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We investigate theories in which classical and quantum-mechanical degrees of freedom interact
dynamically. In commonly used semiclassical theories, such as those used to study inflationary-
universe models, quantum fluctuations do not affect the dynamics of the classical variables. We
construct a new semiclassical theory in which the quantum and classical fluctuations do affect each
other; the Wigner probability function turns out to be a special case. Relevance to calculations of
perturbations from inflation are discussed.

I. INTRODUCTION

Quantum mechanics is currently the language used to
describe the physical world. Yet, there are many phe-
nomena for which classical physics provides a more con-
venient description. In this paper we will study the phys-
ics of systems which display both quantum-mechanical
and classical aspects, and so it is necessary to consider
the interaction of quantum-mechanical and classical de-
grees of freedom. We will call this semiclassical physics.
In principle what should be done is to take two interact-
ing quantum-mechanical systems and let one of them be-
come classical. Unfortunately, even the classical limit of
a single quantum-mechanical system is not well under-
stood. There are physical theories, for example, general
relativity, which do not have a quantum-mechanical for-
mulation. Therefore, we will take the point of view that
semiclassical theories should satisfy certain physical and
philosophical requirements, which we discuss below and
which will lead us to a unique formulation of the struc-
ture of such theories.

There are several levels at which one might study semi-
classical physics. At the simplest level, one might ignore
the dynamics of the classical degrees of freedom and
study the physics of Schrodinger's equation with an
external source. For example, it is often convenient to
treat an electron as a quantum particle in a classical elec-
tromagnetic field, rather than solve the full QED prob-
lem. (This is what one does when discussing Stern-
Gerlach experiments. ) The gravitational analogue is to
study, say, a scalar field propagating in a fixed curved
spacetime. In both cases the back reaction of the quan-
tum field on the classical field is ignored.

In this paper we will consider the dynamics of both the
classical and quantum degrees of freedom, since there are
many phenomena for which one expects that a semiclassi-
cal treatment is useful only if the dynamics of both are
considered. For example, the human retina contains ap-
proxirnately 10 rod cells, each containing about 4&&10

photosensitive rhodopsin molecules. A rod cell can be
excited by a single photon of green light (500-nm wave-
length), which is absorbed by a single rhodopsin molecule
(approximately 2 nm in diameter). After a photon is ab-
sorbed, retinal, a prosthetic group in the rhodopsin mole-
cule, changes conformation and initiates a well-defined
sequence of events. In attempting to describe this system
it seems reasonable to treat the photon quantum mechan-
ically, and the rest classically. In this case, a semiclassi-
cal theory should predict the probability that a particular
rhodopsin molecule in a particular rod cell is excited,
given the initial wave function of the photon. Here we
must clearly treat the dynamics of the coupled classical
and quantum degrees of freedom.

A system which has some similar features is a bubble
chamber. In a bubble chamber, an energetic charged par-
ticle is incident on a superheated liquid. One observes
bubbles forming in the liquid and outlining a trajectory
which is described by classical mechanics. The incident
ion is described by some wave function (which in general
will not look "classical" ). Given the (quantum-
mechanical) interaction with the liquid, this can be used
to calculate the probability that the ion will "follow" one
or another classical path, distinguished by, say, the initial
position and velocity of the trajectory. The liquid is in a
metastable state and macroscopic-sized bubbles of the
liquid change into the more stable gaseous state by gain-
ing energy from the ion, and passing the energy barrier.
The entire calculation could, in principle, be treated
quantum mechanically, but it is more convenient to think
of the liquid as being described by thermodynamics in or-
der to understand the phase transition (note that no one
has even proved that liquids exist using ab initio
quantum-mechanical calculations). Here, a semiclassical
theory would treat the ion quantum mechanically, and
the rest of the system classically, and would certainly
need to deal with the dynamics of the coupled degrees of
freedom. Such a semiclassical theory should, for exam-
ple, predict probabilities for different classical trajectories
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Equations (1.1) and (1.2) are consistent as a system, and
thus are one example of what one might mean by a serni-
classical theory of gravity. We will see that the analo-
gous semiclassical approximation for systems of harmon-
ic oscillators, which we can solve exactly, gives reliable
answers to certain questions for some time periods.
However, by coupling the classical and quantum degrees
of freedom only via an expectation value, one will never
see any effect of quantum fluctuations on the classical sys-
tem. Consider a purely quantum-mechanical system with
2N degrees of freedom x;, xi, I', = 1, . . . , N,
I =N + 1, . . . , 2N, described by a wave function
'p(x;, xl ). By "quantum fluctuations" we mean that gen-
erally quantum mechanics predicts amplitudes for many
different states of the system at a given time t. Suppose,
for example, that the x, 's interact arbitrarily among

to occur. One would not expect a semiclassical theory to
predict a nonzero probability for the event where the ion
leaves a nonclassical trajectory, though in the full quan-
tum treatment there would be a small amplitude for such
an event.

In the case of interacting gravitational and matter
fields, we do not have a quantum theory. Therefore, in
situations where the quantum mechanics of the matter
fields are important, a semiclassical theory is the best we
can do. A thought experiment which is a gravitational
analog of Schrodinger's cat is to suppose that the ra-
dioactive decay of an atom somewhere on Earth triggers
the detonation of a bomb. If the bomb explodes, the
Earth shatters and the trajectory of the Moon is changed.
Since the moment of decay of the atom is not certain, one
would expect a semiclassical theory of gravity to predict
the probability that at time t (i) the atom has not decayed
and the Moon is on its usual approximately circular tra-
jectory, (ii) the atom has decayed at time t„and (hence)
the Moon is moving on a straight line in direction A, (iii)
the atom has decayed at time tz and the Moon is moving
on a straight line in direction B, and so on. One would
not expect a semiclassical theory of gravity to predict a
nonzero probability for the Moon to be on a circular tra-
jectory at twice the normal radius, corresponding to the
gravitational field of the superposition (I/&2) (whole
Earth + exploded Earth).

Semiclassical gravity may be particularly relevant in
cosmology. It may be important to treat the matter as
quantum fields in the early Universe, and to include the
back reaction of the quantum stress energy on the gravi-
tational field. For example, in inflationary-universe mod-
els, the stress energy of a quantum scalar field is thought
to dominate other contributions to the stress energy and
derive an exponential expansion of the Universe. In the
way that these models have previously been studied, the
(classical) gravitational field couples to the quantum field
only via the expectation value of the stress-energy tensor
in some quantum state. The state evolves according to
the Schrodinger equation, in which the gravitational field
appears as an external source:

themselves and likewise for the xr's, but that x; is cou-
pled to xi only for I =N+i, and that the coupling is in-
dependent of i. Let the xr all start in their ground state
(defined with respect to the noninteraction part of the
Hamiltonian). As the system evolves, there are (in gen-
eral) nonzero amplitudes for many different excited states
of the xi. Consider a limit in which the xi's "become
classical" and in which xi can be thought of as a measur-
ing device which measures some observable 0 for x;. Let
the eigenvalues of 0 be A,„. Then in a measurement of
the x; system by the xr system the xi's will "indicate"
one of the possible sets of values Ik„), with probability

l

given in the usual way. By "quantum fluctuations" we
mean that (for example) even if initially the xl s indicate
a unique set of values I A,„j, in general, because of in-

l

teractions at later times there will be no unique set but
only a probability distribution for the various sets to
occur.

