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The cosmological consequences of a pervasive, rolling, self-interacting, homogeneous scalar field
are investigated. A number of models in which the energy density of the scalar field red-shifts in a
specific manner are studied. In these models the current epoch is chosen to be scalar-field dominat-
ed to agree with dynamical estimates of the density parameter, ,,,~0.2, and zero spatial curva-
ture. The required scalar-field potential is “nonlinear” and decreases in magnitude as the value of
the scalar field increases. A special solution of the field equations which is an attractive, time-
dependent, fixed point is presented. These models are consistent with the classical tests of gravita-
tion theory. The EStvos-Dicke measurements strongly constrain the coupling of the scalar field to
light (nongravitational) fields. Nucleosynthesis proceeds as in the standard hot big-bang model. In
linear perturbation theory the behavior of baryonic perturbations, in the baryon-dominated epoch,
do not differ significantly from the canonical scenario, while the presence of a substantial amount of
homogeneous scalar-field energy density at low red-shifts inhibits the growth of perturbations in the
baryonic fluid. The energy density in the scalar field is not appreciably perturbed by nonrelativistic
gravitational fields, either in the radiation-dominated, matter-dominated, or scalar-field-dominated
epochs. On the basis of this effect, we argue that these models could reconcile the low dynamical es-
timates of the mean mass density with the negligibly small spatial curvature preferred by inflation.
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I. INTRODUCTION AND SUMMARY

One consequence of observational astronomy over the
last half-century has been the accumulation of fairly per-
suasive evidence that a substantial fraction of the gravita-
tionally bound mass associated with observed structure in
the Universe is nonluminous.! Dynamical estimates of
the mass density on large (clusters of galaxies, etc.) scales
(which assumes that galaxies trace mass) suggest
Q4yn=0.2£0.1 (Ref. 2). [The density parameter ( is the
ratio of the mean mass density to the Einstein—de Sitter
value, Q(t)=87Gp/(3H?), where G is Newton’s gravita-
tional constant, H is the Hubble constant, and p the
relevant mass density.] The fact that the baryon mass
density Qp needed for nucleosynthesis® falls within this
range is sometimes taken as evidence that the nonlumi-
nous mass is purely baryonic and that the total mass den-
sity in all forms, (), is appreciably less than the
Einstein—de Sitter value. If the equations of general re-
lativity (i.e., Einstein’s theory of gravity with baryons and
radiation) govern cosmology, this would mean that spa-
tial sections must have appreciable mean curvature.
However, this conflicts with the inflation paradigm,“'5
which offers the only known, reasonable, explanation for
the remarkable homogeneity of the Universe within our
horizon: the cosmological expansion during inflation,
which is supposed to make the length scale over which
the density varies much larger than our horizon, could be
expected to do the same to the radius of curvature of spa-
tial hypersurfaces (in the standard model, this would
force Q, to be unity to high accuracy®). To resolve this
discrepancy between the dynamical estimates of the mean
mass density and the negligibly small space curvature
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preferred by inflation one could assume that (1—Q,,) is
balanced by some kind of nonluminous, nearly homo-
geneous, energy density.

Many different kinds of nonluminous matter have been
proposed for this purpose. The currently popular candi-
dates are what are known (in Bond’s classification) as
cold nonluminous matter (hereafter, CDM, i.e., extreme-
ly weakly interacting matter with almost no primeval
thermal velocity).” There are problems with this scenario
[which assumes a scale-invariant spectrum for the adia-
batic energy density fluctuations (see Ref. 8)]:° the lack of
power on small scales means galaxies form late (this does
not naturally agree with observational data); to reproduce
the observed dynamical estimates of the clustered mass
density, Qdyn, one must assume that galaxies cluster more
strongly than mass (i.e., galaxies are “biased” with
respect to the mass),'® and, furthermore, this model pre-
dicts that aggregations of mass are anticorrelated on very
large scales (which also does not seem to agree with the
observations). Since CDM has very low pressure, it is
again apparent that galaxies would have to form at rela-
tively low red-shifts to prevent gravitational instability
from removing the bias. Hot dark matter (HDM) is
another type of nonluminous matter that has been exten-
sively studied (a low-mass neutrino is an example of
HDM). A drawback of this scenario is that the thermal
energy of HDM erases inhomogeneities on small scales
(galaxies, etc.), so galaxies can only form at low red-shifts
from the fragmentation of bigger objects that condensed
first.!! At present the observations suggest that galaxies
are old while clusters are young and still forming."?

