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This paper reexamines the statistical quantum field theory of a free, minimally coupled, real sca-
lar field ® in a statically bounded, classical Friedmann cosmology, where the time-dependent scale
factor (1) tends to constant values ©; and Q, for t <¢, and ¢ > t,. The principal objective is to in-
vestigate the intuition that “‘entropy” S correlates with average particle number (N ), so that in-
creases in (N ) induced by parametric amplification manifest a one-to-one connection with in-
creases in S. The definition of particle number N, becomes unambiguous for ¢ >¢, and t <t,,
where the spacetime is static, the spatial modes tk for early and late times being coupled by Bogo-
liubov coefficients a; and B;. The textbook entropy associated with some density matrix p (for a
state either mixed or pure) is conserved since p evolves unitarily, so that one is led instead to consid-
er a new measure Sy(?) defined in terms of P({k,N,}), the probability of observing N, quanta in
each mode k, which may be viewed as a diagonal component of p in a number representation. A
key observation then is that (N, (#,)) —(N,(¢,)) is guaranteed generically to be positive only for
special initial data which, in a number representation, are characterized by “random phases” in the
sense that any relative phase for the projection of p(¢,) into two different number eigenstates is “ran-
dom” or “unobservable physically,” and averaged over in a density matrix. More importantly for
the notion of entropy, random-phase initial data also guarantee an increase in the spread of
P({k,N,}), so that, e.g., the sum of the variances AN 4, (t,) exceeds the initial AN, (¢,). It is this
increasing spread in P, rather than the growth in average numbers per se, which suggests that, for
initial data manifesting random phases, Sy(?,)> Sy(t,), a result established rigorously in the limits
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of strong and weak particle creation.

I. INTRODUCTION

It is an empirical fact that, at some level, the Universe
manifests (at least locally) an arrow of time. On the one
hand, there exists a “psychological arrow” corresponding
to the fact that one distinguishes between a future and a
past. On the other, there exists a more “practical arrow”
corresponding to the fact that, whereas certain processes
appear commonplace in everyday experience, their time
reverses are (almost) never observed. Given the recogni-
tion in the twentieth century that the Universe as a whole
is expanding, it has seemed natural to conjecture a con-
nection between this other (?) temporal asymmetry and
the observed arrow of time.

The most extreme sorts of speculations' along these
lines would suggest that the arrow of time is in fact an
absolutely direct consequence of this expansion, so that if
the Universe were eventually to recontract, the arrow
would necessarily reverse itself. Another, perhaps less
radical, point of view is that, at some level, this arrow
arises as a manifestation of electromagnetic, and other,
retardation effects, i.e., the fact that one describes the
electromagnetic field in terms of retarded, rather than ad-
vanced, potentials. (This notion, which was originally
considered in a naive—and erroneous—way by
nineteenth-century physicists as a possible justification
for the Boltzmann equation,"' was later resurrected in the
context of an expanding universe.’) A third, less contro-
versial, point of view holds simply that this arrow is a
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reflection of the fact that the Universe started from very
special initial conditions, the nongravitational degrees of
freedom being, quite possibly, very nearly “randomized”
or “at equilibrium,” but the gravitational degrees being
necessarily “very far from equilibrium.” It is, e.g., clear
that, early on, the Universe must have been very nearly
homogeneous and isotropic, very different from the gen-
eric state for some gravitational field.*

Within the paradigm of statistical physics, it has be-
come standard to introduce the notion of an “entropy,”
changes in which are supposed to reflect this arrow of
time. The key intuition here is that this arrow manifests
a systematic evolution towards a “more random” state.
A natural question, therefore, is whether one can identify
a meaningful notion of entropy in the framework of
cosmology, e.g., for a quantum field.

The cosmologists of course have a simple answer to
this question.’ Specifically, they are accustomed to as-
serting that the entropy (density) of the Universe is pro-
portional to the number (density) of (massless) quanta, so
that, e.g., a photon-to-baryon ratio of ~10~2 is reinter-
preted as an entropy-to-baryon ratio of ~10~8. Unfor-
tunately, however, there are problems, at least
superficially, in maintaining such an interpretation.

(1) That the entropy and number densities are propor-
tional one to another is a specific consequence of the as-
sumption of a thermal density matrix p,, which would
not necessarily hold for some different p (Ref. 6). This
poses difficulties, e.g., because the form of an initial py,
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typically cannot be preserved in the presence of a dynam-
ical cosmology: “Equilibrium” implies static.” And,
moreover, even assuming that it makes sense to speak of
a thermal matrix in some adiabatic sense, there is a ques-
tion of why the Universe is in such a state. One might,
e.g., wish to explain how it is that the matter fields of the
Universe appear nearly thermalized whereas the gravita-
tional field itself is not.

(2) Suppose that the Universe is in fact globally hyper-
bolic (at least in some large-scale sense), so that one can
introduce a foliation into a family of everywhere space-
like hypersurfaces 2#(¢) parametrized by time ¢. Suppose
further that, on each surface, one can introduce a com-
plete set of modes ¥, (x4, ¢), taken, e.g., as eigenfunctions
of a time-dependent spatial Laplacian A(x%¢), and that
these modes ¥, vary smoothly as functions of ¢. It is then
standard to decompose a quantum field, say a real scalar
field @, in terms of these modes, and to view the mode
amplitudes as coordinates in terms of which a Hamiltoni-
an description is formulated. The net result is that the
quantum field will be characterized by a density matrix
p(t), the evolution of which is governed by a unitary
Liouville equation

9,p(t)=—i[H(1),p(1)] (1.1)

with [, ] denoting a commutator and H (¢) the oscillator
Hamiltonian. Ordinary statistical mechanics then sug-
gests that one define an entropy®

S(t)=—Trp(t)np(?) , (1.2)

but it follows from (1.1) that dS/dt =0. Because of the
unitary evolution, the entropy is in fact conserved. This
means that, even if the number of particles is changing,
the entropy S cannot.

The object of this paper is to focus on the nature and
origins of these sorts of temporal asymmetries in a
cosmological context by addressing two basic questions.

(1) In the framework of quantum field theory in a fixed
classical background spacetime, what initial conditions
guarantee the net creation, as opposed to destruction, of
particles? Does an increase in the average particle num-
ber reflect simply the fact that the Universe is expanding,
so that this average number will begin to decrease if the
Universe begins to recontract, or is the connection be-
tween particle creation and a dynamical spacetime a
more subtle one? Are the initial conditions which
guarantee a net particle creation (which, at least tacitly,
is generally assumed to be obtained) in fact reasonable
physically?

(2) Is there some natural, well-motivated measure of
entropy S, justified, e.g., on the basis of information
theory, (a) which is not a constant of the motion, i.e., for
which dS /dt=£0, and (b) increases in which do manifest a
direct, essentially one-to-one connection with increases in
the average particle number { N, ) in each mode k.

These questions will be largely answered here for the
simplest plausible model of interest, namely, a free,
minimally coupled, real scalar field ® in a spatially flat
Friedmann cosmology. What makes this model tractable
computationally and particularly illuminating physically
is that there exists a natural spatial plane-wave decompo-
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sition «exp(tik-x), in terms of which each pair of
modes +k decouples from all other modes k’. This im-
plies, in particular, that one is really focusing on the evo-
lution of single pairs of oscillators with time-dependent
frequencies w(t), so that the relevant physical processes
whereby particles are created (or destroyed) is nothing
other than a “parametric amplification” along the lines
encountered in quantum optics.’

In general, of course, when the spacetime is dynamic
there exists no natural definition of particle, even on some
preferred spacelike hypersurface such as the t=const sur-
faces of a Friedmann universe. Only in some adiabatic
approximation does the notion of “particle” make sense.
For this reason, it is instructive, following, e.g., Parker!®
and Zel’dovich,!! to consider the (artificial, but at least
well-defined) case of a “statically bounded” cosmology, in
which the time-dependent scale factor () tends to con-
stant values £, and Q, for ¢t <¢, and ¢ >¢,. This implies
that the spacetime is flat for early and late times, so that
one really knows what is meant by “particle,” and it
definitely makes sense physically to contrast an initial
average number (N, (¢,)) with the final (N, (¢,)). (The
connection with a more realistic Friedmann cosmology,
where “particle” can be defined adiabatically via a WKB
definition, is considered briefly in Sec. VII.) The key
point then is that the initial and final creation and annihi-
lation operators are connected simply by Bogoliubov
coefficients a;, and B, relating modes tk, which encode
all the relevant information about the intervening dynam-
ics.

For intermediate times, ¢, <t <t,, the notion of “parti-
cle” is ill defined, but it still makes sense to probe the
state of the quantum field, computing, e.g., the average
value of the Hamiltonian H on a t =const hypersurface.
This is, e.g., what the cosmologist envisions when speak-
ing of the “time-dependent energy density of the
Universe.” A key observation, therefore, is that even
when the spacetime is dynamic it is possible, for
sufficiently simple cosmological models, such as the
Friedmann universe, to view the normal-ordered Hamil-
tonian

H():= 3 0,(ta,)(a,(=3 w,N,

modes

(1.3)

as a sum of contributions from a set of abstract ‘“modes”
(with no a priori connection to any meaningful notion of
particle), V, being interpretable as an abstract “number
operator.” The evolution of the average energy of the sys-
tem can then be tracked legitimately by following the
continuous evolution of the average (W, (1)).