Return to the semiclassical system (1.1) and (1.2).
Given initial data for the wave function and metric, there
is a unique evolution for the metric. In this sense, quan-
tum fluctuations do not feed back into the metric. In
particular, if the metric and state are initially homogene-
ous and isotropic, then these symmetries are maintained
by the evolution —and so there is no generation of spatial
variations in the stress energy or gravitational field by
quantum fluctuations. We would like a formulation of
semiclassical gravity where even if the metric is deter-
mined initially, it generally can only be described by a
probability distribution at later times. Going back to the
exploding-Earth example, when the experiment is initial-
ly set up the gravitational field of Earth is definite, but at
later times it is only given by a probability distribution
because the atom may or may not have decayed.

In inflationary cosmological models there has been
much work done on the generation of perturbations in
the classical mass density by quantum fluctuations during
the inflationary period (see, e.g. , Ref. 2). Density pertur-
bations are a source for perturbations in the gravitational
field, which one hopes will lead to the formation of galax-
ies by gravitational instabilities. However, there are
some problems with this program within the framework
of Eqs. (1.1) and (1.2). As just mentioned, in the semiclas-
sical theory of type given by such equations, the classical
field does not couple to quantum fluctuations. Therefore,
in models where quantum fluctuations are supposed to
become classical density perturbations after inflation, the
dynamical effect of the quantum fluctuations is put in by
hand, in the matching conditions between evolution
governed by (1.1) and the evolution according to the fully
classical Einstein-scalar field equations. There are prob-
lems in justifying this ad hoc procedure, as we shall dis-
cuss. If instead one was evolving a pure quantum system,
or another type of semiclassical theory which shall be
presented, there is some justification for this matching.
In these cases, essentially the problem is to pick "typical"
initial data out of an ensemble and evolve it such that its
"statistical meaning" is unchanged.

In the next section we will demonstrate more precisely
some problems with the usual semiclassical theories.
Then we will look for a semiclassical theory which cou-
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ples quantum and classical degrees of freedom on a more
equal footing, so that quantum fluctuations do act as a
source for the classical variables. One possible approach
is to consider theories in which the observables are (Her-
mitian) operator-valued functions on the phase space of
the classical variables. The fundamental object is the
density matrix p, a Hermitian positive-semidefinite
operator-valued function with finite integrated trace. It
is desired to find a theory such that p is (i) Hermitian and
satisfies f rTrp= 1 at t =0 (where I is the classical phase

space and Tr is the trace over the quantum Hilbert
space), (ii) positive (semidefinite) at t =0. Furthermore,
we require that the evolution of p is determined by the
Hamiltonian observable in such a way that the resulting
equation of motion (iii) is of the form p=[H, p]sc, where
the brackets operation is to be linear in H and p, (iv) is in-
variant under canonical transformations on I, (v) is in-
variant under (constant) unitary transformations on Hil-
bert space, (vi) reduces to the usual quantum-mechanical
and classical equations if there is no interaction between
the quantum and classical systems, (vii) preserves Hermi-
ticity of p and J„Trp= 1, and (viii) preserves positivity of
p. A theory which satisfies (i) —(viii) would be able to be
given a consistent interpretation, as we shall discuss. We
will show that conditions (i) —(vii) determine a unique
equation of motion for p, but in general condition (viii),
positivity, is not also satisfied (for reasons similar to the
reasons why Wigner's function is not positive).

Another approach to a semiclassical theory is to con-
sider the Hilbert space of states & defined to be the ten-
sor product of the Hilbert space of square-integrable
functions on the classical phase space and the usual quan-
tum Hilbert space of states. Observables are (Hermitian)
operators on &. There is a well-defined prescription
(used by people who study geometric quantization4) for
replacing functions on phase space with operators on &
such that the usual Poisson-brackets relations becomes
the corresponding commutator relations. In this theory,
the fundamental object is the density matrix p (a Hermi-
tian finite-trace positive-semidefinite operator on 8)
whose evolution is taken to be given by Schrodinger's
equation. This equation preserves the Hermiticity, finite
trace, and positivity conditions. However, there are
severe problems with the interpretation, and there does
not appear to be a conserved positive energy, in general.
In short, in this paper we examine some possibilities for
treating semiclassical systems that up to now have not
been adequately described physically and we point out
the problems associated with each possibility.

II. STANDARD SEMICLASSICAL THEORIES

In this section we will recall a type of semiclassical
theory often used, in which the classical degrees of free-
dom are coupled to certain expectation values of the
quantum variables. We will see explicitly that quantum
fluctuations do not affect the dynamics of the classical
variables, which will be contrasted with two new types of
semiclassical theories which we will discuss in the next
two sections.

wher~ ( 0 )QM = & 'Ii
I
o

I

ili & QM.

Now suppose we want to consider theories (which we
shall call semiclassical) with N quantum-mechanical de-
grees of freedom x;, and N' classical ones, xz. In tradi-
tional semiclassical theories, the state of the system is de-
scribed by a point in phase space (xt,pt ) and by a wave
function g( xxt,pt ), which is a Hilbert-space-valued
function on phase space. g evolves according to a
Scrhodinger-type equation:

4 ~

l
(2.1)

where 8=H (x;,p;;xt,pt ), and the classical variables
evolve according to Hamilton-type equations

d BB d BH—x~ = and —
py ———

dt Opt dt Bxt
(2.2)

where 8= ( 1( H
I 1( ) .

In this case, observables are (Hermitian) operator
valued functions on phase space. The evolution of the ex-
pectation value of an operator 0 is given by

(2.3)

where (O)sc —&PI o
I 0&sc and [, ]pB is the Poisson

brackets. (Note that if 0 =f is a function on phase space
then & f &sc=f )

The semiclassical gravity equations (1.1) and (1.2) are
an example of the type of system described by Eqs. (2. 1)
and (2.2) (suitably generalized to an infinite number of de-
grees of freedom).