The arguments against some form of CDM or HDM
would be vitiated if there were evidence that the mass
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density estimated from dynamics increases with increas-
ing length scale. While this may yet be observed, we are
impressed with the contrary indication that (,,, estimat-
ed on scales from ~ 30 kpc to ~ 10 Mpc seems to be near-
ly constant.? It might also be noted that the evidence for
large-scale velocity fields'? is not necessarily evidence for
high clustered mass density: the large-scale velocity
fields are at least roughly in line with what would be ex-
pected if clustered mass were distributed like galaxies
with the density parameter of the clustered mass ~0.2
(Ref. 14).

The dynamical estimates of Q4,, would not be indica-
tive of the value of , if the mean mass density were
dominated by relativistic matter. However, if the relativ-
istic matter were primeval it would dominate the expan-
sion rate at the epoch of light-element nucleosynthesis
and so spoil the observational success of the standard cal-
culations.® Relativistic dark matter produced by the de-
cay of CDM (Ref. 15) remains a possibility that may be
seen to be increasingly attractive if less speculative ap-
proaches continue to have problems.

A. Cosmological scalar field

As we have indicated, it might be desirable to have a
nonluminous matter that resists gravitational collapse
over a fairly large range of scales and that dominates the
mass density only at low red-shifts. A cosmological con-
stant A is exactly such a candidate.'!® Another possibility
is a homogeneous scalar field that is very weakly coupled
to ordinary matter (this might even be the same field that
drove inflation).!” If the potential of this scalar field ®
slowly decreased towards zero for large ®, the mass den-
sity associated with it could act like a cosmological “con-
stant” that decreases with time less rapidly than the mass
densities of matter and radiation. In Ref. 17 we have an-
alyzed the cosmological predictions of our preferred
scalar-field models (the power-law potential models of
Sec. V). We have found that these models (i) have a
larger value of Hyt, (at fixed Q5) as compared to the
Einstein—de Sitter model (they, therefore, seem to agree
better with the observational data), (ii) predict a value of
the bolometric distance modulus, at red-shift z =1.5
( ~highest red-shift for which there is useful observation-
al data), that is consistent with current observations and
Qp~0.2, (iii) are not obviously inconsistent with the
number counts of galaxies as a function of red-shift. (iv)
do better than the Einstein—de Sitter case but not as well
as the constant-A model in fitting the red-shift depen-
dence of angular sizes of radio sources, (v) suppress the
growth of linear density inhomogeneities, relative to the
Einstein—de Sitter model, by a factor of ~2-3 (which
does not seem very serious because of our limited under-
standing of how galaxies and clusters form), and (vi)
reconcile the relatively large galaxy density fluctuations
and small relative peculiar velocities observed on scales
~1-10 Mpc, about as well as the constant-A model does.

The discord between the estimates of the luminous
mass density (£, ~0.01) and the nucleosynthesis re-
quirement that {5 ~0.1 suggests that there must also be
a significant amount of nonluminous baryonic matter in
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the Universe. Since baryons are pressureless, this non-
luminous matter must be gravitationally clustered, that
is, if galaxies formed before a red-shift of few. Dynamical
estimates of the clustered mass density suggest
Q4,,=0.2£0.1. We, therefore, believe that in the present
class of models it is economical to assume that the only
forms of nonluminous matter present are the nonlumi-
nous baryons (that have to be present), the usual massless
neutrinos, and the scalar field. This is the assumption we
adopt in the present paper.

The main purpose of this paper is to attempt to codify
the constraints experiments and observations place on the
potential of @, if it is to be a suitable candidate for the
nonluminous matter. We construct and study some ac-
ceptable, albeit simplified, models to see whether there
are any significant deviations from standard CDM
scenarios. We are particularly interested in the behavior,
in linear perturbation theory, of density perturbations in
the scalar-field energy density and in the densities of
baryons and radiation. We find that scalar-field energy-
density fluctuations tend to decay inside the horizon,
while in a baryon-dominated universe, the behavior of
baryonic perturbations is effectively the same as in the
canonical scenario. On the other hand, if the energy den-
sity in the homogeneous part of the scalar field is substan-
tial, baryonic perturbations cannot grow. Since scalar-
field perturbations do not grow inside the horizon, the
scalar-field energy density will remain very much smooth-
er than the baryonic distribution (in contradistinction to
the canonical CDM scenario), so the peaks in the matter
distribution will be almost entirely baryonic. This is, in
effect, a naturally “biased” scenario for galaxy formation
with Q4 =Qp.