Both the in-out and continuous descriptions will be
considered here, but always within the standard para-
digm of quantum physics, by studying the formal evolu-
tion of (N, ) or (W, ) without explicit reference to the
question of what is meant by the collapse of a cosmologi-
cal wave function. The reader uncomfortable with apply-
ing statistical mechanics and/or quantum field theory to
the Universe as a whole is invited to interpret the analysis
here as representing statistical quantum field theory for a
scalar field in an expanding or contracting balloon with
appropriate boundary conditions, the results obtained



below being then understood as properties relevant for an
ensemble of systems, where the usual probabilistic inter-
pretation of quantum theory is well established.

A crucial question, of course, is how to relate all this to
some meaningful time-dependent ‘“‘entropy,” since, as
noted already, the conventional entropy — Trp Inp cannot
change with time. The key thereunto is (a) to consider a
“‘coarse-grained” density matrix pg, constructed from the
true p via a noninvertible mapping M: p—py, and then
(b) to use this pg to construct a coarse-grained entropy

Sp=—Trpglnpg , (1.4)
which certainly need not be conserved: dSg /dt£0 (Ref.
12). The physical idea is that pg, which contains less in-
formation than the full p, should reflect only those
features of the system actually accessible to an experi-
mentalist, and that the physically relevant entropy Sy
should involve only the accessible pieces of p.

As a concrete example, Kandrup and Hu'® have, in the
framework of quantum field theory, considered the entro-
py associated with a “partial” description which entails a
complete ignorance of all correlations among the modes
of some field. Thus, given the many-mode density matrix
p({k}), one can construct a one-mode reduced density
matrix g (k) via a partial trace, and then use the g (k)’s to
construct a pp =[[«g (k) in terms of which Sy is evalu-
ated. And similarly, in ordinary quantum mechanics one
can consider'* an entropy reflecting instead a “partial”
description in which the reduced one-particle density ma-
trices f(i) for each particle i —or perhaps the two- or
three-particle f,(i,j) or f4(i,j, k)—are treated as accessi-
ble, but in which higher-order density matrices such as
f17 in general are not. This is, e.g., one way in which to
interpret the standard Boltzmann'® entropy which is,
after all, constructed from a one- rather than N-particle
density matrix or distribution function.

These sorts of ‘““‘coarse grainings” are satisfying in that
they lead to entropies S; which evolve in accord with
physical intuition: (1) One concludes that dSg /dt =0 if
and only if the interaction Hamiltonian H'=0, i.e., if H
decouples into a sum 3, H;, so that the theory is in
some sense trivial; (2) if H'=£0 and, at some initial time
tg, p=pgr, then S(t)>S(ty) for all ¢t >1t,; (3) assuming
that p(tq)=pr(ty), one can demonstrate perturbatively
for many model interactions that, for t > ¢y, dSg /dt > 0.
The last two criteria, which capture much of the content
of an H theorem, emphasize the role played here by “un-
correlated” initial conditions.

Unfortunately, however, this approach is not good
enough if one wishes to connect particle creation with en-
tropy generation. Specifically, as for a Friedmann
cosmology, one can in fact obtain particle creation from
“parametric amplification” even if H'=0, so that
dSg /dt =0. The Sp of Kandrup and Hu is useful in
tracking particle creation induced by interactions, but
not creation induced by the amplification of a single
mode.

The alternative adopted here is to eschew entirely this
Kandrup-Hu entropy and consider instead a very
different coarse graining inherent to the uncertainty prin-
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ciple, which implies the impossibility of measuring simul-
taneously more than a complete set of observables, such
as, e.g., the number of particles { N, ) in each mode k.

Section II of this paper introduces the desired measure
of entropy Sy, arguing in particular that, from the
viewpoint of information theory, it is in fact more natural
to consider than Sy or the ordinary —Trplnp. Section
IIT then recalls the relevant features of quantum field
theory in a Friedmann cosmology, emphasizing (a) what
is true quite generally and (b) what makes sense only in a
“statically bounded” cosmology. Section IV evaluates
the difference 8N, = (N, (t,)) — (N, (¢,)) for generic ini-
tial data in a “statically bounded” cosmology, establish-
ing thereby one of the two principal results of the paper:
namely, that 8N, is typically guaranteed to be non-
negative only for initial conditions manifesting, in a well-
defined sense, “random phases.” Section V then turns to
the question of a continuous evolution for the average
(W, (1)) implicit in (1.3), deriving in particular coupled
“Ehrenfest” equations relating (W, p) to the average
values of two other operators, say y, and o,. Section VI
addresses the sense in which the measure of entropy Sy
proposed here really does correlate with particle number,
establishing thereby the other principal result of this pa-
per: namely, that, for initial data manifesting “random
phases,” so that 0N, >0, the difference &Sy
=Sy (t,)—Sy(t,) should also be positive, a result proved
rigorously in the limits of weak and strong particle
creation ( | B, | <<1 and |B; | >>1). Section VII sum-
marizes the key results and then speculates on the
issue of whether, in the semiclassical framework of quan-
tum field theory in curved spaces, one might argue plausi-
bly that the Universe could have evolved from an initial
“vacuum’ or some other state with “random phases” to
that which is observed today.

II. A COARSE-GRAINED “PARTICLE ENTROPY”

In noncovariant classical statistical mechanics for a
system with N degrees of freedom, the fundamental ob-
ject is an “N-particle” distribution function pu, defined on
a 2N-dimensional symplectic manifold (phase space)
equipped with measure dI', which admits an interpreta-
tion as the probability density for finding the system in
the neighborhood of any given phase-space point. For a
single realization, this u({x;,p;};t)=u(T;t) will at any
instant have support only at a single point, whereas, for
an ensemble of systems, this singular g will in general be
replaced by a smoother function or distribution. The key
notion of information theory is that, with this u, one
should associate an entropy'®

S(t)=— [dT u(T;0)Inp(Tse) 2.1
which provides a measure of “how random” u really is.
One anticipates that the evolution of y will satisfy a Liou-
ville equation o,u= —{ H,u}, where H(t) is the Hamil-
tonian and angular brackets denote Poisson brackets.
And it follows trivially from such a unitary evolution that
dS /dt =0.

Physical experiments typically correspond, however, to
partial or incomplete determinations of u; and, as such, it
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proves natural to introduce a coarse-grained distribution
function ug, genmerated via a noninvertible mapping
M: pu—ppg, which corresponds more closely to what an
experimentalist actually measures. Thus, e.g., M could
reflect an obvious coarse graining in which the phase
space is partitioned into some larger, quasimacroscopic
cells, or, alternatively, a more subtle coarse graining
reflecting an ignorance about correlations amongst the
degrees of freedom. The key point simply is that given
g, which lives in some (possibly different) space
equipped with measure dy, there is again a natural
information-theoretic entropy

Sp(t)=— [dypg(y;Dinug (v;t) (2.2)

which, since uy need not evolve unitarily, will in general
exhibit a nontrivial time dependence: dSg /dt=£0.

In quantum physics, the distribution function p is re-
placed by a density matrix p defined instead in some Hil-
bert space. This p no longer admits a true probabilistic
interpretation but, nevertheless, it has seemed natural'’
in analogy with (2.1) to define a quantum “entropy”

S(t)=—Trp(t)Inp(t) , (2.3)

where Tr denotes an abstract trace. The density matrix p
will presumably satisfy a unitary evolution equation
9,p=—i[H,p] formally analogous to the Liouville equa-
tion for u, and it follows, therefore, once again that
dS /dt =0.

At this stage, one can simply introduce a coarse grain-
ing M: p—py and proceed formally as for the classical
U, but in so doing one is avoiding an important question
of principle, namely, that p is not a probability density, so
that, strictly speaking, (2.3) cannot be justified on the
basis of information theory. In some given representa-
tion, the diagonal components of p can be interpreted
probabilistically, but the full p itself cannot. Thus, e.g.,
for a single particle in a configuration-space representa-
tion, p(x,x)=|W(x)|? is the probability density for
finding the particle at x, but a generic p(x,x")

*(x)W(x') for x£x' cannot be interpreted so simply.

This sort of difficulty led historically to the definition
of Wigner functions,'® objects constructed from p which,
in at least a limited sense, can be interpreted as quantum
probability densities. Thus, e.g., the ‘‘one-particle”
Wigner function f,(x,p) can be interpreted as a proba-
bility density in the sense that (i) fdp Sfw(x,p) and
f dx fy(x,p) represent the correct configuration- and
momentum-space densities and (ii) the expectation values
of operators A4 (x) and B (p) satisfy the “right” relations

(A(x))= [dxdp A(x)f(x,p)

(2.4)
and

(B(p))= [dxdpB(p)fylx

This probabilistic interpretation is, however, unsatisfac-
tory in that f,(x,p) is not guaranteed necessarily to be
positive—although one can show in certain limits' that,
if some initial £y (z,) is positive, f remains positive for
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t >ty,—and, moreover, in that fy, cannot be used to
compute the expectation value of some operator C(x,p)
involving both complementary observables x and p. Nev-
ertheless, it has seemed reasonable, at least when f, is
positive, to treat it like a (reduced) distribution function
and to use it to define a measure of entropy Sy,. This
program can, e.g., be exploited to provide a genuine
quantum basis for the semiclassical distribution functions
which one is accustomed to associating with fermions
and bosons.?® There remains, however, the basic problem
that fj is not a true probability density or even a
genuinely measurable object, unlike (say) a one-particle
distribution function, the form of which, at least in prin-
ciple, could be determined experimentally.

