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Notes on the Hawking effect in de Sitter space. g
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We consider the Hawking effect for a quantized massless conformal scalar field in two- and
four-dimensional de Sitter space. The relation among Bogoliubov coefficients is investigated
without explicit integration of Klein-Gordon products. Our method presents a clear view of the
property of Bogoliubov coefficients. In the two-dimensional case the thermal distribution is exact-
ly derived. The application to the four-dimensional case is not straightforward, but we can derive
the same result with some techniques.

I. INTRODUCTION

The Hawking effect' is one of the most interesting
features in quantum field theory in curved space, and its
investigation will also shed new light on the quantum
theory of gravity. In the last decade, there have been
various attempts to understand the Hawking effect more
deeply. It has been revealed that the Hawking effect
has an intimate relation to the event horizon or the
spacetime structure. There is, however, not a clear un-
derstanding of the origin of the Hawking effect as yet.

de Sitter space is an important example which has an
event horizon. By various approaches, many authors
have concluded that a comoving observer in de Sitter
space would find himself in a thermal state. In some
methods, for example, the Unruh detector method ' or
path-integral method, the Hawking effect is derived for,
at least, a massless conformal field without any approxi-
mation. On the other hand, by the mode-mixing
method which is one of the standard approaches in
quantum field theory, the Hawking effect is obtained
only under some approximations. For example, it is
often assumed that only a portion of the mode functions
near the event horizon contributes to the Hawking
effect.

In this paper we discuss whether the mode-mixing
method based on the exact mode functions gives the
same result as the other methods. We concentrate on
the study of a massless conformal scalar field in de Sitter
space. Following other works, we choose two different
charts, the static chart and the full covering chart, on
which two different vacua are defined. One is a no-
particle state associated to an observer at the origin,
which is defined on the static chart, and the other is the
conformal vacuum on the full covering chart. We dis-
cuss how this observer will appreciate the conformal
vacuum. The Bogoliubov coefficients play an important
role in connecting the above two states and by a survey
of these coefficients we can learn the spectrum of the
particle number distribution which the conformal vacu-
um has. Our concern at present is its thermal structure.
The explicit calculation of each coefficient is not neces-
sary for this purpose, and we show the thermality in in-
tegral form.

The plan of the paper is as follows. First we give a
brief review of the Bogoliubov transformation. In Sec.
III the Hawking effect in two-dimensional de Sitter
space is investigated. The four-dimensional case is stud-
ied in Sec. IV. Finally in Sec. V, conclusions and discus-
sions are given.

II. BOGOLIUBOV TRANSFORMATION

%=+ (a„y„+a„y„')

X (bk (( k +bk Pk ) ~

k

(2. I)

where a„,bk and a„,bk are creation and annihilation
operators, respectively. These operators are connected
by the Bogoliubov transformation

hk =y(&kyat +P „k)a
n

bk =g(~k.a.'+Pk. a. ) .
(2.2)

The Bogoliubov coefficients ak„,Pk„possess the follow-
ing properties:

g(t k c k' Pk Pk' ) fikk'

X +k Pk' Pk k'

(2.3)

We can define two different vacua
~
0, ) and

~
Ob ) asso-

ciated with each particle notion in (2.1):

~0, ): a„~O, )=0 for all n,
I
oh)' hk

I
ob) =0 for all k .

(2.4)

If we select
~

Ob ) as a natural vacuum, then
~
0, ) is

generally considered as a many-particle state. Its expec-

In quantum field theory, generally, one can consider
two different complete orthonormal sets /p„and gk as
mode solutions of the field equation and the pictures of
particles are defined in association with these modes.
The field operator 4 is expanded with these sets as
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tation value of the particle number operator of the gz
mode is

&0.
I
b„'b„

I o. ) =X IP„„ (2.5)

To find the particle number distribution the Bogoliubov
coefficients must be calculated. However, we can know
its spectrum without explicit calculation. For example,
if the relation

"
I &a. I

' (2.6)

for any n, k is established, we can say that the spectrum
is a thermal one with temperature P(= 1/ktt T) due to
the orthonormal completeness (2.3) of the Bogoliubov
coefficients.

zo=(a —r )' sinh(t/a ),
z, =(a —r )' cosh(t/a),

Z2
——r .