The mass of the scalar field fluctuation (~second
derivative of the scalar potential) is related to the horizon
size; the scalar-field fluctuation is exceedingly light. This
is the reason why galaxy formation is dynamically
“biased” in this scenario—the scalar-field fluctuations
are much too hot (relativistic) to condense either through
their mutual gravitational attraction or through the grav-
itational attraction of other matter. If the scalar field
were to dominate early enough (like the canonical HDM
candidate, the almost massless neutrino, does) it would
suppress growth of baryonic structure on small scales.
This is because the Universe expands faster than the per-
turbations can collapse.'® (Note that the scalar field must
be very weakly coupled to ordinary matter so that it does
not drag the matter perturbations with it and thereby
prevent them from collapsing, even before the scalar field
comes to dominate the energy density of the Universe.)!’
This is one reason why we must assume that the Universe
has only recently become dominated by the scalar-field
energy density, if galaxies formed by gravitational insta-
bility. This effect motivates the choice of potentials
V(®) discussed below.

We consider two, fairly distinct, classes of models for
the potential of the scalar field. In the first set of models
we assume that the energy density of the scalar field red-
shifts in a certain way and then determine the potential of
the scalar field that this requires (we refer to such models
as fixed equation of state models). We find that the
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scalar-field potential is “nonlinear” (i.e., the scalar-field
equation of motion is nonlinear); typically it tends to be
made from exponentials of the scalar field. We have not
succeeded in determining the general solution of the
scalar-field equation of motion, but a special solution can
be found (in which the scalar-field energy density red-
shifts in the requisite manner). Somewhat remarkably,
we find that this solution dominates at large time and a
study of phase space shows that it is an attractive, time-
dependent, fixed point (in the cases of interest, it is the
only attractive fixed point in phase space). This solution
may, therefore, be chosen as a background solution for a
study of the evolution of density inhomogeneities in
linear perturbation theory. In the second set of models
we choose a simple function (of ®) for the scalar-field po-
tential V(®) (we refer to such models as fixed potential
models). In this paper we have studied potentials that are
either exponentials or negative powers of the scalar field.
One can conceive of other simple functional forms, for in-
stance, a Gaussian potential; the main criteria that must
be kept in mind are that the energy density of the scalar
field should be significantly less than that of radiation
near the nucleosynthesis epoch and that the Universe
must have had -a sufficiently long baryon-dominated
epoch to allow galaxies to form (this requires that the
scalar-field energy density must have come to dominate
the Universe only fairly recently.) Again, in the fixed po-
tential models, we find the attractive fixed-point solutions
for the scalar field in both the radiation and baryon-
dominated epochs.

The problem with the assumption of the coincidental
similarity of the contributions of ordinary matter and the
scalar field to the present expansion rate deserves further
comment. As we have mentioned above, one reason for
this assumption is the desire to have galaxies form (by
gravitational instability) in our model. A second, related
reason is that we want Q4. ~0.2 now. This assumption
must be made in most nonluminous matter models; al-
though it renders these models rather unattractive, it cer-
tainly does not rule them out. For example, another
(scalar-field) candidate for nonbaryonic matter (CDM) is
a weakly coupled massive pseudoscalar field, the axion.
When the coherent axion oscillations, in an approximate-
ly quadratic potential, are rapid enough (compared to the
rate of expansion), pressure averages to zero and the ax-
jon fluid behaves like nonrelativistic matter.?’ The form
the above assumption takes in this model is the require-
ment that the axion mass have a specified dependence on
the present baryon density.

The models we have studied are meant to be classical
and phenomenological —they are not meant to be funda-
mental theories. The coincidental similarity between the
contributions of nonluminous and ordinary matter to the
present expansion rate might arise through some, as yet
not understood, microphysical relation between nonlumi-
nous and ordinary matter.?! If the results of the classical
cosmological tests, discussed in Ref. 17 for the power-law
potential models, eventually converge to select a particu-
lar scalar-field model from this class of models, then this
assumption deserves further scrutiny (if they do not con-
verge to select one, the power-law potential models are
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ruled out).?? The situation would then be somewhat rem-

iniscent of the current status of the standard electroweak
model. Although the electroweak model is a fairly accu-
rate description of the physics of the weak interactions,
the dynamics of spontaneous symmetry breaking in this
model seems to require a conspiracy between various pa-
rameters in the theory?? (the values of the numerical coin-
cidences needed depend on the value chosen for the fun-
damental length scale at which the electroweak theory
must be cut off). This numerical conspiracy certainly
does not rule out the standard electroweak model, rather,
it is best interpreted as reflecting the present lack of
knowledge of an underlying, more fundamental, theory.