The real difficulty of course is the fact that, within the
framework of quantum physics, it is impossible to mea-
sure simultaneously the values of noncommuting observ-
ables. It is, e.g., meaningless operationally to speak of a
joint probability density P(x,p) for measuring position
and momentum at the same time. Rather, one might ar-
gue operationally that the best that one can do in probing
the state of some system is measure some complete set of
observables © to which correspond some set of possible
outcomes A;, each of which will be realized with some
non-negative probability P(i). It is clear that, within the
ordinary probabilistic interpretation of quantum physics,
these P(i)’s are, at least in principle, measurable quanti-
ties which could be determined by repeated observations
of identically prepared systems. For such an ensemble of
systems, one could have equally well chosen a different
complete set of observables ©, with outcomes 7L and
probabilities P(j). The choice of observables reﬂects an
observer’s bias as to what is interesting and/or impor-
tant. The crucial point, however, is that the observer
cannot have it both ways simultaneously: one can deter-
mine the P(i)’s and the P(j 7)’s, and the probabilities for
any other complete (or less than complete) set of observ-
ables, but not joint probabilities like P (,7).

Given this recognition, it seems reasonable from the
standpoint of information theory to assert that the “natu-
ral” measure of entropy must reflect a choice of observ-
ables O, and that, given such a choice, one should identi-
fy an entropy

z P()InP(i (2.5)

which will in general vary as a function of time:
dSg /dt=£0.

This Sg, like any nonconserved “entropy,” depends on
the choice of observables, being built from objects P (i)
containing less information than the full density matrix p.
What is, however, important to appreciate fully is that, in
a very fundamental way, quantum physics implies an ““in-
trinsic” coarse graining. In the framework of classical
physics, one could in principle measure all of the N-
particle distribution function u (which is why it must ad-
mit a probabilistic interpretation). In contrast, however,
in quantum physics one can only measure a complete set
of observables, corresponding to the diagonal elements of
p in some basis (which is why only p(i,i)=P (i) must ad-
mit a probabilistic interpretation).
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The remaining point to observe here is that, within the
particular framework of (canonical) quantum field theory,
there exists a “natural” basis or representation in terms
of which to work, namely, the Fock representation, and a
“natural” complete set of observables, namely, the num-
ber of quanta N, in each mode k on some given spacelike
hypersurface 2#(¢). For an ensemble of identical systems,
one could in principle measure the probability
P({k,N,}) of finding N, quanta in each mode k. And,
given this P, one could then introduce a “coarse-grained
mode entropy”?!

SNZ_Z 2 P({k,Nk})lnP([k,Nk])
k N €k

(2.6

The obvious question is whether or not the behavior of
this Sy agrees with one’s intuition as to the behavior of
an “entropy.”

Consider, for simplicity, a bosonic scalar field ® for
which, at least in principle, any number N, is allowed in
each mode (no exclusion principle). Suppose then that
the modes are uncorrelated one from another, so that the
full probability P({k,N,}) factorizes into a product of
single-mode probabilities P,:

k

And now suppose further that each P, is given as a
power-law distribution

Ny

P(k,N)=C(k)A(k) "k, (2.8)

where, for each k, §{ and A are independent of N,. This
includes, e.g., the thermal distribution appropriate for a
free scalar field in flat space where, in terms of the
natural frequency @ and temperature kz7T, A (k)
=explw/kyT). It then follows that??

(N,)=[A(k)—1]7! (2.9)
and that Sy =3, S;, where
S, =—(N)In{N,)
+(14+ (N NIn(1+{(N, )) . (2.10)

For the special case of flat space, the sum over modes is
to be reinterpreted as an integration (27)7*V [ d’k,
where V is the three-dimensional volume, so that, for a
thermal state of a massless field (o =k?2),

Sy=2mHkyT)*V /45 , @.11)

which is the “right” textbook answer for the entropy of
scalar blackbody radiation.?’

More generally, note also the connection between
(2.10) and the entropy Sy which one is accustomed to as-
sociating with (1) a semiclassical one-particle distribution
function for bosons?* or (2) a one-particle Wigner func-
tion fy(x,p) (Ref. 25). Specifically, for a spin-zero field
in the framework of nonequilibrium quantum statistical
mechanics, it is customary in flat space to define a kinetic
theory entropy

Sy=02m> [dx [d*k S(x,k),
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where
S(x,k)=—fy(x,k)nfy(x,k)
+[1+fW(x’k)]1n[1+fW(x)k)] ’

the second term in (2.12) being interpreted as reflecting
“quantum corrections.” [More generally, one would
have a correction involving (g +€f} ), where g is a spin-
or polarization-weight factor and e==1, depending on
whether the field in question is bosonic or fermionic.] It
is, e.g., for this Sy that one derives a quantum “H
theorem” inequality dSy, /dt >0 (Ref. 26).

It is important to stress that the Sy of (2.6), like any
observable dependent Sg, does not distinguish a priori
between mixed and pure states: a generic pure state, like
a generic mixed state, will have a nonvanishing Sy.
What Sy does care about is whether the field is in, or
close to being in, an eigenstate of numbers. Specifically,
one sees that Sy >0 with equality holding if and only if
the true p is some eigenstate of the N, ’s. This implies, in
particular, that Sy per se cannot manifest a one-to-one
connection with particle number since there exist
infinitely many states with nonvanishing (N, )’s for
which Sy =0.

The key point, however, is that changes in some initial
number (N, ) induced by the subsequent dynamics could
still very well correlate with changes in the entropy Sy.
If, e.g., particles are created by parametric amplification
in an expanding universe, one would not simply see an in-
itial eigenstate of numbers displaced to another eigenstate
of higher numbers. Rather, one sees a particle creation
characterized by a nontrivial probability distribution.
For this reason, one anticipates that an initial eigenstate
of numbers with Sy =0 will necessarily evolve to a final
noneigenstate with Sy >0. And, more importantly, as
discussed in Sec. VI, there exists a broad class of initial
data with Sy >0, namely, those evidencing “random

phases,” which lead necessarily to an increase in both
(N, ) and Sy.

(2.12)

III. THE FIELD-THEORETIC SETTING

Consider a real, minimally coupled, massive (m) scalar
field ®, characterized by an action

S=—1[d*%*(—g)"%g"V, oV, D +m?d?)
(1,v=0,1,2,3) . (3.1)

For a spatially flat Friedmann cosmology, the line ele-

ment may be taken of the form
ds’=—dt’ + QX1)8,,dxdx® (a,b=1,2,3), (3.2)

whence follows the identification of a time-dependent La-
grangian

L(n=10%0) [d*x[(3,9)*— 0 X1)|3,® | 2—m>®?] .
(3.3)
The canonical momentum

P(x%1t)=8L /8(3,®)=0%3,d(x%1?) , (3.4)
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so that the time-dependent canonical Hamiltonian
H()=107%0) [ d*x [P+ [3,® |2 +m Q% 1)®?] .
(3.5)

The object now is to use canonical techniques to quantize
® subject to the equal-time commutation relations®’

[®(x9,1),P(x"%t)]=[P(x (x'%1)]=0
and (3.6)
[D(x%1),P(x"%0)]=2m)%i83(xT—x"?) .

Although this spacetime is dynamic, so that the no-
tions of positive and negative frequencies are not well
defined (except in some adiabatic limit), the spatial
t=const hypersurfaces are homogeneous and isotropic,
so that there exists a natural expansion of ® as a sum of
spatial plane waves «exp(ik-x) which represent eigen-
functions of the spatial Laplacian A=8V_V,. Thus, by
writing ® as a sum,

d)(x“,t)=(27r)_3/2fd3k g, (texp(ik-x) , 3.7
where the reality of & implies that gf=q_,, the La-
grangian (3.3) can be reexpressed in the form??