Is the semiclassical system (2.1) and (2.2) a good ap-
proximation to the full quantum-mechanical system? In
some cases it will be —if the xz are well approximated by
their mean, and one is interested in "large-scale" behav-
ior. For example, in the Stern-Gerlach experiment it is

adequate to consider the (quantum) electron moving in a
mean, background magnetic field, and ignore the correc-
tion to the electron's motion from the full interaction be-
tween the electron and the quantum electromagnetic
field. However, if one is interested in those corrections,
obviously system (2.1) and (2.2) is not good enough. To
be explicit, let us find the effects of quantum fluctuations
in a system we can solve. Consider 2X coupled harmonic
oscillators with

First, consider a purely quantum-mechanical system
with dynamical variables x, , xz, and conjugate momenta
p-, p~, where i = 1 . . . , X and J =X + l, . . . , X +X'.
We will study the limit in which the xz behave "classical-
ly" and make a comparison with semiclassical theories.
Let the Hamiltonian be H(x;,p;, xt,pt). Then, the wave
function describing the state of the system evolves ac-
cording to Schrodinger s equation, H%= (—A/i)4 The
expectation value of an observable 0, or Hermitian
operator on the Hilbert space of states, evolves according
to

0—(0 )QM — [, ])QM+ QM
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H = P; +k;.x;x + PI +KIJXIXJ

+CTI xrx. (2.4)

This quantum-mechanical system can be solved exactly in
terms of the normal modes. Further, letting
z =(x;,p;, xt,pt), the equations of motion for expecta-
tion values of moments of z are

d—(z )QM
—A,p(zp)Q (2.5a)

and

d
( Ez~zp)QM=A~r( Ez Zp )QM+Ap ( Ez~z )QM,dt

(2.5b)

d (z )sc=A p(zp)scdt
(2.6a)

Therefore, if one starts with the same initial conditions
on (z )sc and (z )QM at t =0, they will remain equal
for all time. The dispersions of the two theories are
different, however, as the dispersions of the semiclassical
theory are zero except for the purely quantum-
mechanical ones, where, with z, =(x;,p; ),

d (Ez zp)so=A (Ez zb )sc+Ab (5z z )sc .
dt

(2.6b)

Note that this is not of the same form as Eq. (2.5b) with
a =a and P =6 since there is a contribution to (2.5b) with

y&c. Thus, we see explicitly that if the mean is the only
quantity of physical interest then the fully quantum-
mechanical and the semiclassical theories agree, but the
predictions are different if the dispersions are relevant.

Now, think of the xI as "measuring instruments. "
Consider the case of symmetric couplings, i.e.,

, , K51J, o.
, ~+t+, ——o.

I independent of i for
1=1, . . . , N (N+1+i being interpreted modulo N).
Thus, the N classical sites are equivalent, and the N
quantum-mechanical sites are equivalent. It is clear from
the equations of motion that if the initial conditions are
symmetric, i.e., (x,-), o and (p, ), 0 are independent of
i, and xt(t =0) and pt(t =0) independent of I, then xt(t) '

is independent of I for all time. In the corresponding ful-

ly quantum-mechanical system, although (xt )QM would
be independent of I for all time, the set of xl found in any
given measurements" would, in general, not be. This is

etc. , where b, AB—:( A —( A ) )(B —( B ) ) and the
nonzero components of A & are given by

1 1
Ai j +N ~ij & ~i+N j kij & ~I J+N I~IJ

~I +N, J +IJ & Ai + N, J ~J +N i +iJ

In the semiclassical version of this theory, using (2.2)
and (2.3) we see that the equations of motion for the
linear expectation values (z ) sc are identical in form to
the quantum-mechanical equations (2.5a), i.e.,

what we mean by stating that the quantum fluctuations
do not feed into the semiclassical system. Unless we put
in the inhomogeneities by hand (in the initial data or the
couplings), then the motion of the classical variables is
the same at each site.

To put this a little more dramatically, suppose we start
all the classical oscillators at rest. Are they forced to
start oscillating by the quantum fluctuations? By the
above argument, if the initial quantum state is either even
or odd under each interchange x, ~—x;, then the classi-
cal oscillators remain at rest for all time. (An example of
such a state is a product of the Hermite polynomials in
x;.) Thus, in this semiclassical theory, the classical de-
grees of freedom may or may not be affected by the quan-
tum system.

An analogous situation occurs in field theory (the limit
N ~ ~ ) and we see that in the semiclassical gravity sys-
tem described by Eqs. (1.1) and (1.2), if initially the expec-
tation value of the quantum-mechanical stress-energy
tensor and the gravitational field are Robertson-Walker
symmetric, then they will be so for all time. One can
only get spatial fluctuations in the metric (and hence in
the mass density) by putting spatial variations in the ini-

tial data. In short, in this semiclassical gravity system it
is impossible for quantum fluctuations to be the seed of
galaxy formation. Contrast this with what one would ex-

pect from a fully quantum-mechanical treatment of a
cosmological system.

To highlight some of the above points, consider the
special case of Eq. (2.4) with four masses connected by
springs, with a Hamiltonian

(Pl +F2)+ (P3+P4)+ k(X1 X2)
2m 2M

+-,'O [(X,—X3)'+(X2 —X4)']

As discussed above, from Eqs. (2.5a) and (2.6a) we have
(X/ )QM(t)= (x; )sc(t) for i = 1,2, and (xt )QM(t) X(tt)

for I =3,4, and similarly for the momenta, if the initial
conditions are the same. The solutions have oscillatory
pieces plus a piece which grows linearly in time. Howev-
er, the dispersions differ for the two theories. In the
quantum-mechanical case, Eq. (2.5b) shows that there are
terms which are oscillatory (with the same periods as for
the linear expectation values) and terms which grow
linearly and quadratically in time. For the semiclassical
theory, however, only the oscillatory terms occur in the
dispersions (and with different periods than in the quan-
tum case). Inspecting the solutions in the limit where
m &&M (which is where one would expect a semiclassical
treatment to be valid) shows that ( b,z, zb )sc differs from
( biZ Zp )QM by an amount of an order of one after a time
T-M![m (o +2k)]' . In addition, if the full
quantum-mechanical system starts in a state where the
heavy masses (x3,x4) are in coherent ("classical" ) states,
and x„x2 are in any state, then after a time of order T
(as above), ( hxt ) —( b,x; ), so that this is also the time
scale over which the quantum state stops looking classi-
cal (in x 3,x4).

To summarize, then, we have seen that in the semiclas-
sical theory described in this section, quantum fluctua-
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tions do not feed into classical system, and there are
several gross features of the quantum-mechanical system
which are not modeled successfully.