Another issue that deserves comment is the rather gen-
eric appearance of nonrenormalizable scalar-field poten-
tials in our models. A significant part of theoretical
cosmology consists of the art of determining a Lagrang-
ian that is consistent with all available observational data.
There is, by now, a fairly widespread belief that none of
the current cosmological scenarios completely accom-
plish this. (This is a very subjective conclusion since a
fair fraction of the observational data is quite tentative
and the standard inflation modified hot big-bang scenario
does have a large number of notable successes.) We be-
lieve it is instructive to focus on what seems to be a
significant drawback of the standard scenario and to con-
sider all possible resolutions of the conflict between the
low dynamical estimates of the mean mass density and
the negligibly small space curvature preferred by
inflation. If the classical cosmological tests, discussed in
Ref. 17, select one of these scalar-field models, it would
not be the first time that a nonrenormalizable theory
might be needed for the correct low-energy description of
physics (the most celebrated example is Fermi’s theory of
the weak interactions which subsequently evolved into
the more fundamental standard electroweak model). In
any case, since the gravitational part of the theory is non-
renormalizable, there is no theoretical reason to prefer a
theory where the scalar part is renormalizable. Eventual-
ly, one would hope to find a consistent quantum-
mechanical theory from which such a nonrenormalizable
theory might be extracted.

A recurring theme in attempts to generalize the classi-
cal theory of cosmology has been the belief that some
kind of scalar field could have had important cosmologi-
cal consequences. The motivations for such a belief have
varied: they have ranged from attempts to develop a
framework to rationalize Dirac’s desire to dynamically
explain what is now known as the hierarchy “problem”
(e.g., the number M ,, /Mgur~10"1) (Ref. 24) to at-
tempts to elaborate on the steady-state cosmology mod-
el;?° to Brans and Dicke’s attempt to incorporate Mach’s
principle in general relativity.?® None of these models
made use of the type of scalar-field potential that leads to
a time-varying A. The inexorable improvement of obser-
vational and experimental data has severally (almost fa-
tally) constrained all of the above models. As we discuss
in Sec. VI, the only constraint these experiments place on
our model is that the scalar field can only be exceedingly
weakly coupled to ordinary matter. It is interesting to
note that the theory of superstrings, which is currently
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thought to hold the most promise for explaining the
hierarchy “problem” (through the introduction of new
symmetries, not dynamically) contains a Brans-Dicke
scalar field (the dilaton). It is hoped that large quantum
corrections (string-loop effects) will sufficiently modify
classical superstring theory to make it consistent with
current bounds on Brans-Dicke scalars.?’ It is much too
premature to decide if the resulting scalar-field theory
will bear any similarity to one of our models.?* We
should also note that there is a variety of other scalar
fields in compactified superstring theories, including the
scale factor of the compactified space. As with the case
of the dilaton, a substantial amount of work will have to
be done before one can decide whether or not any of
these scalar fields would act like our .

B. Time-variable cosmological ‘“constant”

The idea of using a cosmological constant A to balance
(1—Q4y,) to give a low dynamical value of the mean
mass density has a fairly long history.!®?’ A possible
problem with a constant A is that the presently required
value defines an energy scale

3(1—-Q)H}#c?
8rG

1/4

602

~0.002(1—Q)'4h 12 ev (1.1)

(Ho=100h kms~'Mpc~!). In the constant-A model the
ratio of the potential energy of A (at reheating in the con-
ventional inflationary scenario) to the scale set by the ra-
diation temperature just after reheating (~ 10'* GeV) is
of the order of 10~ '%, We have argued, in Ref. 17, that
this number could be as large as 10~2° in our models [i.e.,
the scale set by the scalar-field potential energy at reheat-
ing could be as high as ~10% GeV; the scalar field dy-
namics then reduces the energy scale of the present
cosmological constant to near the value of Eq. (1.1)].%
We therefore believe that our models have a distinct ad-
vantage over the model of Ref. 16, which requires a new
energy scale ~10~3 eV. As with any other small number
in quantum field theory that is not “protected” by a sym-
metry,’! there seems to be a problem with this small ratio
(the quantum-mechanical cosmological-constant “prob-
lem”), at least when our phenomenological models are
analyzed in quantum-mechanical perturbation theory—
one must understand why quantum fluctuations do not
drastically alter the classically desired value of the pa-
rameter, perhaps there is a symmetry that preserves the
form of the potential.’>3% It is unclear if this aspect of
the fine-tuning problem can even be studied for these sca-
lar field theories, in our phenomenological framework,
since they cannot be consistently quantized (we hope to
discuss this in more detail elsewhere).