The metric is

2

ds = 1 — dt
a

1
dr ( —a &r &a)

2

1—
Q

T
1 — (dt' dr,—'} ( —ao &r, & ~),

a

(3.4)

(3.5)

III. TWO-DIMENSIONAL CASE

The treatment of quantum fields is much simpler in

two dimensions than in four. We consider a two-
dimensional toy model of de Sitter space. Because of its
simplicity, the evaluation of the Bogoliubov coefficient is

easy and presents a clear view for the four-dimensional
treatment.

Two-dimensional de Sitter space is represented as the
hyperboloid

GC =0. (3.6)

On the full chart (3.3}, the mode solutions are

where r, =(a/2)ln[(a+r)/(a —r)]. It is an essential
feature that the metric (3.5) possesses event horizons at
r =+a, and the no-particle state associated with the ob-
server at r =D must be defined on this chart.

By using these charts we can easily solve the Geld

equation

2 2 2 2
ZP —Z&

—Z2 = —Q (3.1)

embedded in three-dimensional Minkowski space. On
this manifold we employ two different charts.

(1) Full covering chart (r,X):

0'n = 1 ' I" I
l+inx n integer

v'4m In I

and on the static chart (3.5)

(3.7)

zo =a sinh(r/a ),
z

&

——a cosh(r/a )cosX,

zz cos h(——r /a)sinX .

(3.2)

0 (R-2) .

e ' (R-l), k =real,

The metric is

dsz=dr acosh (—r/)adX ( ~&X &~)—

(3.3)
2

(d rt —d X ) (0 & g & m. ),
s1n g

where g=2 arctan[exp(r/a )], called the conformal time.
(2) Static chart (t, r):

The mode functions (3.8} are the cotnplete set on the
chart (3.5) but not on the chart (3.3). To construct the
complete set on (3.3) we need Pz whose support is on
R-2 (Fig. 1). But we do not describe them because their
expressions are not necessary.

The Bogoliubov coefficients among mode solutions
(3.7) and (3.8) are given by

1 1+singdge
4m&

I nIIk I

f— n 1 —sinX
az„i f q„*P——'„PzdX =

1 dre-'"' tan—
p 2 siam'

' iak
1 —i{n+

I
n

I
)n/2 dg inX

4~+ Inllk I

a Ik I —n
81Hg

A. = —~ f,V.~„Ad~"=

aIkI
cos+

' iak

4m
(3.9a}

(3.9b}

In Eqs. (3.9a) and (3.9b) the Cauchy surface X was taken to be a spacelike surface v =0 where r =a sinX, and then the
integral variable 7 was transformed into 7+a/2.

In the following we treat the case of positive n. The integrals over real interval are replaced with the integrals over
paths C1 and C2 on a complex plane by the Cauchy integral theorem. We choose the path C1 for the integral of ak„
and C2 for Pz„(Fig. 2). Then Eqs. (3.9a) and (3.9b) become
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n.ak /2
n
= LNkne

—ns s—e '"" ds e "' tanh—
0 2

iak

—iak
. a/k/

Z
—n

sinhs

+ ds e "' tanh—
0 2

.a/k[—l —n
sinhs
—iak

(3.10a)

—m.ak /2 oo S—e '" ds e "' tanh—
0 2

iak

+ ds e "' tanh—
0 2

.alki —n
sinhs

.a/k/—l —n
sinhs

(3.10b)

where
~
Nt, „~ =

~
Nk„~ and the following relation can be derived:

~

2 e2wak
~
P 2 (3.11)

It is noticed that the power of the exponential of (3.11) is not 2na
~

k
~

but 2mak. Equation (3.11) suggests the Hawk-
ing effect only for positive k and not for negative k. In the latter case we should notice the fact that the integrand of
(3.10a) becomes a total divergence:

a =iN e ~' —e '"~ "ds e "' tanh-d
0 dS 2

' —iak

+f"ds e "' tanh—
0 ds

' iak

=0. (3.12)

Therefore, we can say that relation (2.6) is exactly held
for positive n.

The above procedure can be applied to the case of
negative n also, and the same relation is derived. As the
result we conclude that the Hawking effect is established
exactly in two dimensions, that is, the conformal vacu-
um is an exact thermal equilibrium state for the comov-
ing observer.