III. NEW SEMICLASSICAL THEORY:
OPERATOR-VALUED FUNCTIONS

ON PHASE SPACE

(O)„=J TrpO (3.1)

and probabilities are defined as follows. Consider the
spectral decomposition of the observable,

In this section we construct a different type of serni-
classical theory, in which quantum and classical degrees
of freedom are coupled in such a way that fluctuations in
one affects the dynamics of the other. We start with a
Hilbert space of quantum state &, and a classical phase
space I . Observables are to be (Hermitian) operator-
valued functions on phase space, which operate on vec-
tors in the quantum Hilbert space. The state of the sys-
tem is to be described by a density matrix p, also an
operator-valued function on I . p is. to be a generalization
of the familiar density matrix in quantum mechanics and
probability distribution on I in classical mechanics. The
time evolution of p is determined by the Hamiltonian ob-
servable.

We first state properties which we consider to be natu-
ral requirements for a semiclassical theory, generalizing
the corresponding properties of purely quantum-
mechanical or purely classical theories. We require that

p is (i) Hermitian and satisfies f rTrp= 1 at t =0 (where

Tr is the trace on the Hilbert space) and (ii) positive
(semidefinite) at t =0. Further, we require that the equa-
tion of motion for p (iii) is of the form p=[H, p]sc, where
the brackets operation, which is to be defined, is to be
linear in H and p, (iv) is invariant under canonical trans-
formation on I, (v) is invariant under (constant) unitary
transformations on Hilbert space, (vi) reduces to the usu-
al quantum-mechanical and classical equations if there is
no interaction between the quantum and classical sys-
tems, (vii) preserves Hermiticity of p and f &Trp= 1, and

(viii) preserves positivity of p.
Conditions (i), (ii), (vii), and (viii) allowed a consistent

probability interpretation to be given to p. We shall see
that conditions (i)—(vii) determine a unique equation of
motion for p, which, however, fails to preserve positivity
of p [condition (viii)]. Therefore, a positive theory would
have to give up one of the conditions (i)—(vii). The lack
of positivity is related to the same problem which occurs
in Wigner's function. Indeed, if one drops requirement
(iv), then the equation which Wigner's function obeys is a
particular case of the allowed equations of motion for p.
As in the case of the Wigner function, one expects here
that for "sharply peaked" density matrices, probabilities
of physically interesting quantities are "mostly positive. "
However, this appears difficult to prove in general, al-
though we shall mention some results in particular cases.
Now we construct the theory and examine its properties
in more detail.

In this picture, the expectation value of an observable
0 is to be given by

0 =Q„A,„(z)P„(z), where P„ is the projection operator
onto the eigenspace of 0 with eigenvalue A, „(z), both
which may depend on the point z in phase space (n may
be a continuous index). Then the probability that 0 takes
a value r belonging to some real interval I is given by

p, ~s=XJ TrpP„,
n

where R„(I)is the region in phase space:

R„(I)= [z E I
~

X„(z)EI } .

(3.2)

For example, in the case where 0 =f (z) is just a function
on I, we have P„(z)=identity, and R(I)
= [z E I

~ f(z)EI},and

p„~&
—— Trp

R (I)

Now let us turn to the equation of motion for p. Let
f,g be functions on I, and X, Y be operators on Hilbert
space with no phase-space dependent. By conditions (iii),
(iv), and (v), [fX,gY]sc can only be a linear combination
of the terms fg(XY+YX) and 0" B„fB+g(XY+YX),
where 0 is the symplectic form on I . No higher phase-
space derivatives appear since these are not invariant un-
der canonical transformations. Equivalently, there is no
natural connection. (But if, for example, we assume I is

a vector space, then there is a natural connection and
there are higher derivative terms that are invariant under
the restricted set of canonical transformations that leave
the connection invariant. A special case of this is what
happens with Wigner s function, which we will discuss
below. ) Assume for the moment that the brackets is an-
tisymmetric. Then condition (vi) now implies that

[fX,gY]sc — fg [X, Y]—,'(——XY+—YX)+ [f,g }pB . (3.3)

Then for general operators which can be expanded in the
form 0 =g;f,X, , (3.3) implies

[0,0']sc————[0,0']+—,
'0" (B„08~0'—B„o'B~o) .

(3.4)

The definition (3.4) ensures that p has a Hermitian evo-
lution, but we must check that the trace of p remains
equal to 1. Indeed,

Trp Tr ~p sc 0

using the cyclic properties of the trace and integration by
parts. Thus, condition (vii) is satisfied.

Now, Eq. (3.1) and condition (iii) imply that, for a gen-
eral operator 0,

I

d
(0)-= A([H 0])-+,ao

dt Bt sc

Thus, for general (time-independent) H and p,
(dldt)(H)sc ——0. If we dropped the condition that the
brackets be antisyrnmetric this would not be true. An ex-
ample of a term that can arise in Eq. (3.3) for this more
general case is i A}f,g }pB[X, Y], with , A, real. We will not
discuss this class of theories in this paper.
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As an example of the general formalism, consider the
case of two degrees of freedom, x& quantum mechanical
and x2 classical, with

H =H, +H2+ V~(x, ,x2)

with

(3.5)

1 PI-
H =— +V(x. ) .

I 2 l I

Then explicitly, the brackets become

P'= [H P]sc
l= ——[H„P]+IH2, P)PB

——[ VI(x„x2)—VI(x', ,x2)]p

aV, (x„x,) aV, (x', x ) pp+— +
& Z

(3.6)
2 BX2 Bp

where p=p(x„x1,z) and z =(x2,P2).
In this system the equations of motion for the expecta-

tion values of x
&

and p, have exactly the same form as in

the full quantum theory. For example,

(3.7)

Further, although the quantum dispersions for the previ-
ous semiclassical theory did not even qualitatively match
those of the full quantum theory, here they obey equa-
tions of motion of exactly the same form, except that

d 1

dt
( ~P 1P2 ~SC ( ~PI [P2&HJPB)SC ( ~P2[P1& ] SC

+—.
2 (4

where j runs over al/ the variables. This is different than
the old semiclassical theory, where, for example,

m d /dt x = —BV /Bx —(3( V )/Bx

the last term (proportional to 1)I) being an addition to the
usual quantum-mechanical form. In particular, in this
semiclassical theory, quantum and classical fluctuations
affect each other's dynamics, and in a way consistent with

quantum mechanics. Note that these statements about
harmonic oscillators could just as well be made about
each mode of linearly coupled fields P (quantum) and g
(classical); the fluctuations ( b,pk ) necessarily induce fluc-

tuations ( b, 1ttk ).
There is a connection between the p discussed here and

a semiclassical version of Wigner's function, F~. Let p&
be the density matrix for a purely quantum-mechanical
system with two degrees of freedom. Then let

FW(x l, x 1 ~X2~P2 )

—2' 2 tt) /A= f dW e ' Pg(X1,X1,X2+W, X2 W) .