Some of the recent discussions on the cosmological-
constant ‘“problem” and on cosmology with a time-
variable cosmological “constant” are relevant to the is-
sues we have studied in this paper. The main purpose of
the models discussed in Refs. 34—-38 was to present ‘“clas-
sical” mechanisms that might account for the small
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present value of the cosmological constant (the resulting
cosmological consequences of a, possibly, time-varying A
was not examined). (We presume that these models were
meant to be effective, phenomenological models, since
most of them do not resolve the quantum-mechanical
cosmological-constant “problem.”) The models proposed
in Ref. 34 are closest, in spirit, to the models we have
considered here. These references discuss the classical
Einstein—scalar-field system with various types of poten-
tials for the scalar field and various forms of coupling be-
tween the scalar field and gravity. Banks* has argued
that one can construct models in which an initially large
effective cosmological constant is dynamically driven to
smaller values (and eventually through zero to large nega-
tive values). He has pointed out that if, when the
effective cosmological constant is zero, the scalar-field po-
tential is chosen to be exceedingly flat for a time compa-
rable to the age of the Universe, then the resulting
cosmology might resemble the canonical scenario. [In
our models A(¢) varies much faster than in Banks’s mod-
el.] There are, however, many issues that need to be
resolved before a viable classical theory of cosmology can
be constructed from the models of Ref. 34.

The authors of the first two references in Ref. 35 have
suggested that, in certain conditions, the inclusion of di-
lational symmetry in the standard model of particle phys-
ics (which results in a nontrivial potential for a scalar
field) might lead to a small-enough A; however, the au-
thors of the last reference in Ref. 35 argue that the result-
ing pseudo-Nambu-Goldstone boson of the spontaneous-
ly broken dilation invariance (particle physics is not dila-
tion invariant) is in contradiction with experimental
bounds on Brans-Dicke scalars. Brans-Dicke cosmologi-
cal models with nontrivial potentials have also been stud-
ied in Ref. 36. Other intriguing suggestions include the
possibility that “quantum” gravity screens a large cosmo-
logical constant (i.e., the observed value of A is small at
low energies and large at high energies, a point of view
somewhat similar to that which we advocate in this pa-
per)’® and that the dynamics of a third-rank antisym-
metric tensor might play an important role in reducing
A,37 as well as various other ideas.’® We believe that it is
fair to conclude that, at least from the particle-physics
point of view, the issue of whether or not a time variable
A is physically significant is far from resolved.

Aside from the field theory models mentioned above,
there has also been some discussions of the possible
cosmological applications of a phenomenological time
variable A (Refs. 40-43). Reference 40 has discussed the
effects of a postulated time variable A on the age of the
Universe. References 41 and 42 have proposed a model
with a time-dependent A; in this model, even though A is
assumed to be a function of time, the Lagrangian does
not contain a term that depends on time derivatives of A.
This model is, effectively, the ¢ —0 limit of our model,
i.e., the equation of state for the ‘“‘vacuum” fluid has been
taken to be p, = —p, [Where p and p are the pressure and
energy density of the ideal fluid; in our models, the homo-
geneous scalar field does not interact with other nongrav-
itational fields and obeys an equation of state
Po=pelqg —3)/3]. In the absence of any interaction with
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matter or radiation this would force the cosmological
constant to be constant, but, in the presence of interac-
tions with matter or radiation, a solution of Einstein’s
equation and the assumed equation of covariant conser-
vation of stress energy with a time variable A can be
found. For these solutions, conservation of energy re-
quires that any decrease in the energy density of the vac-
uum component be compensated for by a corresponding
increase in the energy density of matter or radiation. The
models of Refs. 41 and 42 are not complete since no ex-
plicit, microphysical, coupling between the vacuum fluid
and matter or radiation has been presented (to mediate
the interconversion of the vacuum component and the or-
dinary fluids and to, thereby, justify the assumed covari-
ant conservation of stress energy). As noted in Ref. 42,
there are severe observational constraints on the ‘“‘spon-
taneous” production of matter or radiation that ensure
that such a time variable A has no cosmologically
significant effect during recent epochs. In our models,
there is no ‘“‘spontaneous” creation of matter or radiation;
the decrease in the potential energy of the scalar field, as
it rolls down the potential, is converted to kinetic energy
of the scalar field.