L(=10%0 [d*k(3,4:0,9_s —wlquq_x)  (3.8)
with w? =k2/Q?+m?. The Hamiltonian
H(0=107%0) [ d3k[pep _ +Q(D0} (Dgeq_ ], (3.9)
and the field commutation relations (3.6) imply that

[q1,p i ]1=i84 (3.10)

Generically, the “modes” *k are coupled by the Hamil-
tonian, but one can still view H as a sum of pairs:

— R AYE

—sz>0H(k, kid'k . (3.11)
At this stage, one can then formally introduce time-

dependent operators a,(t) and a,z (¢), constructed from

g+, and p4; via the prescriptions

:(ZkaS)—l/Z(ka3qk +ipk) ’
¥ (3.12)
ay =20, Q%) w0, Vg 4, —ip ),

for which the equal-time commutation relations take the
form

[ak,akr]=[a,z,a,fl]:0 R

) (3.13)
lax,ar ]=08y -
It follows immediately that
oplajay—a' va_)=2i0}(pq_y—p _4qx) (3.14)

the k-space integral of which vanishes by symmetry, so
that, more importantly, in terms of a ,I and a,, the Hamil-
tonian

H(t):%fa”k oi(aja; +agay)

= [d*k o, (D[af(t)a, (1) +1] . (3.15)
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By grouping together the modes *k, this can then be in-
terpreted as a sum

Ho=J, ,

Efk >0d

where, at least mathematically, in hght of the commuta-
tion relations (3.13), Mk)= xrak +a’ xad_j; may be in-
terpreted as the “total number of quanta in modes tk.”
The field itself is realized as a sum

(x40 =02m) 3" [ d*k(20,0°) "1

d3k ﬂ)k(azak +atka_k +1)

k o) (D[NK, 1) +1], (3.16)

X [agexp(ik-x)+ajexp( —ik-x)] .
(3.17)

It is to be emphasized that the a,f’s and a;’s are purely
artificial mathematical constructs, independent of any
physical notion of “particle.” What makes this interpre-
tation useful are the facts that (1) in terms of this con-
struction, one has separated the field into a sum of cou-
pled modes *k, the evolution of each pair of which is
comparatively simple, and (2) one now has a simple way
in which to evaluate and understand quantities such as
the expectation value of H on a hypersurface 2#(¢). For
the special case of a “statically bounded” universe, this
structure can also provide a useful interpolation between
regions of the spacetime where the notion of “particle” is
well defined.

Following Parker'® and Zel’dovich,!' consider now
such a “statically bounded” universe, in which the scale
factor € tends to constant values ; and , for 7 <1,
and ¢ >t,, so that a positive-negative-frequency decom-
position, and hence an unambiguous definition of “parti-
cle,” is possible asymptotically. Generically, of course,
the field ®(x % ¢) can be realized in the form

(D(x”,t)=(27r)“3/2fd3k(2wkﬂ3)_“2
X[ A (7)explik-x)
+ A,:rllz_k(‘r)exp( —ik-x)],
(3.18)

where the operators 4 ,I and A4, are independent of time,
and, in terms of the rescaled time d7=Q ~3dt, the func-
tions ¢, and ¢_; =1y} solve

Y+ QSwi =0 .

For t <t;, 1=}, is a constant, so that one can look for
solutions to (3.19) for which

(3.19)

¥ —exp( —iw, Q37)
and (3.20)
V_,—exp(+in, Qi) .

Given such solutions, one then has an unamblguous in-
terpretation of N, (¢, )—-A Ay and N_;(t))= Al P
as representing numbers of ‘particles” with spatial mo-
menta k /Q, and —k /Q,.



37 ENTROPY GENERATION, PARTICLE CREATION, AND . ..

Alternatively, since, for ¢t >1t,, 1=, is again a con-
stant, it must be true that the late-time solutions to (3.19)
evolving from the initial (3.20) can be written in the form

P, =agexpl —io, Q37)+Bexplio, Q37)
and (3.21)
¥, =afexplio, Q37)+Brexp(—iw, Q37) ,

for some nonvanishing a; and [3;, which manifests an ob-
|
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vious mixing of positive and negative frequencies. To ac-
tually compute the values of a; and 3, explicitly in terms
of Q(¢) is in general very difficult (if not impossible), but
one can conclude immediately from the Wronskian con-
dition on solutions to (3.19) that

lay [ 2= | Bk |*=1. (3.22)

By inserting into (3.18) the ¢ ’s of (3.21), one sees that

<I>(x“,t)———(21r)_3/2fd3k(2mkﬂ3)‘1/2{[akAkexp(ik-x)+BZA,:exp(—ik-x)]exp(——ia)kQ3T)

so that, with an obvious relabeling of dummy indices, one
can interpret

+[a,fA,fexp(—ik-x)+Bk Aexplik-x)]explio, Q7)) , (3.23)
f
of the vacuum state |0,0), a generic
ln,m)=(n'm")~245" 4™ 10,0) . 4.3)

ay=a, A, +Bt A", and aj=ala[+B 4 _,, (3.24)

respectively, as annihilation and creation operators for
bona fide particles at times ¢ > ¢,. This implies in partic-
ular that the late-times physical number operators
Nk(tz)zazak and N_k(tz)zatka_k. Note also for fu-
ture reference that, by virtue of (3.22), (3.24) can be in-
verted to yield

Al=aal —Bia_, and Ay=ala,—Bta', . (325

IV. IN-OUT PARTICLE CREATION AND DESTRUCTION

The object here is to consider a ‘‘statically bounded”
Friedmann cosmology and, for various choices of initial
data, to compute the initial and final average particle
numbers, { N, (¢,)) and N,(¢,)), in each mode k at times
t <t; and t > t,, when the Universe is static and the no-
tion of “particle” is well defined. In so doing, it is con-
venient to work in a Heisenberg representation and note
simply that, by virtue of (3.24), the final particle number
Nk(tz)za;ak can be expressed in terms of the initial
creation and annihilation operators:

Nty = | (24 A+ 1B 1247, 4,

+akBkA_kAk+aZBZAIjAT_k . (4.1)

Because this N, (¢,) involves only the modes tk, and is
independent of all other modes k’, it is clear that one
need not focus on the full content of the initial wave func-
tion |in). Rather, all that is relevant in computing the
final {N,(t,)) is the reduced wave function |k, —k ) in-
volving only the modes k. By working in a number rep-
resentation, this |k,—k) can be viewed as a sum of
eigenstates | n,m ) corresponding to n quanta in mode k
and m in —k. And thus it will be useful to consider a
generic initial state

|k, —k)= i

n,m =0

Com | HsM ), (4.2)

where the c,,’s are complex expansion coefficients, so
chosen that | k, —k ) is normalized to unity and, in terms

It will moreover prove useful to consider density ma-
trices p(k, —k) constructed from a collection of states
{|k,—k)}; as a sum:

plk,— k)= v, ks —k ) {k,—k |, . (4.4)

These p(k, —k)’s, the consideration of which can perhaps
be justified by asserting that certain features of the initial
state were ‘“‘unobservable,” or, perhaps more plausibly,
that certain features of the initial state were specified “at
random,”? may be interpreted as reduced two-mode den-
sity matrices constructed from a more complicated
many-mode density matrix p({k}). (A partial
justification for the consideration of such density ma-
trices will be presented in Sec. VII.)

In what follows, it will not be important to know the
explicit dependence of the Bogoliubov coefficients «; and
B) on the scale factor Q(z). Rather, what is important
simply is to recognize that, if d{)/dt=£0, the B,’s are
necessarily nonvanishing. It should, however, be ob-
served that a comparatively simple expression for 3, does
obtain for a time-symmetric spacetime [with
Q(t)=Q(—1)] in the limit that |3, | is small, so that the
dynamics induces only comparatively small changes in

the average particle number. Thus, following
Zel'dovich,'! suppose that
o (t)=wg[14+€Q(1)], (4.5)

where € is small and Q(#)=Q(—¢)—0 as t—>*too. It
then follows that

Bi~2iew, [ :c dt Q(1)cos(2wqt) , (4.6)

which, to the extent that the amount of particle creation
involves only |, |? demonstrates remarkably enough
that, for small changes in (2, it does not matter whether,
for intermediate times 7, <t <t,, the Universe shrank or
grew.

In the first instance suppose simply that the initial state
was the vacuum |0,0). It then follows by definition that
the initial (N, (¢;))=0, whereas (4.1) implies a final
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(N, (t,))=| By | > The dynamics necessarily induces a
particle creation from an initial vacuum.'® As a less trivi-
al initial state, consider an arbitrary number eigenstate
| n,m ). This implies of course an initial (N, (¢;))=n,
whereas the final

(N (t,))=n+(+n+m)|B|*. (4.7)

One obtains once again a net particle creation propor-
tional to |3, | % at a rate, however, enhanced by the fact
that some particles were already present initially. The
key point to observe, then, is simply that the difference
8N, =(N,(1,)) —(N,(z,)) is again positive. And the
real question, of course, is why?

Suppose, e.g., that Q(z)=Q(—t). One could then sim-
ply choose the time reverse of the final quantum state at
times ¢ >, as initial data and, by evolving that state for-
ward in time, obtain a vacuum at times ¢ > ¢,, this corre-
sponding of course to a net decrease in particle number.
The fact that, for an initial numbers eigenstate |n,m ),
particles are created rather than destroyed must be
reflecting something special about the initial conditions.