This is semiclassical in that the Wigner transform has
only been done on one of the variables. Both this and the
usual version of the Wigner transform are explicitly not
invariant under all canonical transformations on phase
space, and this makes the transform difBcult or irnpossi-
ble to implement in, for example, general relativity.
Wigner's idea was to reformulate quantum mechanics in
terms of classical probability distributions on phase space
(when the transform is done on all the variables), and
indeed one does recover the appropriate expectation
values, (0 ) = f rFB„ if 0 is Weyl-ordered product of x
and p. However, on both the usual and semiclassical ver-
sions of the transform there are serious problems with po-
sitivity. First, a positive p& does not, in general, give a
positive F~ (this is what Wigner showed ). Second, even
if F~ is positive initially, in general, it does not remain
positive under evolution in time.

Now return to our semiclassical theory. Suppose we
drop condition (iv), invariance under canonical transfor-
mations on I . Suppose that we assume that I has a vec-
tor space structure, and hence a natural derivative opera-
tor B~. Then the most general equation of motion con-
sistent with this and with the conditions except for (iv) is

1
" Ck a] b] akbkp= —$ O''. . 0

0
kl

8"H
1 ~k b] bk

Bz ' ' ' Bz Bz ' ' Bz

gk gkH

~] &k b] bk
Bz ' ' ' Bz Bz ' ' ' Z

(3.8)

where the constants ck are arbitrary except that
ck* ——( —1)"+'ck and co=2/iA, c, =1.

The semiclassical F~ satisfies an equation of motion by
virtue of the fact that p& satisfies Schrodinger s equation.
For Hamiltonians which are quadratic in the momentum
variables this equation can be shown to be a special case
of (3.8), with ck ——(i1ri/2)" '. The Wigner function is the
unique function which satisfies certain "natural" condi-
tions. The fact that it is not, in general, positive makes
one not surprised that the semiclassical theory of the
form outlined is not also positive. It may be, for example,
that one should look at nonlinear equations, or systems
with dissipation. An example of a nonlinear system,

satisfying all the other criteria, is given in the Appendix.
In the case of simple harmonic oscillators, the higher

derivative terms (k )2) in (3.8) all vanish, and F~ then
satisfies Precisely FB.=[F~,H]sc. Therefore, for quadra-
tic Hamiltonians we know the exact solutions for the den-
sity matrix in the new semiclassical theory, since one can
solve the full quantum theory for p&, and hence construct
F~. Since a positive p& does not, in general, lead to a
positive FB, the proper (and laborious) way to implement
this is to start with F~ at t =0, do the inverse transform,
evolve in time and to the transform back. Further, al-
though P (i.e., Fz in this case) will not remain positive
for all time, in general, it may be positive if p is peaked
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' 1/2
k2m) 0

E' 1—
2 m2 k) k)

m&

m2

Then we find (letting k i
——kz ——k)

' 1/8
mi

Trp(xz, pz ) =
2 m2

fi

Qmzk (bxz)

1 2Xexp —
z [xz —R(t)]

(bxz)

1
XexP —,P2 —m2 —R

(Qpz ) dt

'2

where

(bxz) =A'[Qmzk (1+—,'e )]

(bpz) =A'[Qmzk (1+e )]

[and hence (bxz) (bpz) &Pi ].
So there are solutions for p that have a sensible behav-

ior on I, in much the same way as Wigner's function
sometimes does. In these cases one can indeed say what
fluctuations are induced in the classical degrees of free-
dom by the quantum fluctuations.

However, in general, the evolution of the density ma-
trix does not preserve positivity. We will explicitly look
at Hamiltonians of the form (3.5). We say that p is posi-
tive (semidefinite) if for all states YE&, and for all z EI,
fdxidx', Y(x, ) Y*(x', )p(xi, x', ,z) )0. To show that this
condition is not, in general, preserved the strategy is to
find a place where p is zero, and where p is negative,
which means that p evolves to a negative value there.
That is, we seek a (1) p)0 and an YE&, zo&I such
that (2) f YY*p ~, =0, and (3) f YY"p ~, &0. Now, (1)
and (2) imply that Bp/Bxz ——0, Bp/apz =0 at zo, and simi-
larly that fdx, Y(x, )p(x, ,x', ,zo) =0. Therefore, using
Eq. (3.6) for p, the first three terms in (3) are zero. The
last term, however, is a problem and we will have a coun-
terexample if the vector Y also satisfies

about a classical path in phase space. Such a p is
displayed in Appendix, for the Hamiltonian

H =—,'(pi /mi+pz/mz+kixi+kzxz+oxixz) .

To see how p behaves on I, we look at
Trp= fdx, p(x, ,x, ,z). We find that Trp is positive
definite. In the weak-coupling limit, the expression is
sharply peaked about the classical path, with corrections
from the interaction: let R =Rz(t)(1 ,'e——)+eRi(t)
where R;(t)=Q,ocos[(k;/m; )'~ t —$,0] is the classical
path, and

IV. CLASSICAL OBSERVABLES
AS OPERATORS

In this section we will briefly recount an alternative ap-
proach to building semiclassical theories. In this ap-
proach we first associate operators on a Hilbert space &z
with each classical observable. &z is, for example,
square-integrable functions on phase space. We wish to
assign an operator f' to each function f (z) on I, such
that 1' =1, and [f'~,g'"]= (A/i)[f, g]@-.

This has been worked out in the context of prequanti-
zation and we merely quote the results. Let Qzz be the
symplectic form on I with potential 8~, so
Q„zt =V„Os —VsO„(the existence of 8 puts some topo-
logical restrictions on I ). Then

f'~= . 0," Vsf V„+——8„+f. (4.1)

We will work on flat two-dimensional phase space, and
choose coordinates (xz,pz) with 8= —pzdxz. (We use0„=—0 „=1and 0" Qcs =5c.) Then, for exam-

ple,

p(x»x', ,z)=N exp[ —[xzi+x'iz+(xz —xoz)z

+(pz —pz )

+&(pz —pz )(x, +x', )]]
with A. &2 (so that p is normalizable). Then p satisfies
conditions (1) and (2) above for zo=(xz ',pz ') and for
the family of vectors

Y„(x)=8(u —x)8(x)

E(u) 8 exp( —xz)
E(~)—E(u) v2

Q —Xwhere 8 is the step function and E (u) = f Oe
' dx. Fur-

ther, f Y„Y„*p=ig (u), where g is not identically zero as
a function of u. Hence, we can satisfy condition (3) by a
correct choice of the sign of A..