In the time-variable A models of Ref. 43, the ‘“vacu-
um” fluid has been furnished with an equation of state
pa=—p, as well as an equation of evolution which is as-
sumed to relate the time derivative of p, to a function of
Pa> the energy density of other matter and radiation in
the theory and Hubble’s constant; p , is also taken to obey
the covariant conservation of stress energy. We are not
aware of any obvious way of comparing this model to our
models (it is also unclear if the assumed equations of
motion of this model are a consequence of the stationari-
ty of an action).

C. Inflation

Finally, we comment on the “patching” of our low-
energy-density scalar-field cosmology to the wusual
inflationary scenario. We shall discuss this in the context
of the simplest model of inflation** where a scalar field
with a step-function potential (and a small linear term re-
sponsible for causing the field to slowly roll on top of the
hill) drives the exponential expansion of the Universe.

One might generalize this potential to the following
form: (i) an initial period when the potential is nearly flat
(with a small linear driving term); (i) an intermediate
period when the potential has a suitably steep part so that
some of the energy density of the scalar field may be con-
verted to entropy; and (iii) a final period where the poten-
tial decreases much more slowly (i.e., is of the form dis-
cussed in one of the following sections).

Initially, the Universe must be dominated by the ‘“con-
stant” potential for a long enough time to ensure the
desired resolution of the horizon problem.’ (There are
other potentials which also resolve the horizon prob-
lem;* we restrict our discussion to the relatively simple
step-function potential of Ref. 44.) During the period
when the scale factor is growing exponentially with time
(i.e., when the potential is nearly flat), scalar-field quan-
tum fluctuations continuously evolve out of the horizon.
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These fluctuations, which have substantial power at large
wavelengths,*® reenter the horizon in the radiation-,
matter-, and scalar-field-dominated epochs. This part of
the scenario is essentially the same as in the standard
inflation modified, adiabatic, hot big-bang model. When
these energy-density fluctuations reenter the horizon they
are scale invariant.***% The fluctuations at horizon
crossing will determine the initial conditions for our
analysis of fluctuations inside the horizon in Secs. VIII
and IX.

In Sec. VI we have argued that the scalar field cannot
couple to ordinary, light, matter if we are to avoid violat-
ing the equivalence principle. If the intermediate period
of rapid roll down is to generate sufficient entropy (i.e.,
radiation), the scalar field must couple to heavy
(mass~Mgyr) particles which subsequently decay to
light, ordinary, matter. We assume that the forces gen-
erated by such couplings will not violate any of the
current experimental limits on the validity of the
equivalence principle; however, the resolution of this is-
sue would require a detailed analysis, which we plan to
present elsewhere. 84’

D. Overview

In Sec. II, we introduce, and review some details of,
the class of theories which we shall study. In Secs. III,
IV, and V we study specific examples of these theories
and present special, asymptotically dominant, solutions
of the nonlinear Einstein—scalar-field equations (these are
the attractive fixed points in the phase space of homo-
geneous and isotropic world models). In Sec. III we
study a class of models in which the only contribution to
the stress tensor is a spatially homogeneous scalar field
whose energy density red-shifts as pg, «ca ~9 where a is
the cosmological scale factor. The required scalar-field
potential is an exponential. Exponential potentials have
previously been studied, in the context of models of gen-
eralized inflation.’®®! We analyze the four-dimensional
phase-space structure of the spatially homogeneous
Einstein—scalar-field equations and show that there is
only one attractive critical point in the finite part of
phase space (in this paper we use both the mathematics
terminology ‘“‘critical point™ and the physics terminology
“fixed point”). Some aspects of this phase space have
also been examined in Ref. 51. These models are unreal-
istic since they contain neither baryons nor radiation. In
Sec. IV we study a model with baryons and a pressureless
scalar field (with ¢ =3), which has a fixed, exponential,
potential. We show that there is a critical point (in the
Einstein-scalar-field phase space), but note that this solu-
tion is inconsistent with the assumptions of the canonical
nucleosynthesis scenario, since it requires that the
scalar-field energy density be significant during nu-
cleosynthesis (if it is to be significant at any later epoch in
the evolution of the Universe). We also present a solution
of a slightly different model, which is consistent with the
standard nucleosynthesis scenario, but is not much
different from the constant A model. Our preferred mod-
els are presented in Sec. V. In these models the scalar-
field potential is taken to be a negative power of the sca-
lar field. Initially the Universe is assumed to be radiation