IV. FOUR-DIMENSIONAL CASE

Four-dimensional de Sitter space is the main problem
in this paper. In this case we can also go on with the
same calculation as the two-dimensional case. However,
some techniques are needed to perform the calculation
because the mode functions are very complicated.

In four dimensions two charts are also employed as
before.

(1) Full covering chart (r,X,8,$):

ds =dr acosh (ri—a)(dX —sin XdQ )

2

(d r) —d X —sin X d Q } (0 & X & n ) .
s1n g

(4.1}

/
/J'

rR-1,- 2

/J' ~/r/
J' /

r ~ Y}-O

X=-Tt X=O X= Tr

FIG. 1. The Penrose diagram of two-dimensional de Sitter
space. g= —~ and g=m are identified. The observer is sup-
posed to exist on the solid line at X=O (r =0). The dashed
lines are event horizons. R-1 is the center region with a dia-
mond shape, and R-2 is the opposite region of R- l.

(2) Static chart ( t, r, 8,P ):

2

ds = 1 — dt-
a

1
dr rdQ (—0&r &a) .

p 2
1—

0

(4.2)

The massless conformal field equation in four dimensions
1s

0+—0 =0,R
6

(4.3)

where R is the scalar curvature. In chart (1) we can
derive the well-known mode solutions by the hyper-
spherical harmonics

ImX

I I

I I

I I

I I

I
I

I

I

I

C2
I 'R ge01

(
I

I

I I

I
I

I
I

I
I

I
I

I
I

I I

FIG. 2. The complex X plane. The integrand of ak„(P~„) is
analytic on the lower (upper) half plane, and then the contour
C1 (C2) can be used.
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——singe ""sin XC„'+i, (cosX ) Yi (0,P),
n &0, integer . (4.4)

In chart (2), because of conformal masslessness, the ex-
act mode solutions are described by the Legendre func-
tions of the second kind: ' '

a)lm

1, . a
Q/

'
Yi (8, (t)) 0&X&—,co&0, real,

(4.5)

0 —&X&w
2

which are regular at r =0.
The Bogoliubov coefficients are given by

+con( m)m' i f Pnl'm'~ply)(md~
X

~runll mm ''i f 0 nl m ~p'f'realm
X

(4.6)

a„„(——X „ f dX sin'+'XC„'+,', (cosX)
0

Xg icon +n
cos+

(4.7)

P „i 8„„f ——dX sin'+'XC„'+,', (cosX)
0

&&
girua 1

SIHg

ace —n
cos+

First, we note that the case of 1=0 is reduced to the
two-dimensional one directly, and the relations (2.6) are
satisfied (Appendix A). For nonzero I the calculation is
not as straightforward as before, but we can use the rela-
tion (Appendix B)

ann(l+ i)

I ron(l+))

r

a„(n+i)
=&(.+)) p(n+ i)t

ace(n —1)1

++(n —)) P (4 g)

H~~~e, if
~

(z „i ~

=e '
~ P„„i ~

holds, then

aeon(1+1) =N(n +1)aco(n + i )t +N(n —i)a~(n—

&& .(i+() (4.9)

where
~

N
~

=1. By mathematical induction the final re-
sult

The hypersurface X is taken to be the ~=0 surface in
the same way as Sec. III. By the orthogonality of spher-
ical harmonics we can omit the indices l', m, m'. Then
Eqs. (4.6) are written as

I

space will perceive particles with the thermal distribu-
tion.

V. SUMMARY AND DISCUSSION

In this paper we have shown that the particle distribu-
tion observed by a free-falling observer at r =0 in de Sit-
ter space becomes an exactly thermal one. Though
many authors have already concluded the exact therrnal-
ity of the spectrum by other methods, no one ever has
derived the same result exactly by the mode-mixing
method. Furthermore, our result gives not only an evi-
dence of the Hawking effect, but also more information.
One of the important features of our result is the ex-
istence of relation (4.10) for every quantum number,
while the thermality requires only the relation among
gn ~

a«
~

and gn ~P« ~

. Therefore, relation (4.10)
may give us different information about the Hawking
effect, such as the possibility of determining whether this
thermal-like state is truly a mixed state or not, "but it is
a future problem. Moreover, the relationship between

~ a„k( ~

and
~ P ki ~

has been found without explicit in-
tegration. We will hope that this similar procedure may
be applied to other cases, such as, for example, a black
hole.