Even though p is not, in general, positive one can ask if
probabilities for physically interesting operators to take
certain values are positive —for example, is the probabili-
ty that the energy is Eo+6 always a positive number? In
general, this is a hard question, but there are some partial
results along this line. Again let H =H, +H2+H„and
suppose that 0 =ok,„P„ is a purely quantum-mechanical
operator which commutes with H

&
+Hz. Then the prob-

abilities p„=f rTrpP„have vanishing time derivatives
and so, in particular, remain positive if they are so initial-
ly. An analogous statement can be made for functions on
I . For mixed operators, like the energy, the question is
much harder.

8 V(x, ,xz ) 8 V(x'„xz )fdx, dx', Y(x, ) Y'(x', )
CIX 2 ()X2

Bp

~72 and

One possible choice at (t =0) is to take

(0. HP A P2
2' —.

l m2 BX2

BV(xz )

BX2 BP2
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If the state is sharply peaked about a trajectory in I,
(x P ) and (p P ) are not sharply peaked about that path.
(One can check this explicitly for the simple harmonic os-
cillator, and verify that the oscillations about this path
are not suppressed by the factor of A which appears in the
equation of motion above. ) Thus, the idea is that for a
function f on phase space, (f ) =Tr(fp)= f rf (z)p(z, z)

gives the expectation value of f (which satisfies the usual
equation of motion), and (f'~) =Tr(f' p) is not inter-
preted physically. In general, the only operators that are
interpreted are the ones that are functions on I . In par-
ticular, p(z, z') is only interpreted for z =z' and it is vital
for consistency that the time derivative of p(z, z) involve
only p(z, z), which is true, as tnentioned above. This is to
be contrasted with the semiclassical extension, discussed
next.

It is straightforward to write down a semiclassical
Schrodinger system. The Hilbert space is the tensor
product 2f=&&&2 (where && is, as before, the space of
quantum states) and observables are Hermitian operators
on % which are functions on phase space, 0 (x „x&,z).
From the Hamiltonian we construct H', where each
function of the classical degrees of freedom is replaced by
its operator according to (4.1). The density matrix
p(x„x', ,z, z') thenevolvesby

p= — [H'r, p] . — (4.2)

Since p has a unitary evolution, there is no problem with
positivity. However, there are severe interpretational
difficulties. One can check that if the classical diagonal
piece of p starts equal to zero, p(x„x&,z)=0 at t =0,
then, in general, it does not remain zero. This means that
the same classical initial state can have different future
evolutions. A second problem is that for general Hamil-
tonians there is no positive conserved energy. Third, in
the semiclassical theory the equations of motion for (x, )
and (xzt') have the same form as in the full quantum
theory, but this is not very satisfactory since the interpre-
tation of (x2 ) is problematic. On the other hand, one
could consider instead (x& ) and (xz ). However, even in
the case of two coupled harmonic oscillators, this leads to
runaway solutions.

We conclude that whatever one might choose to make
out of the interpretation problems, the ambiguity in the
evolution of the classical diagonal piece of the density

With this, one can rewrite classical mechanics in the
form of Schrodinger mechanics. The state P(xz, pz }

evolves according to —(fili )tP =H z~ tP. The density
matrix p(z, z'}=/(z)P*(z') then evolves via p= —(i /fi)[H2, p], which implies that the diagonal piece,
p(z, z) evolves as usual according to the Poisson brackets,
p(z, z) =

I H2, pI pa. So p(z, z) can be interpreted as a prob-
ability function on phase space.

Although, for example, (xz ) and (p2 ) satisfy the usu-

al equations of motion of classical mechanics, there are
interpretational difficulties for x zI'. We see that

d' ., av" av xa'v a
Bx Bx i Qx2 t}p2

matrix makes this theory an unsatisfactory description.
At this point the reader may wonder why we have only

discussed density-matrix formulations, and no wave func-
tion approaches. For example, let f(x„z) evolve as in
the previous section, (fi—/i)Q=H' g. Then the diago-
nal problems of the preceding section do not occur, since
we could work with a density matrix that is purely
diagonal in the classical variables, P(x &, x &,z)
=P(x&,z)g*(x &,z}. One can easily write down the evolu-
tion equation for p, which turns out not to be expressible
only in terms of p. Although that is not fatal to this ap-
proach, one also finds that this equation is not invariant
under rotations of the wave function by a classical phase,
g~e' "P. That is a severe problem.

A different approach would be to use H to evolve

p(x, ,z) rather than H'r. We know, of course, that this
will not yield a density matrix P(x&,z)g (xI,z) which
satisfies the criteria (i)—(viii) of Sec. III, since the wave
function density matrix mould be positive definite. How-
ever, evolutions one might try, such as

Hl P+ [H2~ PI pB+ I HII (( I FB ~

1

have the same phase problems already mentioned.

V. CORRELATIONS AND FLUCTUATIONS
IN INFLATION

The generation of perturbations in the (classical) mass
density by quantum fluctuations has been much discussed
in inflationary scenarios (see, for example, Ref. 2). The
idea is that the quantum field, whose mean stress energy
drives the inflationary expansion, also has quantum fluc-
tuations about the mean. At some point these fluctua-
tions become classical, and so in effect provide initial con-
ditions hp, ~(x, to) for the future purely classical evolution
of the Einstein equation, which should evolve to form
galaxies. There are some problems, however, with this
program. Inflation happens in the "old" semiclassical
theory, Eqs. (1.1) and (1.2). The state and metric are
chosen to be de Sitter invariant. Then, as we have seen,
the fluctuations in the quantum field do not affect the
evolution of the metric; the metric continues to have the
de Sitter symmetries. In particular, the metric is homo-
geneous on each constant time slice. There are no spatial
perturbations in the metric, and equivalently, none in the
stress energy which is the source for the metric.

What is done is to consider the two-point mass correla-
tion function. For this section only, following standard
notation, let p be the quantum operator corresponding to
the energy density of the field 4. Let p = ( p ) +5p, where
the expectation value is in the quantum state

~
g), which

is, of course, independent of position. The two-point
function g(r)= (5p(x)5p(x +r) ) does depend on the dis-
tance r; the question is, does g( r ) have anything to do
with generating spatial inhomogeneities in the metric
(i.e., in the classical mass density) and if so, what. The
interpretation which has been made is that there are per-
turbations in the (classical) mass density of amplitude

~ 5pk ~

on the length scale 1/k, where
~ 5pk ~

is the
Fourier transform of g(r) That is, le. t us say that for
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t & tp the metric evolves according to semiclassical gravi-

ty, Eq. (1), and for t & to, by the purely classical Einstein

equations. Choose for initial data on the classical mass

density p,r(x, to)=(p)(to)+bp(x} where bp(x) is any c-

number function that satisfies

—Jd x bp(x)bp(x+r)=(6p(x)fip(x+r))1

V

(where Vis the spatial volume), or, in Fourier space,

(5.1)

I
~c r

I'=(
I

fis r
I') (5.2)

That is, the two-point correlation function of the classical
perturbation, defined by the spatial average, is to be equal
to the quantum two-point function.