dominated; in this epoch the feedback from the scalar
field to the Einstein equations and the equation of motion
for radiation is negligible, so it suffices to analyze the
two-dimensional homogeneous scalar-field phase space.
There is only one fixed-point solution, whose scalar-field
energy density decreases, with time, less rapidly than the
energy density of radiation. A similar analysis with simi-
lar conclusions is carried through for the matter-
dominated epoch. Finally, in the scalar-field-dominated
epoch, we are forced to resort to late-time asymptotic
techniques to discuss the solutions of the coupled
Einstein-scalar-field equations of motion (since we have
not succeeded in unravelling the structure of the relevant
four-dimensional phase space). In conclusion, aside from
our preferred models, presented in Sec. V, most of the
other models we have studied in Secs. IIT and IV seem to
lead to unsatisfactory cosmologies (that are either incon-
sistent with observations or the canonical nucleosynthesis
scenario) although our analysis of some of these models is
far from complete (because of the complexity of some of
these models we have had to make some very crude, sim-
plifying, approximations; a more complete analysis might
show that they also lead to realistic cosmologies).

In general, phase space can contain a variety of
different kinds of phase trajectories. In Appendix A we
show that the phase space of our preferred models has no
limit cycles, we discuss the structure at o in the two-
dimensional phase plane and argue that the domain of at-
traction of the fixed point is exceedingly large. We have
not studied these issues for any of the other models of
Secs. IIT and IV.

Most of the rest of the paper is devoted to a more de-
tailed investigation of our preferred models. Section VI
discusses the compatibility of these Einstein-scalar-field
theories with the classical tests of gravitation. We show
that the Eotvos-Dicke measurements indicate that the
scalar field is very weakly coupled to light matter. In Sec.
VII we derive the relativistic linear-perturbation-theory
equations that determine the evolution of spatial inhomo-
geneities. In Secs. VIII and IX we examine the growth of
density inhomogeneities in the preferred models, an issue
relevant to the formation of galaxies.

II. HOMOGENEOUS SCALAR FIELDS:
GENERALITIES

We consider homogeneous, isotropic, spatially flat
cosmologies described by the line element

ds?=dt’—a*(t)(dx)* . (2.1)
The Einstein—scalar-field action is
2
mp 3 g V(d)
_— Vv — _ S =7
oo Jardxv—g | -R+5-0,00,0——
(2.2)

(here mp=G ~!/? is the Planck mass); for a homogeneous

scalar field &, the usual definition of the stress-energy
tensor leads to
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(Do)’ =16mm; *(py+ps) »
(2.3)
V(Do)=16mmp *(po—pa) »

where pg, and pg are the energy density and pressure of
the homogeneous scalar-field fluid and an overdot
denotes a derivative with respect to time. If the scalar-
field energy density red-shifts as

q
)

(2.4)
a

Po=ps

(in most of what follows we assume ¢q=£0), conservation
of stress energy, neglecting interactions with fields other
than gravity (in the models we shall consider, the homo-
geneous part of the scalar field does not couple to other
fields ), implies an equation of state

q-—3

Po= 3

P (2.5)

and

(<b0)2=%161rm,?2p¢ ,

(2.6)
6—gq

V(dy)= |—= |16mmy2py, -

A variant of the ¢ =6 model has been studied by Dicke.>?
We note that by using Eq. (2.3), conservation of stress
energy,

dpd> 3 d 3
dt a —E‘t'[a (p¢+p¢)] ’ (2.7)
may be rewritten as
H d 3 (13 aV
D, [—(a D — =0, 2.8
0 dt(a 0)+ 2 aq)o(q)o) 0 ( )

the expression in large parentheses being the scalar-field
equation of motion. So the scalar-field equation of
motion implies the conservation of the scalar-field stress
tensor, while a choice of an equation of state, Eq. (2.5), is
equivalent to choosing how (®,)> and V red-shift, Eq.
(2.6).

Using conservation of stress energy, the Einstein equa-
tions may be reduced to

2

87 K
- (2.9)
3mp P a’

a
a

[here « is the inverse of the coordinate radius of curva-
ture of the spatial hypersurfaces, k>0 ( <0) for closed
(open) models and k=0 for spatially flat models] or, alter-
natively,

4

Q |a:

(p+3p), (2.10)

2
3mp

which does not explicitly depend on «2.
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III. SCALAR-FIELD-DOMINATED
COSMOLOGY

In this section we shall, mostly, consider models in
which the only contribution to the stress tensor is a
homogeneous scalar field. These models do not lead to a
satisfactory cosmology, since they contain neither
baryons nor radiation (in the second part of this section
we comment on some models that contain baryons and
radiation), rather they are simple enough for us to use
them to illustrate the techniques that we shall need to use
to examine more realistic models.