As an example of an initial state which could lead to a
net decrease in particle number, consider an initial

|&| =d |0,0) +cexp(i&)| 1,1)

consisting of a superposition of the vacuum and a single
pair with momenta t+k /Q,. Here ¢ and d are both real
and positive, so normalized that c24+d?=1, and &

(4.8)

denotes a relative phase. In this case, the initial
(N, (t;))=c?, whereas
8NkE(Nk(12)>—<Nk(t1)>

= | B | [14+2{N(£;))]+2Rele’cda,B;) . (4.9)

The first term on the right-hand side of (4.9), independent
of the relative phase, is necessarily positive, whereas the
second term, involving &, is of indeterminate sign. Con-
sider, as a special case, the limit of weak creation
(|Bx | <<1) in a time-symmetric spacetime. Here, to
lowest order, one has f3; ~ —iB;, where B, is real, and
a, ~1, so that

SN, =2{N (t;))V1—(N,(t,))]'*B,sin{ , (4.10)

the sign of which is determined completely by the phase
£. In particular, one sees that 50% of all possible phases
yield 8N, positive, whereas the other 50% imply instead
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that 8NV, is negative. To the extent, then, that this rela-
tive phase is unobservable or treated as “‘random,” it
would seem natural to replace | £) by a density matrix

p=0m ! [de1EX¢]

which averages over the phases {. And, in this case, it
follows immediately from (4.9) that

(N (1)) =AN () + | Be | L14+2(Ni(£,))] .

If the phase { is treated as random, and averaged over in
a density matrix, one is guaranteed a net increase in par-
ticle number.

As another example, one can consider an initial
coherent state which, as is well known,* is interesting in
that it constitutes a plausible candidate for a semiclassical

configuration. This state takes the form

|k, —k)=exp(—1|z|2—1|s|?)

(4.11)

(4.12)

X 3 (ntm1)=12z"s™ | nm ),

n,m

(4.13)

where z and s are complex constants, related in terms of
arbitrary phases to the average numbers {( N, (¢,)) via

z={N(t;))"%exp(id),
4.14)
s ={(N_,(t,))expliy) .

It is then straightforward to verify explicitly that, for
these initial conditions,

SN, = | Bi | L1+ AN (t)) +{N_,(£;)]
+2 | ag | | B | AN (e YN _ (£,))cosE
(4.15)
where { is defined by the relation

Rea,fBrzs=|a| |Be| |z ]| |s]|coss . (4.16)

Again the net change in particle number is the sum of
two contributions, one necessarily positive, which is in-
dependent of the initial phase, and another, of indeter-
minate sign, which involves the phase but vanishes if that
phase is averaged over in a density matrix.

This is in fact a very general result. Indeed, if one con-
siders an arbitrary initial state (4.2) and calculates the ini-
tial and final average particle numbers, he or she can con-
clude that

N =B |2 [14+ 3 | cum | Xn+m) | +2Re S €yt m 4 1CmnaiBr(n + 1) 2(m +1)172
n,m

n,m

=B | L1+ (Nt + AN _ (D ]H2Re S ¢, 4 1 4 1Cmn @i Br(n + D2 (m + 1'%

One sees, therefore, that 8N, is always the sum of two
sorts of terms. One of these involves only the squared
modulus | B, | %, rather than a; or B, individually, and,
moreover, involves only diagonal matrix elements
(n,m| --+|n,m) and hence real and non-negative
coefficients |c,,, | 2. By contrast, the other terms involve

(4.17)

the (in general) complex product «;f3, and, moreover,
off-diagonal matrix elements, and hence complex
coefficients ¢, , | ,, , 1Cam» the real part of which could be
either positive or negative. The first of these contribu-
tions, independent of phases, is always positive; the
second, involving the phases, is of indeterminate sign but



necessarily vanishes if one averages over the phases in a
density matrix.

To summarize, if the phases are treated as unobserv-
able or random, and are averaged over in a density ma-
trix, it follows that 8N, >0, i.e., that the average particle
number must increase. Alternatively, if the phases are
not averaged over in a density matrix, one can get SN, ei-
ther positive or negative, so that, in particular, in the lim-
it of weak creation, in terms of phases §,,,,,,

6Nk22 2 ]cn+l,m+l} |cnm ]

n,m

XBy(n +DV¥m +1)"%co0st,,, , (4.18)

which is equally likely to be positive or negative.’!

Given this observation, it seems natural to conjecture
that any net increase in the average particle number of
the Universe should be interpreted as a consequence of
the fact that (for whatever reason) the Universe started
off from a state characterized very nearly by *“random
phases,” i.e., where the relative phases associated with

J

§(x,x';t):(27)‘3fd3k(2wkﬂf)’12 cos[k-(x —x")J[{ N, (¢
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the projection of |in) into two different eigenstates of
number was completely random. The plausibility of such
a conjecture, which is currently under investigation, will
be considered briefly in Sec. VII, but it is worth observing
here just what such a “random phase assumption” (RPA)
actually entails.

Most obvious is that fact that, consistent with this
RPA, both the initial and final {®2) and { P?) can be ar-
bitrarily large, as can the average Hamiltonian ( H ), but
that (&) and (P) must both vanish identically. This
latter fact follows trivially from the observation that
RPA implies

(4)=(4)=(ay)=(a])=0.

To probe the structure of an initial RPA state, it is in-
structive to consider the equal-time covariance function
Ex,x";1)=1{D(x,)P(x", 1)+ P(x',1)D(x,1)) . (4.19)

For ¢t <t;, RPA implies simply that

M+, (4.20)

which means that £(x,x’;t) can have a more or less arbitrary power spectrum, this corresponding to a freedom in speci-

fying the initial (N, (,)

E0x,x "0 =2m) 3 [ d*k(20,93) {2 cos[k-(x —x)][{ N (¢,

+as, (N (2y)
where s, and &, are defined via the relation

afBi =siexpliy)

Ycosécos[k-(x —x')—

)’s. Alternatively, for ¢t > t,, one sees that

)+ 11142 By | ) +2spcos[k(x —x')—2Q30, 7— & ]

20w, 71}, (4.21)

(4.22)

The first term here reflects a net amplification of the initial state by an overall factor 142 | B, | 2, whereas the other two
terms reflect instead quantum interference effects That these should be present is easy to understand Thus, e.g., even
though, for an initial RPA state, the initial { Ak Al " ¢ ) =0, the final

(afa’ ,Y=atBr(1+2¢4f4 _\))

is nonvanishing because of the creation of pairs =k with specific phase correlations.
Similarly, one can compute a two-point equal-time energy functional

2h(x,x";t)=1Q
Here one finds that the initial

h(x,x'50)=2m) 7 [ d’k wgcos[k-(x —x)][{ N, (1,
evolves to a final

h(x,x'50)=(2m) 73 [ d’k wgcos[k-(x —x)][{ Ny (1,
which again shows an overall amplification, but now no
interference effects.

V. CONTINUOUS EVOLUTION OF “QUANTA”

In the framework of a “‘statically bounded” cosmology,
there exists a natural definition of a vacuum for ¢ <¢,, in
terms of which to generate a Fock space and the associat-
ed number operators N, (¢,). For later times ¢, <t <t,,

“OC[P(x, )P (x',1)+ Q2893 , (x, 1), (x', 1)+ m2Q8x,1)P(x", 1)+ (x<>x")]) .

4.23)
(4.24)

)+ 1]
D)+ 111428 | (4.25)

f
however, when the scale factor 1 has become dynamic,
there exists no physically well-defined notion of “parti-
cle,” except in some adiabatic approximation, and hence
no obvious notion of a time-dependent number operator
N, (2).

Nevertheless, this does not imply that one cannot fol-
low precisely the continuous evolution of some initial
quantum state |in). Rather, this is completely feasible
if, as is implicit in the Hamiltonian (3.9), one views the
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quantum state at each instant as being decomposed into a
sum of spatial plane waves exp(ik-x) with generic time-
dependent expansion coefficients g,(¢). And indeed, in
characterizing the quantum state at some given instant of
time, it is convenient to introduce the time-dependent
“creation” and “annihilation” operators a; and a; of
(3.13), in terms of which the Hamiltonian H (¢) decouples
into a sum of abstract modes

H= [d*% o, (Daf(Da,(0+1] . (3.15")

It is, therefore, clear that, even if a,I and a; do not cor-
respond to ‘“‘creation” and ‘“‘annihilation” operators for
“real particles,” so that 7 Ea,zak cannot be interpreted
as a “‘real” number operator, a knowledge of the expecta-
tion value (7,(¢)) will prove useful in that it facilitates
an evaluation of the average (H(z)). And, for this
reason, it is instructive to derive ‘“Ehrenfest equations™
coupling {%,(¢)) with the average values of two other
operators: u; and 0.

Note that, given g, and p,,, one can construct (aside
from the identity) four independent bilinear operators,
namely, pyp _i, k9 —k» Px9 —k> and p_;q;, out of which,
e.g., 1, and H are built. And note further that, by virtue
of the commutation relations (3.10) and the Liouville
equation governing the evolution of |in), the evolution
of the expectation values of these four operators can be
coupled with one another, but must be independent of
any other operators.