There are two types of questions which arise here.
Suppose first that either the evolution was purely quan-
turn mechanical for t &tp and one wanted to match to a
classical evolution for t ~ tp, or that the description was
classical probabilistic for t & tp and matched to classical
deterministic for t & tc. Then is a criterion such as (5.1)
ever a good approximation? The second issue is that we
know that quantum fluctuations do not affect the dynam-
ics of the metric in the old semiclassical theory, which
describes the infiationary universe for t & to What .then
is the justification for deciding that the two-point quan-
tum density correlation function suddenly is a source for
the metric at tp? In a full quantum theory, or in the
semiclassical theory of Sec. III, fluctuations in p are a
source for fiuctuations in the metric (and vice versa), so
in these cases there is some justification for seeking a
matching criterion.

Let us start with a purely classical case. Consider a
fluid in a box which is coupled to gravity and is heated
from below. One solution to the Navier-Stokes equations
is the static one, with constant temperature, density,
pressure gradient, and zero velocity. If instead there is
some inhomogeneity in the density and pressure at t =0,
there will be some nonstatic evolution dictated by the
competing gravitational and bouyancy forces acting on
the perturbations. Suppose that the initial functions

p(x, tc)=P+bp(x) are selected from an ensemble, and

occur with different probabilities. Then the possible
states of the system at a later time are found by evolving
each member of the ensemble, and weighting the out-
comes by the probability of the initial conditions occur-
ring.

Now, is it possible to choose a "typical" p(x, to) and

evolve, such that one gets "typical" results? This, of
course, depends on the underlying probability distribu-
tion (the probabilities of difFerent initial density profiles in

the example). Typically, if we are interested in a particu-
lar physical quantity such as the density, we must first
check whether its probability distribution is sharply
peaked, and then a "typical" member is one near the
peak —choose one. Now, if the physical process is such
that averaging over a large spatial volume is like averag-
ing over the ensemble (as for a spin system on a lattice)
then the chosen typical member will satisfy
(1/V) Jp=(p)+(5p )' . Therefore, in this case it may

be sensible to identify the spatial two-point function of

the chosen member with the ensemble two-point func-
tion, as in (5.1).

Note that if one had chosen (p ) as the typical
member, one could get information about the mean tem-
perature, pressure, and velocity, but no information
about fluctuations. This is similar to coupling to the ex-
pectation value of the stress energy in semiclassical gravi-
ty.

It is important to note that condition (5.1) is not main-
tained by the time evolution of the system in general.
This means if the system is evolved by the probabilistic
description until some t, g tp, then the evolution of the
deterministic field from the tp matching will not satisfy
the two-point correlation function condition that is
defined by the ensemble average at tr. [To see this, con-
sider, for example, systems such as Einstein-fluid or
Maxwell, where the evolution of the source J is of the
form J=F(P,J), P representing the other fields. Then, in
Fourier space the ensemble two-point function evolves
via (d /dt)( J„J r, ) = ( Jr,F „+J „F„), whereas the
Fourier transform of the spatial two-point function of a
single source j evolves according to (d/dt)(jrj r, )
=j&F & +j &F&. These are not the same differential
equations, since the ensemble average mixes different k
modes. ]

Before returning to the question of when the interpre-
tation (5.1) makes sense, especially for semiclassical sys-
tems, we note that in genera1 the criterion cannot even be
applied consistently. To start the classical evolution, one
needs not only the initial density but initial velocities (and
metric). However, it is not possible in general to require
that the spatial-average two-point function equals the en-
semble average two-point function for all the quadratic
combinations of position and momenta. Explicitly, let a
system be described by the coordinates and momenta
x, ,p, , i =1, . . . , N and let ( e ) denote the ensemble aver-

age, either quantum mechanical or classical. Define the
spatial average of a set of numbers f; by

f, =(1/N)g+, f;, the two-point function by f;g~
=(I/N)gP rf;+rg, +&, etc. , where f;+r =f;. Let the-
averages (x );, (p ), , (x,x ), (p;p ), (p, x ) be given at
t =0. Now, can one choose classical numbers y;, v; such
that y, =(x), , (n, )=p, , yy .=(xx ), rr;rr =(p;pi),
and rr;yJ ——(p;xJ )? It is straightforward to check that
these conditions can be simultaneously applied only
if (y;) =(1/N)g, (yy, ), and (yy, )(m., rr, )
= (y n;) (yrn. , ) =.(yJn, ) (y; rrr ), wh.ich holds only if the
sites are independent.

To summarize, suppose we want to evolve the system

0(g)=s(p, g), p=f (gp) (where 0 is some operator and

s,f some functions) quantum mechanically, or according
to a classical probability distribution for t & tp, and then
match to a classical deterministic evolution for t &tp.
Suppose that the probability distribution for p is sharply
peaked, that the ensemble average is mimicked by the
spatial average of individual members of the ensemble,
and that both before and after tp, fluctuations in p are a
source for g. Then one might sensibly apply the criterion
(5.1}to pick out a typical member of the ensemble for ini-

tial conditions on the coordinates. However, applying
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the same criterion to the other two-point functions of the
rnomenta and coordinates leads to a contradiction. Fur-
ther, the criterion (5.1) is not respected by the time evolu-
tion of the system.

Of course, in this example there is a difference in the
way the density p is a source for g if both are quantum
fields than if both are classical. However, at least in ei-
ther case the fluctuations in p and g are dynamically re-
lated during both periods of the evolution. The com-
ments of the previous paragraph apply equally well to the
new semiclassical theory of Sec. III, if one is working
with an initial density matrix which has positive proba-
bilities for the quantities of interest. So, for example, one
could study fluctuations of a scalar field coupled to a de
Sitter metric in its ground state, since in this case the
wave functional is a product of Gaussians, which we have
seen has a probability interpretation.

Finally, let us turn to the question of which probability
distributions are sharply peaked, making the two-point
function criterion sensible for selecting a typical member
of the ensemble. Quantum mechanically, perhaps the
most interesting distinction is between experiments where
there are many events or single events. For example, sup-
pose many radioactive atoms are placed inside a box, the
box being divided into collecting bins which indicate a
decay product. Then if one plots the number of bins with
n events recorded in time T vs n, this distribution is
sharply peaked about (n ), the expected number of de-
cays in T. On the other hand, if a single atom is placed
inside the box, the same plot is not sharply peaked about
(n ). The expectation value is a bad indicator for single
events, like the occurrence of a string track in a cloud
chamber.