We have treated the stationary de Sitter space and
have studied how a free-falling observer appreciates the
conformal vacuum associated with the full covering
chart. Our results, however, do not always show that
the observer in the de Sitter-type phase finds himself in a
thermal equilibrium state. For example, it is often dis-
cussed that the de Sitter phase appears in the early
Universe, ' where the Universe develops into de Sitter
space dynamically. Such a case must be treated with
taking into account the time development of quantum
fields. With respect to this subject, further investigation
is necessary.
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2 e 2naco 2 (4.10)
APPENDIX A

is derived for any co, n, and l.
According to the discussion in Sec. II, we conclude

that the Hawking effect is exactly confirmed in four di-
mensions also, and the observer inhabiting de Sitter

In the following calculation, Appendixes A and B, ir-
relevant multiplication factors are included in
NyNi )N2y ~ ~ ~ ~

Here it is shown that the Bogoliubov coefficients in
four dimensions are the same as two dimensions when
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I =0. First we extend the intergration range from
[O,m/2] to [—m/2, n/2]. Because of the formula'

~~ ltd, &l

Q"„(z)=
2 sinpm

pp( )
I (v+p+ 1 ) p p(
I (v —p+ I)

v= integer,
l
z

l ~ 1,

@+integer,
l
z

l
& 1, cz p P p are rewritten as

P

acon 0

con 0
=N f dX sinXC„', (cosX)go"'

0 sing
aco

Cosg

=N& f dXsinXC„' t(cosX) Pp"'
0

1

sing
p l 6)a 1

sing
aQ)

Cosg

=&& f dX sinXC„', (cosX)Pp"'
—n'/2

1

sing
ace

cos+

Using the explicit forms of C„'
&
(cosX) and Pp '(1/sinX)

=N f dX
'

X—~/2 1 —sing
T

7l'/2 z 1 + stnX
dX e'"

—e/2 1 —sing

' icoa/2

' isa�/2

aco +
cos+

a co ~/2, ;„z 1+sinX

Cosg n /2— 1 —sing

' isa/2
am

COSX

This equation is that of two dimensions. Therefore, following the same discussion as Sec. III, we can conclude that

APPENDIX B

We show that the Bogoliubov coefficients for I +1 can be reduced to those for 1. First we rewrite the Gegenbauer
polynomial with the associated Legendre function

acr(n + 1 j(l +1)

I cu(n+ IHI+ 1) dX sin'+ XC'+ (cosX)g~~o
m/2 ~ 1 +(n +1)

Cosg

=N, dX&smXP„+, /z (cosX)gl'+',
0 sing

+(n +1)
Cosg (B1)

where we use the formula

I (n+2v)I (v+ —,
'

)
C„"(x)=

I (2v)n!2'

By the formulas

Q,+~(z)= (z —1) +(v+1)zgi„'(z), (1—x ) = pxp" (x)—+I —x P—"„+ (x), lx l & I
1 dg"„

v —p+1 dz dx
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and partial integration, Eq. (Bl) is

a„(n +1~(l +1

~re( n + ( )(!+ ( )

d X&sinX P ' 'Q'"' +(n + 1)
0 'sly cos+

+ f dX Q/"' &sinX cosXP„+,&z~ k(n + 1)
0 dX cos+

=Nz f dX&sinXsinXP„+, &z Q!' ' (1+1) +l(n+1)

(B2)

Furthermore, we use the recursion formulas

(v+((t)(1 x)' P—"„'(x)=P"„+((x) xP"„(x), —

(2v+1)xP"„(x)=(v @+1)xP—"„+,( )x+(v+p)P"„((x) .

By Eq. (B3},Eq. (B2} is
r

co(n +1)(l+ 1) l
=Nq f dX&sinXP„+~3/'2 Q!'"' (&+1) +&(n+ 1)

co(n + 1)(l + 1) n —I Q cosX

(B3)

(B4}

n —I 0 cos+

and, by Eq. (B4),

=Nz ——,
' f" dXv»nXP ' '"Q™-a~ ~(n +2) f ""dXv sinXP Q-- —' +n

The first term is the same integration as the Bogoliubov coefficjent for energy n +2 and angular momentum I, and the
second is that for n and I. Therefore, we derive

co(n + 1)(l + 1)

I co(n+()(!+))

+a)(n +2)l conl

=N(a+2) p, +N(. ) p
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