Consider the specific linear combinations

Vie=v_ =2y )" (kP _k +VEGG_k) 5

pe=p_x =2y ) PPk —VE9 i) 5 (5.2)

ox=0_;=5Prq_r+P_xq) > (5.3)
and

Te=—T_,=0/2)prg _x —P 1) > (5.4)
where

ve=0, (5.5)

denotes a rescaled natural frequency. The operator v, is
related to the overall energy and number of quanta, in the
sense, e.g., that n, +7_, =2v, —1. The operator pu, can
be interpreted instead as reflecting ‘“‘deviations from
equipartition,” i.e., the fact that the kinetic and potential
energies, proportional, respectively, to p,p_, and
¥2q _14;, need not be equal, as they would be for a sys-
tem “at equipartition.” Indeed, as will be seen below,
when d Q) /dt=£0, even if the average {u, ) vanishes iden-
tically, it must necessarily acquire a nonvanishing expec-
tation value an instant later. The operators o, and 7
may be interpreted as reflecting correlations between the
¢’s and p’s. The operators v, u;, and o, are all even
with respect to an inversion k — —k, whereas 7, is in-
stead odd. This asymmetry is related to the fact that
N —N_p =27, so that, effectively, 7, measures the
difference in number of quanta with momenta k /Q and
—k/Q. If, e.g., one were considering a complex, rather
than real, scalar field, and if one could argue that 7, real-
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ly refers to bona fide particles, the analogue of 7, /2
would count the difference between “particle” and ‘““an-
tiparticle” number.

Given the basic commutation relations (3.10), it is easy
to verify that

Vi 1=iog, [vieokl=—in ,

(5.6)
[vi, 7 1=0 .

The first two of these relations imply that the evolution of
Vi, g, and o, are indeed connected inextricably with
one another. By contrast, as will be evidenced below, the
final equality guarantees that the expectation value {7 )
is a constant in time. Similarly, the time derivatives of
these operators take the forms

Ovi=—Vi Vil Ok =—Vi/ViIVk » 5.7)
a,Uk=a,Tk=0 N .

where an overdot denotes a time derivative d,. Note that,
in terms of these operators,

+
M= =V +Tp—75
(5.8)

_f _ 1
N_,k=a_, @ _ =V —Tpk—73>

so that the total number of quanta with momenta
tk/QNk)=n,+7m_;=2v,—1. Similarly, the total

Hamiltonian

H(n= [d’k H(k)=sz>od3k Hk,—k), (5.9
where
H(k)=wy(vy+7) and H(k,—k)=2w,v/ . (5.10)

For an arbitrary time-dependent operator ©, it follows
from the Liouville equation that

3,(©)=Tr(3,6p+069,p)

=Tr(9,0p—iO[H,p]) . (5.11)
And, by exploiting the cyclic trace identity, one then con-
cludes that

3,(6)=(3,0)+i([H,0]) . (5.12)

For the special case when ©=0O(k) involves only the
modes *k, this reduces to

9,{0(k))=(0,0(k))+2iw {[v(,O(k)]) .  (5.13)
It follows immediately from (5.6), (5.7), and (5.13) that

a,<1-k):(B,Tk)+2iwk([vk,7k])50, (5.14)
which manifests the crucial fact, observed, e.g., by Park-
er'®in a “statically bounded” setting, that, because of the
space translational symmetry of the Friedmann cosmolo-
gy, ““quanta” can only be created in pairs with momenta
+k/Q. And, similarly, one calculates that

a,(nk)———8,(vk>=—(17k/yk)(,uk) , (5.15)
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3,<,uk)=—(7k/yk)<vk)—2wk(ok> , (5.16)

and

9,{0ox) =20, {1y , (5.17)

which are the desired “Ehrenfest relations.” These equa-
tions imply that, at least in principle, one can compute
(m,(2)) directly in terms of initial conditions on the
average v, [, O, and 7, without ever determining ex-
plicitly the time evolution of |in). All that one need do
is solve a matrix equation

X(=Y()X(1), (5.18)

where Y (¢) is a 3 X 3 matrix of vanishing determinant.

Given these “Ehrenfest relations,” it is also easy to get
a sense for ‘“why” the average particle number necessari-
ly increases for “random phase” initial data. In general,
for arbitrary initial data, the immediate response
9,{m,(t,)) depends on the initial {u,(¢,)). But, for
“random phase” initial data, {u,(t,))=(0,(¢,)) =0, so
that, to lowest nonvanishing order in At, at time ¢, + At
the time derivative

O, {mi(t; +A1)) =y, /71 vt ) At . (5.19)

It is, however, clear that (v, (;))=1(WNk)+1) is
strictly positive, so that the initial response of the system
is to increase the average “number” {7, ).

VI. THE EVOLUTION OF THE ENTROPIES

For a “statically bounded” Friedmann cosmology,
there exists a natural notion of “particle” for ¢t <¢, and
t >t,, so that it makes sense to speak of a net change in
particle number 8N, =(N,(t,))—{(N,(¢;)). And
indeed, this 8N, becomes comparatively trivial to evalu-
ate since each pair of modes +k decouples from all other
modes k', so that all the details of the dynamics are en-
capsulated in a single Bogoliubov coefficient ;. The
principal conclusion then is that 8N, is guaranteed to be
positive for initial data manifesting ‘“random phases,”
and that other data will lead typically to 8N, ’s of indeter-
minate sign.

These arguments can be generalized somewhat to a
cosmology in which Q(?) never approaches a constant
value but where, nevertheless, there exist regions in
which Q(¢) is “slowly varying,” so that a positive-
negative-frequency decomposition makes sense adiabati-
cally. This is, e.g., the sort of argument presented by
Parker'® in motivating a connection between his very
beautiful, but superficially formal, analysis and the “‘real”
Universe. But, more generally, when Q(¢) is changing
very rapidly, the notion of “particle” clearly possesses no
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unambiguous, natural meaning.

Nevertheless, as discussed in Secs. III and V, there is a
sense in which, at least mathematically, the field at each
instant of time can be viewed as a sum of “pseudoparti-
cle” quanta, in terms of which the Hamiltonian (3.15)
decomposes into a sum of contributions from individual
oscillators. And, by exploiting that formal structure, one
can focus on the continuous evolution of the field,
evaluating, e.g., the expectation value of the pseu-
donumber operator 71,(¢). Such an analysis led to the
“Ehrenfest relations” derived in Sec. V which, in particu-
lar, shed additional insights into the question of why, in a
“statically bounded” universe, ‘“‘random-phase” initial
data lead to 8N, > 0.

From the point of view of this continuous description,
the notion of “particle” is not well motivated physically,
and, for that reason, Kandrup and Hu'® did not seek ex-
plicitly to find a measure of entropy related directly to
particle number. Rather, following Boltzmann, "’ they
adopted the viewpoint that “entropy” changes only in
response to interactions amongst the degrees of freedom
of the system. For Boltzmann, these degrees of freedom
were particles; for a quantum field, they are instead the
individual “oscillators.” For Boltzmann, this correlation-
al entropy involves the one-particle distribution functions
or density matrices, and it can change only in response to
couplings manifest in an interaction Hamiltonian H’.
For a quantum field, correlational entropy involves the
one-mode reduced density matrices, and changes in the
entropy can obtain only when the oscillators are coupled
by a nontrivial H!. Kandrup and Hu then noted further
that, for the special case of a free scalar field in a Fried-
mann cosmology, the degrees of freedom for the field are
completely decoupled from one another (this is obvious*?
if one works in terms of the real and imaginary pieces Q;
and &, of the complex mode amplitudes g, ), and, for this
reason, they were forced to the conclusion that, in such a
Universe, “entropy does not change with time.”

Alternatively, to the extent that “particle” is a mean-
ingful notion, it is natural to seek an “entropy” which is
related directly to the (N, )’s, and, in so doing, one is led
to consider the information theoretic Sy introduced in
Sec. II. As noted there, this Sy vanishes identically if
and only if the quantum state |in) is an eigenstate of
numbers, and will be positive for any other state. This
means, €.g., that one can consider (i) an initial eigenstate
for which all the (N, )’s are very large but nevertheless
Sy =0, or, equally well, (ii) a state of indeterminate num-
ber, where, however, the {( N, )’s are comparatively small
but Sys£0. The entropy Sy and the (N, )’s are not
themselves connected directly with one another.

What is, however, true is that changes in S, induced
by a nontrivial |dQ/dt| correlate with concomitant
changes in the (N, )’s. Thus, “random-phase” initial
data imply not only that the (N, )’s increase, but also
that the “spread” in the probability distribution
P({k,N,}) must grow; and this increase in uncertainty in
the final value of N, may be expected to coincide with an
increase in the information theoretic entropy Sy .