Secondly, it is often also important to distinguish be-
tween large-scale and small-scale structure. Suppose the
probability distribution is a sum of sharply peaked pieces,
as for example, when there are degenerate vacua as in
inflation. If one is interested in the physics internal to
one domain, then a "typical" field configuration should
have a mean near one of the vacuum values, and disper-
sion of order the spread around that value. For a large-
scale structure, when one averages over many domains, a
typical field configuration has a mean near the ensemble
average, and dispersion that is characteristic of the en-
sernble.

We certainly have not presented any rules for when the
two-point function can be used to indicate the amplitude
and wavelength or inhomogeneities in a classical source.
We have pointed out difficulties which arise, even in
matching a classical probabilistic of full quantum-
mechanical evolution to a classical deterministic evolu-
tion. In the context of standard semiclassical gravity
there are further problems, in that the dynamical role of
the mass two-point function is different during the semi-
classical evolution period and the classical period.

VI. CONCLUSION

There are systems occurring in nature in which some
of the interacting components must be described by quan-
tum mechanics, and other parts are apparently adequate-
ly described by classical physics. In this paper we have

studied the possibility of constructing semiclassical
theories, in which quantum-mechanical and classical de-
grees of freedom are coupled. Of particular interest was
to formulate a theory in which the fluctuations in the
quantum and classical variables affect the dynamics of
each other, which does not occur in the "standard" semi-
classical theories. This is relevant to the question, for ex-
ample, of whether quantum fluctuations in matter fields
in the early Universe can generate perturbations in the
classical mass density, a computation which is currently
done in an ad hoc manner.

One approach was to describe the system by a density
matrix p which is an operator-valued function on phase
space. Assuming certain "natural" requirements for the
evolution of p, one derives a unique equation for the evo-
lution of p. However, the density matrix fails to be posi-
tive semidefinite, which is necessary for a consistent
probabilistic interpretation. It is discussed how in certain
"very semiclassical" limits, the density matrix is positive.

In the semiclassical theory which is used to describe
the inflationary universe, quantum fluctuations do not
affect the dynamics of the (classical) metric. Still, esti-
mates have been made of what this effect would be. We
have discussed conditions under which such estimates
may be valid; if the underlying probability distribution is
not sharply peaked about the physical quantity of in-
terest, the methods currently used to estimate classical
perturbations may be misleading. However, the real
problem is that one must postulate an abrupt change in
the dynamical role of the quantum fluctuations.

So it appears difficult to construct semiclassical
theories in which quantum fluctuations cause perturba-
tions in the classical variables. However, one should not
be too cocky; we will finish with an example of such a
theory, described by a density matrix p (as in Sec. III) in
which p is positive, and satisfies all the other require-
ments of Sec. III except that the equation of motion for p
is nonlinear in p.

Indeed, as in (3.5) let H =H] +H2+ Vz, and let

8=fH Trp =H] + (H2 ) + f Vz Trp,

H =TrH p= H, +H2+Tr Vr p

so that H is an operator and H is a function on phase
space. Let the density matrix evolve according to

p= &l»p)+(H p—
l pB. (6.1)

This has the correct noninteracting limit, is invariant
under transformations on phase space and Hilbert space,
and has a Hermitian positive-definite evolution. [To
show positivity, let p =X ~ c~ p ~p ~, where p „ is a func-
tion and p„ is an operator. Then (6.1) is satisfied if each
of the pz evolves according to the Poisson brackets, and
each p„evolves according to the commutator. ] Now let
us look at dispersions. For example, for two coupled har-
monic oscillators with V~ =o.x,x2,

d
dt
—(bp]p2) = —k](bx]p2) —k2(bxpp] ) .

This differs from the full quantum-mechanical theory
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in that the interaction does not enter on the right-hand

side; in the full theory, the additional terms
—t7 ( hx zp 2 ) —o ( bp] x, ) would appear. Hence, here

we have a mixing of the quantum and classical Auctua-

tions, but it is independent of the interaction. This is

perhaps peculiar, but as has been pointed out, perhaps
there is always going to be something peculiar about
semiclassical theories.
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APPENDIX

Here we show how to solve for the density matrix of
the semiclassical theory of Sec. III when the potential is

I

quadratic,

2 2
1 P& Pz 2 2H= — + +k,x] +k2x2+ox]x2 . (Al)
2 m] m2

As explained in Sec. III, for this Hamiltonian the equa-
tion of motion for p is identical to that for Wigner s func-
tion, which is known since we know the solution to the
full quantum-mechanical problem for (Al). One expects
that a density matrix which is constructed from sharply
peaked simple harmonic-oscillator coherent-state wave
functions mill have the correct positivity properties.
Therefore, we will compute Wigner's function (i.e., p)
constructed from a wave function which is the product of
coherent states in the center-of-mass coordinates Q;
[those coordinates which diagonalize (A 1)]. Define the
transformation A; between the two sets of coordinates
by Q;=A;Jx =gU, "]rImtxj, where U is unitary. Then
the product of the two normal-mode coherent-state wave
functions, reexpressed in the x, ,x2 coordinates, is

0'(x],x2)=g]]72expI —
—,'[a, (A] x —R]) +a&(A2 x, R2} ]je—xp[ i(A—] P x +A2 P x +]}]]+]}1]z)], (A2)

where R, =Qocos(k;Im; )'r t, p;=]]t 'dldtR;, ct, =Pi 'k, lm, , and p;(t)= —,'(k;Irn;)' ——,'a;Qosin2(k;Im;)'~ t, and
rt2 =a, I&a..

-2', u]Ia
Next one computes Wigner's function F = f dtv e ' %(x„x2+]o)]p'(x'],xz —w) for the wave function (A2), and

therefore we have a solution to (3.6) for ]o (i.e., F), for the Hamiltonian (Al):
1/2

a&@2m 2p(x],x'»x»p2) =—
2 0' exp[ i (x, —x', )( A»—P]+ Az]P2)]

XexpI [+1(A]lx]+A]2x2 R] } ++2(A2]x]+A22x2 ~2}

+ct]( A]]x] + A]2x2 R 1 } ++2( A2]x] + A22x2 R2) ]I

1 P2 P2Xexp —— +y +m2A. (x, —x', ) 2il +m—2 +y (x, —x' )0. 2 1 ]

where y = ( A 22132+ A ]2P] ), tT = (az A &2 +a] A ]2 ), and

1
( +1 A 11 A 12 ++2 A 22 A 21'Qm,

In the weak-coupling limit, U, 2
———U2& ——e, and U&& ——U22 ——1 ——,e, where e is given in Sec. III. Tracing over the

quantum degrees of freedom and taking the weak-coupling limit yields the expression in Sec. III.
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