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Gravitational field of a global string
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The gravitational field of a straight global string is derived in the linear approximation to general
relativity, and the resulting trajectories of test particles are found. Part of the gravitational effect of
global strings is a deficit angle which increases logarithmically with the distance to the string core.
In this regard, a global string resembles a gauge string. A new feature, not present for gauge strings,
is a repulsive gravitational potential outside the core. The lensing properties of the global string, as
well as other classical effects, are studied.

I. INTRODUCTION

Phase transitions of quantum fields in the early
Universe may produce very thin tubes of false vacuum,
known as cosmic strings. ' Depending on whether the
symmetry that is broken during the phase transition is lo-
cal or global, the corresponding topological defects are
called gauge or global strings. Gauge strings have their
energy concentrated in a very thin tube, the radius of
which is of order the symmetry-breaking scale. Global
strings, instead, are such that their energy extends to re-
gions far beyond the central core, the energy density be-
ing proportional to r

The gravitational effect of an infinite straight gauge
string is equivalent to the removal from flat space-time of
a wedge of angular size 8m@ (Refs. 3—6). Here p is the
energy per unit length of the gauge string, in units of the
Planck mass. The linear approximation to the metric, in
ordinary cylindrical coordinates (0 & 8 & 2n ), is

ds = dt +dz +—dr +r (1 8ls)d8—(1)

One important consequence is that the string can act as a
gravitational lens, a property which may be observed
through the formation of double images of quasars.

In this paper we derive the metric outside a straight
global string in the linear approximation to general rela-
tivity. We will see that a global string produces a repul-
sive gravitational field outside the core in addition to an
angular deficit. The angular deficit is similar to that of a
gauge string but grows logarithmically with the distance
to the core. ' In the case of the global string, however,
the repulsive gravitational field overcomes the effect of
the deficit angle when the velocity of the particle that is
being deflected by the string is small enough (typically
when V & —,', c ).

II. THE METRIC AROUND A GLOBAL STRING

The nonvanishing components of the Ricci tensor for this
metric are
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We want to solve Einstein equations with a global string
as the source. To be definite, let us adopt an explicit
model of the string core. Consider a complex scalar field
with action density:

r =-,'g&"a„y'aA —
4
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The field configuration

P= uf (r)e'

solves the equation of motion if

(4)
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Here 5=(u~A, )
' is the core radius of the string. The

function f (r) grows linearly when r &5 and exponential-
ly approaches unity as soon as r ~5. Thus, taking f =1
outside the core is a very good approximation to the ex-
act solution. The energy-momentum tensor is then given,
outside the core, by

2
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Note that a global string does not have tension along the
z direction only. It has equally large tension in the radial
direction and an equally large pressure in the 0 direction.

Outside the core, Einstein's equations are

ds = A(r)( dt +dz )+d—r +r B(r)d8 (2)

The most general static metric with cylindrical symme-
try with respect to an axis z and Lorentz invariance in the
(t,z) plane reads, in cylindrical coordinates (0 & 8 & 2n. ),

R,'=R,'=R,'=0,
Sm.Gv

Br
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These equations are readily solved in the linear approxi-
mation, i.e., assuming that both A and 8 are very close to
unity. The result is

ds = 1 —4pln —
( dt—+dz )+dr

5

pel each other with a gravitational force per unit length
(nv /d)2plnd/5. This gravitational force differs by a
factor 2plnd/5 from the force due to the Goldstone-
boson field itself. The latter force is attractive or repul-
sive according to the relative orientation of the two
strings.

+r2 1 —Sp ln —+c dO

Here

p =m.Gv

In terms of IM, the energy per unit length that is outside
the core of the string up to a distance r is, in units of the
Planck mass,

A, =G J 2~rToo(r)dr=pln—
S

The linear approximation to the metric makes sense as
long as plnr/5«1. For distances r up to the present
horizon that condition requires the symmetry-breaking
scale v to be smaller than 10' GeV. Recall that 5 is the
core radius. We denote as pc the energy per unit length
contained in the core itself. Since that quantity is model
dependent, we wish to keep track of its effects separately
from those of the rest of the string. Inside the core, at
least for the specific model given by Eq. (4), both A(r)
and 8(r) differ from unity by terms quadratic in r But.
we shall not be concerned with the interior metric here,
nor with a careful matching of the interior and exterior
metrics at r =5, since Eq. (8) is sufficient for our pur-
poses.

