(b). From Eq. (3.8), the values of the action associated
with various coupling constants turn out to be
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S(m,n)= (3.11)

2
ﬁJsu,n.
n

Indeed, numerical calculation confirms this relation and
§,1=45.43. One observes immediately that the action
approaches zero as m does, as was discussed in the last
paragraph. When 7 approaches zero the action diverges,
because the vacuum ¢ =0 becomes more stable, the decay
rate vanishes. Moreover, from Egs. (3.6) and (3.7) we find
the bounce solution for (m,n) relates to that for (1,1) by

2 —-—
=~ ¢1’l(xm) ,
n

which also agrees with Fig. 1(b). One may notice that
these solutions have no region of constant ¢ no matter
how we change the coupling constants. Therefore, the
usual pictures of thin-wall bubbles cannot apply. This
leads to the question of when the thin-wall condition
fails, and the next section.

G X)= (3.12)

IV. FROM THE THIN WALL

Since the field equation (2.8) is nonlinear, it is difficult
to find exact solutions to evaluate the classical action, let
alone loop corrections. A useful analytic method has
been developed by Coleman? to approximate the classical
action; namely, the thin-wall approximation. The pri-
mary condition for the use of the thin-wall formula is to
have a potential with two wells whose energy difference is
very small. A dimensionless parameter to quantify the
last statement can be the ratio of the barrier to
V(¢;)—V(4,), or the dimensionless coupling constant
deviation from the degenerated double-well potential.
Under this assumption we can compute a zeroth-order
approximation of the bounce action by separating it into
two readily evaluated parts, S =S ;. +Swan- Score 1S ap-
proximated by a four-dimensional constant field
configuration ¢, of size R (four-dimensional bubble ra-
dius), and S,,, is approximated by a one-dimensional
kink configuration which can be integrated exactly.
(Now we can see why our previous examples have no
cores. For potentials with huge energy difference be-
tween the vacua, bounce solutions do not start near the
true vacuum. Hence the acceleration is not zero, and ¢
cannot stay constant.) Here we have assumed that the
potential is admissible by the definition of Ref. 3, and
considered only bounce solutions with O(4) symmetry.
We can fix the value of R by minimizing S with respect to
R. The size of the wall », can be estimated from the kink
solution. From Sec. III we know that m2¢2, if present,
will dictate the behavior of ¢ near the false vacuum at
large x as ¢ — ¢, ~e ~™*, so we can estimate the thickness
of the wall as 1/m. Therefore, we can write down the
condition for the thin-wall approximation in terms of the
intrinsic parameters of the theory as?

R 3S,m

—_— 1 4.1
p —V(¢t)>>, (4.1)

where S, =27°R3S, and S, the one-dimensional kink
action.
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FIG. 2. (a) A class of double-well potentials of the form
V(g)=m?p*—nd’+Ad*. Here we set m*=1 and n=—1. (b)
O(4) bounce solutions for the corresponding potentials of (a). p
is the radial variable of the O(4) coordinate. (c) The Euclidean
action S evaluated at the bounce solutions (b) for various cou-
pling constants A.

To illustrate this point, let us consider a class of poten-
tials!” of the form

V(g)=m2p*—nd>+rd*, minA>0. (4.2)

[See Fig. 2(a).] It is not difficult to see that these poten-
tials satisfy all permissible conditions of Ref. 3. There-
fore, there should exist at least one nontrivial monotone
spherically symmetric solution vanishing at infinity with
the least Euclidean action. Examples of numerical solu-
tions and their corresponding actions are presented in
Figs. 2(b) and 2(c), respectively. The case of degenerated
vacua occurs when A=A,=7n?/4m% The one-
dimensional kink solution is the usual one with a dis-
placement
¢\(p) 7

1_tanhg§] ,

where p is the O(4) radial variable. Thus,
VoS
5, =22 (4.3)
3n
Let 6 measure the deviation of our potential from the de-
generated one:
2
A=-T-(148), —1<86<0. (4.4)
4m

Elementary algebra reveals that

4m?®
2

Vig,)= 8[1—464+0(8)] . (4.5)

From Egs. (4.1), (4.3), and (4.5), we find that the thin-wall
condition for this type of theory is

R -1

= =——]14464+0(81)]>>1, (4.6)
r 26
and the action is
2.2
S=—""—[1412840(8%)] @.7)
6m°6

If we examine Fig. 2(b), we can observe how small the va-
lidity range of the thin-wall approximation is. In that ex-
ample A;=0.25, and for §=0.3, we see that R /r~1. If
we compare Fig. 2(c) with Eq. (4.7), we see at §=0.12 the
leading term of Eq. (4.7) gives 951.9, but the numerical
evaluation yields 2319. Therefore we must remember
that the thin-wall approximation is a zeroth-order ap-
proximation, and one can use it only when the double
well is nearly degenerate. Figure 2(c) also reveals that the
classical action decreases sharply as the true-vacuum en-
ergy is lowered. In this particular case it will not vanish
as A—0, because bounce solutions exist even when the
true vacuum disappears as was discussed in Sec. III
Hence, the decay rate is greater as the energy difference
between the two vacua is enlarged. The factor D of (2.11)
can no longer be neglected when S is of the order 1. To
determine whether higher-loop effects are important, we
have to consider coupling constants, because the n-loop
correction contains coupling constants up to order n.
From Theorem 2 we know that if all the coupling con-
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stants are multiplied by a factor «, then the correspond-
ing bounce action is divided by a factor k. Therefore a
small classical action does imply strong quantum effects.
There is no direct relation between the semiclassical ap-
proximation and the thin-wall approximation. As we
have seen from our example, the thin-wall condition is
determined by a dimensionless parameter, which is in-
dependent of the absolute value of coupling constants.
However, we do see from Eq. (4.7) and Fig. 2 that when
the energy difference between the two vacua increases,
the bounce action decreases, and the quantum effects are
enhanced.