As a concrete indication that this spread really does in-
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crease, consider the variances

AN ()=(NL (1)) — (N ())?, (6.1)
and their sum
E2(t)= AN () + AN _ (1) . (6.2)

For an arbitrary initial state (4.2), one sees that the initial

(NEE)) = | Cam | 20+ | B | 2140 +m) P+ | By | 21+ | By [ D) (1 4n)(1+m)

n,m
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<Nk(tl)>=21cnm|2n’
" 6.3)
<N13(t1)):2 |cnm |2n2

evolve in a “random-phase approximation” to a final

(N (8)) =T | €um | P[0 + | B | X141 +m)]

n,m

and

with analogous expressions for N_, and N2 ,. This implies, however, that
ER(ty)—ER()=2| By | H{{IN(t))+ N _ (1)) =Ny (£ )+ N i (2)))%}
+2 | B [ ML+ N (1)) 4N (0 )P =1+ N (1) +N 4 (27))%)

+2 (B 214 | B | DI+ AN () AN _ (£)) +{N(t ;)N _,(£,))]1>0,

which vanishes if and only if the Bogoliubov coefficient
By vanishes identically. The combined variances for
modes +k have grown by an amount bounded by |, | %
At some level, it seems intuitive'> that this asymmetry
must reflect a “number-phase uncertainty principle.”
This, however, is a nontrivial intuition to implement,
since, as is well known, for an harmonic oscillator there
exists no Hermitian “phase operator” §, satisfying the
commutation relations [N;,§,]=i, which would imply
an uncertainty principle
AN A > 1 (6.6)
This fact is related to the multivaluedness of any phase, it
being clear that the maximum physical uncertainty in &,
is 27, rather than infinity. Carruthers and Nieto®} en-
deavored to establish a rigorous number-phase uncertain-
ty relation by introducing new operators, “sin{” and
“cosg,” which do in fact lead to sensible results, such as,
e.g.,>* a clear understanding of Josephson tunneling.
These ideas were later systematized by Levy-Leblond*’ in
perhaps their most elegant form.
Specifically, for a single oscillator, given states | £) of
definite phase, one can construct operators
E.= foz"dgexp(iig) | EE 6.7)
which, as is readily verified, are adjoints of one another.
Their actions on some given state | {) take the forms

E_|&)=explil)| &),
E, |&)=exp(—i&)N|E)—0)),

where |0) denotes the vacuum. In terms of these com-
plex unitary operators, one can then define real sine and
cosine operators

(6.8)

C=XE_+E_.) and S=%(EA—E+), (6.9)

(6.4)
(6.5)
r
and, by exploiting the commutation relations

[N,E £ ]=F E, one derives the uncertainty relations
A’NA’C > 1(S?) and A’NA’S>1(C?) . (6.10)

noted by Carruthers and Nieto. Alternatively, these can
be combined into a single relation

A’N(A’E_ +1(P°))> L(1-A*E —(P%)), (6.11)
where P°=|0)(0| is the projector onto the vacuum
state.

Given these observations, one can now ‘“‘explain’ the
evolution of P({k,N,}) as follows. For initial data mani-
festing ‘“‘random phases,” the initial uncertainty AE; is
clearly very large so that, consistent with (6.10), AN, —
and hence the spread in the probability distribution for
finding some given N, —can be relatively small: this in-
cludes, e.g., the case of a number eigenstate where
Asz =0. However, as Q(t) evolves, the dynamics gen-
erate phase correlations, which imply that, in some sense,
one’s knowledge of the phases {, increases, so that the
spread in the complementary N, must grow.

In order to compute the entropy Sy, one really needs
to know something about the form of the probability dis-
tribution P({k,N,}), or, more precisely, the probability
P,(N,M) of finding N quanta in mode k and M in —k.
Working now in a Schrodinger picture, a generic initial
| k, —k ) given by (4.2) will evolve to a final state of the
form

[k, —k)=3 3 com¥im | N, M),
n,m NM
where | N,M) denotes a final state with N quanta in k
and M in —k, and

Y =(N,M | n,m)

(6.12)

(6.13)

denotes an out-in matrix element. This means that the
initial
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Py(nmit)=|cpy |2 (6.14) It follows quite generally that, for “random phase” ini-
2 n tial data, the entropy Sy may be realized as a sum:
whereas, given an assumption of “random phases,” the

final Sy= > S(k,—k), (6.16)
n'm' kZ 0
PZ(N’M;IZ)ZZ 2 Chm€ nm yNMYX’M g
n,m n',m’
where, for early times ¢ < ¢,
=3 fem P78 1 (6.15) ‘
Stk,—k;t))=—3 | cpm | In]Cpp | >, (6.17)
The first equality in (6.15) holds quite generally, whereas m
the second exploits the assumption of “random phases.” and, for times ¢t > 1,,
J
Stk —k;t)==3 3 | com |2 vNs [P0 3 [ cpm [P Va7 12 (6.18)

N,M n,m n',m'

One sees that generically, 6S, =S(k, —k;t,)—S(k, —k;t,;) would not have to be positive for arbitrary matrix ele-
ments ¥ i, and, consequently, it is necessary to evaluate the transition probabllmes |y | 2 explicitly.
One way in which to do this is to build up the desired matrix elements y 33, from Parker 10 relations

¥ =Bk /af) oy p 700, where |y3|2=a;| 2. (6.19)
Thus, e.g., by exploiting the inverted Bogoliubov relation (3.25), one sees that
YAy =(N,M| 4l 4", 0,0)
=ai(NM)1/27/(1)Vo—l,M—1+Bi[(N+1)(M+1)]l/27/(1)\’0+1,M+1_akBk(N +M + 1y %y (6.20)
which, in light of (6.19), implies that
lvine 2= lax | 72| B/ | PN — | B [PV [y | 721 Be | ~*18wm - (6.21)

A more compact way of deriving these transition probabilities is to use the generating functional technique exploited
by Brown and Carson’ in their analysis of parametric amplification. Specifically, by using the Bogoliubov relations
(3.24) and (3.25), one can show that the in-out transition amplitude for initial and final coherent states, |z,s) and
| Z,S), takes the form

(Z,S |z,5)=exp[(a}) (zZ*+sS*+BZ*S* —B,25)](0,0]0,0) . (6.22)

But by expanding these coherent states in late- and early-time number representations, and introducing the matrix ele-
ments y 3, one sees that

(Z,S |z,s)=3 3(Z,S |N,Myy{n,m|zs)explie), (6.23)

NM n,m

where € is an overall phase. And thus, by inserting the matrix elements appropriate for coherent states, one concludes
that, with a suitable phase normalization,

S S(NMinlml)=12Z*Ng*Mzngmynm —exp[(af)~ ' (zZ*+sS*+BLZ*S* —B,zs)] . (6.24)
N,M n,m

f

The desired yyj,’s follow by expanding the right-hand  that (N, (z,)) and (N _,(z,)) will greatly exceed their
side of (6.24) in powers of Z*, S*, z, and s, and equating initial values. And thus, since P, will be non-negligible

coefficients with the left-hand side. for all N S {N,(t,)) and M S (N _,(t,)), one sees that
Given a knowledge of the matrix elements Y47}, one
can ask whether it is in fact true that 8S; > O for all “ran- S (k, —k;ty) =In{ N () +In{N _(£,))
dom phase” initial data. In the li.mi.t that3(|) B '| >> %, .it.is S Sk, —k:t,) (6.26)
easy to see that the answer to this is yes.”® Given initial
values (N, (7)) and {N_,(z,)), it is clear that In the opposite limit that | B, | <<1, it is less obvious
that 65} >0, but such an inequality can still be shown to
k,—k;t;)SIn(N,(t In(N_,(z 6.25 k .
St DSIN()) +In(N i (2,)) ( ) hold. The simplifying feature here is that, since
with the minimum value zero attained for an initial eigen- | B | <<1, one need only consider the matrix elements

state of numbers. Since, however, | B, | >>1, it follows  y}3 with N=nor ntl and M =m or m*1, and evalu-
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ate changes perturbatively.

It appears true, e.g., on the basis of numerical tests,
that S, >0 quite generally, but a rigorous proof of this
fact is still lacking. Nevertheless, one can be reasonably
confident in conjecturing that, for arbitrary initial data
manifesting ‘“‘random phases,” 8S; >0 for all k, so that
J
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the total
Sy(ty)—Sy(t,)>0. (6.27)

It is also possible to establish an upper bound for
Sy(t;)—Sy(t)). Start by rewriting (6.18) in the form

S(k,*kﬂz):—z Elcnm|2‘7/7v'x{ 21n Icnm|2‘77\"x{|2 |Cnm|_2|y;'\/r1’l'l|_2 E |Cn'm’|2|y7\/’11'2’|2]} .

NM n,m

Note then that the term in large parentheses is greater
than unity, and that the remaining terms are all non-
negative, so that

Stk,—k;t))< =3 3 |cwm |21 vN0 |2
NM nm

X(In | cpp | 24+1In | yias | 2,

(6.29)

with equality holding if and only if the initial |k, —k)
was a numbers eigenstate. And thus, one sees that

S(k,—k;t))=S(k,—k;t))< S |y | 2Si(n,m)

n,m
(6.30)

where S, (n,m) denotes the entropy which would have
been generated from an initial state |k, —k)=|n,m).
In a very real sense, the “maximal” entropy generation
occurs for an initial-number eigenstate.