Comparison of Eqs. (1) and (8) shows that the effective
deficit angle produced by a global string increases loga-
rithmically with the distance to the core, ' whereas the
gauge string deficit angle is constant. However, there is
also a more qualitative difference: a global string has a
repulsive gravitational potential. A freely moving parti-
cle near the string experiences an outward proper ac-
celeration

Two parallel global strings separated by a distance d re-

III. THE GKGDESICS

Let us now write down the equations for the geodesics
in a plane perpendicular to the z axis in the metric (2).
From (D/dp)(dx "/dp ) =0 we have

dr 1 J2 —Af
dp A (r) r'g(r)

r 8(r)=J,2d8
(10b)

dp
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dp A (r)
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Here J and M are integration constants. J represents the
angular momentum of the trajectory and M is the ratio
between the proper time along the trajectory and the

affine

parameter

, i.e., ds = —M dp .
From Eqs. (10) the shape of the paths, r = r(8), can be

found. It is given by

d8 =b(r)
dr
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Here we have chosen to parametrize the trajectories in
terms of the distance of closest approach to the core, rp,
instead of the angular momentum J.

Consider a trajectory starting from a distance L ~~rp
and with velocity V such that V »2p, lnL/r oMost of
the deflection imprinted upon the trajectory by the gravi-
tational field will occur in the region r = rp, where

rp
&(r)=

r r'p
1—

r

r

r lnr /r p1+4p ln —+c+ 1—
2V 1 (rolr)— (12)

to first order in p and p/V . Also M =1—V to this or-
der. The deAection angle is

b,8=2I 6(r)dr .
Po

Equations (13) and (12) yield

where

1e= —4~p ln +c+ln2+1—
5 2V

(14)
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Vp ——

ro
2 ln —+c+ln2+ 1

(15)

If ro is an astronomical scale (say the size of a galaxy) and
5 is of the order of the grand unification scale, then Vu is
about —,', the speed of light. When a particle moves at
speed Vp there is no net deflection.

Finally, if the particle moves so slowly that
V &~2plnL/rp, the repulsive gravitational force is the
only relevant effect. The deficit angle in the spacelike

In our order of approximation, rp coincides with the im-

pact parameter of the trajectory. The analogous result to
Eq. (14) for a gauge string is e= —4mp with p the string
energy per unit length. The global string case differs
from that of a gauge string by the dependence of e upon
both the impact parameter and the velocity of the trajec-
tory.

In the case of ultrarelativistic particles (V= 1) the
dominant term in Eq. (14) is the term lnro j6, since it is

typically of order 10 in any astronomically relevant situ-
ation. In that limit the deflection effected by a global
string is similar to that by a gauge string whose energy
per unit length equals that contained within a radius r p of
the core of the global string.

There is a threshold velocity Vp above which the string
acts as a convergent lens and below which the string acts
as a divergent lens. By demanding E=O in Eq. (14) one
obtains

metric is negligible compared to the total deflection an-

gle, which is of order m.

IV. CONCLUSIONS

We have seen that the gravitational field of a global
string has similar effects upon ultrarelativistic particles
than the gravitational field of a gauge string of compara-
ble energy per unit length. Those effects can be summa-
rized in terms of a deflection angle e= —4m@, lnru/5.
Only the logarithmic dependence on the impact parame-
ter gives rise to slight differences. Acting as a gravita-
tional lens, a gauge string will produce an angular separa-
tion between double images of a quasar about 1.2 times
larger than that produced by a global string with equal
energy per unit length at the era of galaxy formation, and
there will be a very small magnification of the images in
the global string case.

Strings are expected to move usually at speeds close to
that of light. However, in a situation where the relative
velocity of the string and the surrounding rnatter is of or-
der Vc, as given by Eq. (15), or smaller, the gravitational
effects of gauge and global strings will differ substantially
from one another due to the repulsive gravitational field
the latter produce.
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In Ref. 7 the energy-momentum-tensor components T,' and T;

are the same as in our Eq. (4), but the other components are

zero. With the source of Ref. 7, the A (r) term in the metric
[Eq. (2)] is constant, and thus the repulsive effect is absent.

Notice that if the energy-momentum tensor of the string were
to vanish beyond a long-distance cutoff A then the metric at
r&A would be that of flat space with a deficit angle
8m@(lnA/5+c); i.e., there would be no Newtonian gravita-
tional potential. That is the case, for instance, around a
gauge string. Within the energy-density distribution of the
global string there is, however, a repulsive gravitational po-
tential. It is a non-Newtonian efFect.