V. CONCLUSION

We find that it is possible to use the Euclidean semi-
classical formalism to describe the decay of a false vacu-
um without a true vacuum. The necessary conditions are
(1) small coupling constants to ensure that the higher-
loop effects are negligible, (2) the classical potential
behaves as — ¢, j <4 for large ¢ to ensure that ¢, can be
reached at infinity, and (3) near ¢, the classical potential
must approach ¢, 2 <i <4 to ensure that ¢ is a classical
solution and the derivative of ¢ vanishes as §—¢,. Al-
though the theorem we have shown is only for polynomi-
al potentials, it seems that nonpolynomial potentials can
also be applied. For example, from our conclusion a po-
tential of the form'®

l—lng%]
é5

should have a bounce solution. Indeed, ¢(p)=dye

2
m
v="1g¢
5 ¢

—m 2p2/2
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is the one.

We also notice that if we approach the unbounded po-
tential from a double-well potential, then the action de-
creases rapidly as the energy of the true vacuum is
lowered. This indicates the decay rate increases rapidly
as the quantum instability tries to overcome the classical
stability. It is interesting to compare this phenomenom
with the tunneling rate of particle quantum mechanics
which can be thought of as a one-dimensional (time di-
mension) quantum field theory. Since it is one dimension-
al, the Euclidean field equation (2.8) in spherical coordi-
nates has no damping term (which in general has the
form [(N —1)/pld¢/dp). Therefore the value of the
field at the center of the bubble is fixed by the value
where V(¢cener) =V (¢,) and is independent of the posi-
tion of the true vacuum. Equivalently, the tunneling rate
for a quantum-mechanical particle is independent of the
potential function beyond the barrier in the semiclassical
limit. This difference, as in spontaneous symmetry break-
ing, is attributed to the infinite degrees of freedom of the
field theory.

ACKNOWLEDGMENTS

I am grateful to Chia-Lie Chang and Chin-Yun Ren
for their unreserved help with the numerical code. For
useful conversations I am indebted to Frank Accetta, Ar-
lene Anderson, Sidney Coleman, Dieter Brill, John Fried-
man, Michael Ogilvie, Leonard Parker, and Marc Sher. 1
would also like to thank Bei-Lok Hu and Clifford Will for
their warm hospitality during my visit to the University
of Maryland and Washington University where this work
was carried out.

ISee, for example, S. Coleman, in The Ways of Subnuclear Phys-
ics, edited by A. Zichichi (Plenum, New York, 1979).

2S. Coleman, Phys. Rev. D 15, 2929 (1977); C. G. Callan and S.
Coleman, ibid. 16, 1762 (1977).

38. Coleman, V. Glaser, and A. Martin, Commun. Math. Phys.
58,211 (1978).

4L. H. Ford, Gen. Relativ. Gravit. 19, 325 (1987); A. H. Guth
and S. Y. Pi, Phys. Rev. D 32, 1899 (1985).

SK. Maeda, Phys. Lett. B 186, 33 (1987); J. A. Frieman and E.
W. Kolb, Phys. Rev. Lett. 55, 1435 (1985).

6G. J. Smith and P. G. Bergmann, Phys. Rev. D 33, 3570 (1986);
A. Vilenkin, ibid. 33, 3560 (1986), and references therein.

7G. Barton, Ann. Phys. (N.Y.) 166, 322 (1986).

8N. V. Krasnikov, Phys. Lett. 72B, 455 (1978).

9Y. Frishman and S. Yankielowicz, Phys. Rev. D 19, 540 (1979);
I. Affleck, Nucl. Phys. B191, 429 (1981).

105 S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967); 54, 258 (1969).

l1See the discussion by S. Coleman, in Laws of Hadronic Matter,
edited by A. Zichichi (Academic, New York, 1975).

12§, Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).

13A. Linde, Nucl. Phys. B216, 421 (1983).

14G. H. Derrick, J. Math. Phys. 5, 1252 (1964).

158, Fubini, Nuovo Cimento 34A, 521 (1976).

160ther cases were discussed by K. Lee and E. J. Weinberg,
Nucl. Phys. B267, 181 (1986).

17This potential has been discussed in Ref. 13 but with a slightly
different emphasis, so we still think it is worthwhile to present
it here.

18] thank Dieter Brill for pointing this out to me; see, also, A.
Ferraz de Camargo F°, R. C. Shellard and G. C. Marques,
Phys. Rev. D 29, 1147 (1984).