VII. DISCUSSION

When considering a quantum field, it is oftentimes nat-
ural to work in a number or particle representation,
focusing primarily on the number of quanta N, in each
mode k and largely ignoring the complementary phase in-
formation. Given this point of view, it is then natural to
characterize any temporal asymmetry in terms of
changes in the average particle numbers (N, ) or, more
generally, in the probability distribution P({k,N,}).
And thus, in particular, in a cosmological setting it is nat-
ural to ask what sorts of initial states are guaranteed
generically to lead to a net generation of quanta. This
question was addressed and answered here for the special
case of a free scalar field in a “statically bounded” Fried-
mann cosmology. The key conclusions were (i) that
(N, ) is guaranteed to increase for any |in) which is an
eigenstate of numbers or, more generally, for any |in)
characterized by “random phases,” but (ii) that (N, ) is
not guaranteed generically to increase for initial states in-
corporating specific phase information.

Formally, “random phases” means that the relative
phase ¢ associated with the projection of |in) into two
different eigenstates of numbers is ‘“‘unobservable” or
“specified at random” and hence averaged over in a den-
sity matrix p. Mathematically, this makes perfect sense,
but to the extent that the Universe as a whole is really

(6.28)

[
characterized by a pure state, this notion requires physi-
cal clarification. Specifically, the key point to observe is
that, to the extent that some given initial wave function
involved a completely ‘“random choice” of relative
phases, it may be viewed as a typical realization of an en-
semble of potential Universes characterized by a “ran-
dom phase” p. For this, or any other, particular realiza-
tion, the majority of the (N, )’s will increase, whereas
some other { N, )’s may decrease, the “typical” mode evi-
dencing the systematic increase in (N, ) ensured for a
“random phase” p.

Given the temporal asymmetry implicit, e.g., in ‘“‘ran-
dom phase” initial data, it also seemed natural to look for
a measure of nonequilibrium entropy, increases in which
would correlate with increases in (N, ). This was
achieved through the consideration of the information
theoretic entropy

SN:——E E P({k,Nk})lnP({krNk})
K N ek

(2.6')

motivated in Sec. II. This S vanishes identically for the
vacuum or any other eigenstate of numbers, whereas
Sy >0 for any other state in which the probability distri-
bution P({k,N,}) has a nonvanishing spread. As one
concrete example, it was seen that S, yields the
“correct” entropy for a free scalar field in a thermal state
[cf. (2.11)]. As another example of some interest, one can
consider instead a coherent state (4.13). Here it follows
immediately that

Sy=3[{InN;!) — (N )({InN; ) —-1)], 7.1
k

and thus, if (N, ) >>1, so that one can exploit the Ster-
ling approximation

lnNklsz(lnNk—l) ’

it follows that

Sy~ (N InN; ) — (N ){InN, )) . (7.2)
k

These kinematic statements about Sy are clearly of in-
terest, but what makes S, especially striking in the
present context is that it also appears guaranteed to in-
crease for arbitrary ‘“‘random phase” initial data. This
was verified explicitly for the cases of strong and weak
particle creation, i.e., for Bogoliubov coefficients
|Bi | >1 and |fB; | <<1, and is most likely true quite
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generally. It is important to recognize that this Sy does
not increase per se because the average numbers (N, )
are increasing, but rather because the spread in
P({k,N,}) is growing, so that, e.g., the sum of the vari-
ances A’N,, is increasing. A clear recognition of this
fact distinguishes the analysis here from similar, but in-
complete, considerations offered by Hu and Pavon.?!

The fact that, for a free field, the average particle num-
ber (N, ) changes at all is a consequence of a “paramet-
ric amplification” reflecting the interaction of the quan-
tum field with the classical background spacetime. The
key point then, which emphasizes the special role of
“random phase” initial data, is that particles are always
created in pairs, with momenta tk and, more especially,
definite phase correlations.’” *“Random-phase” initial
data manifest a minimal amount of phase coherence so
that, consistent with the uncertainty principle, the vari-
ance in particle number A’N, can be vanishingly small.
As the field evolves, however, and particles are created,
phase coherence will be generated and, as such, the vari-
ances AN, must necessarily grow. In this sense, fol-
lowing increases in particle number is tantamount to fol-
lowing the evolution of phase correlations, so that one
can argue that the “particle entropy” Sy is effectively a
“correlational entropy” in the sense of Kandrup and Hu.

All this seems promising. There are, however, two ob-
vious limitations associated with the preceding analysis.
(1) One cannot in general compute the Bogoliubov
coefficients a;, and B, as explicit functions of the confor-
mal factor Q(7), so that one cannot evaluate explicitly the
final probability distribution P({k,N,}) generated from
some given initial data. (The best that one has are the in-
tegral equations for a, and 3, derived by Parker.'%) (2)
The entire analysis was formulated in the framework of a
“statically bounded” Universe, rather than for the truly
dynamic near-Friedmann cosmology which the real
Universe appears to resemble. Both these difficulties
have been discussed by Parker.!%3

In particular, Parker has showed that there is at least
one nontrivial, and perhaps interesting, case in which one
can solve explicitly for the Bogoliubov coefficients, name-
ly, for a massless field in a cosmology with a scale factor
satisfying

Q=01+ (- QDb+ 1) +blet+1)72 . (7.3)

Here b is a positive constant, and {=s7, where s in
another positive constant, and €1; and , reflect, respec-
tively, the values of ()(¢) assumed asymptotically for ear-
ly and late times. In particular, this (¢) leads to a ratio

B

g

> sin’md +sinh}[wsk (Q2—Q2)]
* sinmd +sinh?[7sk (Q3+ Q)]

) (7.4)

where d is a real number involving the constant b. To the
extent that this model is at all realistic, one might (i) anti-
cipate dimensionally that s~Q73t,, where tp is the
Planck time and (i) expect further that Q,>>€,. This
would imply that, for almost all k, sk Q3 >> 1, so that

| Bi /oy | *~exp(—4msk Q3) . (7.5)

3519

Given (7.5), one might then compute the single-mode
probability distribution generated from an initial vacuum
[cf. (6.19)], which takes the form

P (k,N;)=exp(—N,Bk)[1—exp(—Bk)]
with
/3=47rsQ% .

(7.6)

(7.7)

And, given this P, it is tempting to define an entropy?*?

S=—S S P,lnp,= 2T g3 (7.8)
= P, =255 .

k N,

This is the origin of Parker’s assertion than an initial vac-
uum could evolve to a final state in which the “probabili-
ty distribution corresponds to that of blackbody radia-
tion,”*® with average number density

<N>=(27293)"f0"°dk k2 [exp(Bk)—11"'. (1.9
It should, however, be stressed that, whereas the one-
mode distribution P, is essentially blackbody, the full
probability distribution P{{k,N,}) is not. Rather, the
full P manifests correlations between modes tk which
are not predicted by a blackbody distribution and which,
at least in principle, could be measured experimentally.
There still remains the problem that, generally, one
needs some ‘“‘asymptotic” region in order to define ““parti-
cle” unambiguously. At present, one really has absolute-
ly no idea how “‘particle” should be defined very early on,
at the Planck era, but, by contrast, one does have a good
idea as to how “‘particle” can be defined unambiguously
later on, e.g., during the phase in which the expansion of
the Universe is dominated by massless radiation (i.e.,

Qo t!/?).  Specifically, one verifies that the WKB
definition of modes for massless particles,
Yuy =(20%) V2exp |£i Q% dr |, (7.10)

which in general constitute only approximate solutions to
the mode evolution equation (2.12), will in fact satisfy
(2.11) exactly provided that

d2Q/d?=20"4dQ/dr)?. (7.11)

And it is easy to see that (7.11) admits a solution
Q(t)=Ct'"?, with C a constant.

This result can be combined with the analysis leading
to (7.6) by observing that most of the particle creation
will occur for very early times when ¢ ~¢p, so that the
specific late time form (1 —(, is pretty much irrelevant.
[This intuition underlies Parker’s conjecture that, for an
initial vacuum, the approximate probability distribution
(7.5) should obtain much more generally.*’] Rather, one
anticipates that one can smoothly reinterpolate the Q of
(7.3) onto the Ct!/? form appropriate for a radiation-
dominated universe, still assuming that the ratio
| Bx/a, |? is given very nearly by (7.5). In this
radiation-dominated phase, the probability distribution
P, remains frozen in time, so that, since the physical
wavelengths Ao (k/Q)~', one derives a “physical tem-
perature”
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kpT ~(4mtp)~'[Q,/Q(1)] , (7.12)

which manifests the expected Q™! red-shifting. And,
beyond that, as emphasized by Parker,*® this P, can be
interpreted as providing an average energy density
e=0T* which, viewed as a source for the semiclassical
Einstein equations, is consistent energetically.

It certainly does not necessarily follow from the
preceding (a) that the Universe “started from a vacuum,”
or even from a state characterized by “random phases,”
or (b) that the observed microwave background was gen-
erated solely by a ‘“parametric amplification’ of the ini-
tial state, but the results presented here do seem sugges-
tive. “Random-phase” initial data (which includes the
vacuum as a special case) guarantee that (N, ), Sy, and
the spread in P({k,N,}) must all necessarily increase.
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And, moreover, if | B, | >>1, as might be expected physi-
cally, the increases in { N, ), Sy, and the spread in P will
certainly be very large, so that the final probability distri-
bution P({k,N,}) will be significantly more “random”
and ‘“‘nearly blackbody” than the initial probability distri-
bution.
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