A. Scalar-field-dominated models

Assuming that the scalar-field energy density red-shifts
with index g, we have, from Egs. (2.6) and (2.9) (here we
have set k2=0),

da 4  a '
or

a 1

—_ . _q)(o) .

a exp V24 (Dy—Dy') (3.2)

(where @ is the value of ®; at a =a,) which, from Eq.
(2.6), implies

Vidg= |24 |167m 200
1/2
X exp | — % (Dy—@P) | . (3.3

The Einstein—scalar-field equations (with this poten-
tial) have a special solution [Eq. (3.5) below] for which
al(t)act?’q, ®y(2) < In(2), and pq,oct‘z. In this section we
study spatially homogeneous perturbations (not neces-
sarily small) about the special solution, in order to see if
@, might approach the special solution from a wide
range of possible initial conditions (possibly specified at
the end of reheating). We shall have to study the struc-
ture of the four-dimensional, spatially homogeneous,
phase space (P, d)o,a,a' ) because the perturbations in the
scalar field generate perturbations of similar magnitude in
the gravitational field. To do this we need to consider the
scalar-field equation of motion and Einstein’s equation,
which are given by

y‘+3§y‘—%H2e-y:o,

129 2P He—r—0,
a’ g

where we have used the potential given in Eq. (3.3),
y=Vq/2(®y—>)) and

H = % 16mmp 2 ;

H is not Hubble’s constant. A special solution of these
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equations is

a,(t)=aog[14+M (1t —1,)]*/9,
(3.5)
Ye()=2In[14+M(t —1,)],

where M =gH /[2V'2(6—q)] (for this solution pg <a ~9);
to study the structure of the phase space of these equa-
tions it is convenient to make the change of variables

y()=y,()+ul(t),

a(t)=a,(tw(t), (3.6)

t=tyg—M '4e*.

[We emphasize that this is only a change of variables and
that all the dynamical information in the equations of
motion for a(¢) and ®y(¢) is now encoded in the equa-
tions of motion for u(x) and v(x).] The equations that
govern the evolution of u (x) and v (x) in phase space are
then given by

u'=p,
’ q_6 p r q Hz —u
= — _—~6_‘ - 4 -
p p—3 » ot Mz(e 1,
(3.7)
v'=r,
., |qg—4 4 1, H*? u
r=|—|r——wpw——pv+ vie™"—1),
q 37 3qp 12M*?

where primes denote derivatives with respect to x. The
critical points of this system are those points at which the
“velocities” vanish. The only critical point in the finite
part of phase space is (uy,p,0¢,%y)=(0,0,7,0), where v
is an arbitrary constant corresponding to the freedom in
rescaling a, (we have assumed that g546).

It suffices to use linear analysis to study the stability of
the nonlinear problem near a critical point (except for the
case in which the critical point is a center).’® Perturbing

about the critical point (u,p,v,r)=(0+u,;,04p,,
v+4v,,0+r,) we have
u’l =P >
/ q—6 'y g H?
= _ — J— ﬁ_——_‘u ,
P q P T 4 a2
(3.8)
vyi=r,,
= |44, -2 _ A vu
1 q 1 3qP1 am2 i
The eigenvalues of small oscillations are A, =0, A,=—1,

Ay=(q —6)/q, and A,=(2g —4)/q. [Defining v through
Do =Vpge, We find A;=(2+46v)/(3+3v). It is pleasing to
note that A, and A4 agree with the solutions, Eq. (86.12),
given in Sec. 86 of Ref. 54 for the temporal behavior of
density inhomogeneities on scales much larger than the
horizon. As expected, on these large scales, gravity does
not distinguish between different microphysical theories.]
For q <2 these eigenvalues are negative real numbers so
the point (0,0,7,0) is a stable fixed point and all trajec-
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tories approach it as asymptotically straight lines as
t—co. (Here, and in the next two sections, by a stable
critical point, we mean a critical point that is stable un-
der spatially homogeneous perturbations. Spatially inho-
mogeneous perturbations will be discussed in Secs.
VII-IX.)

For some exceptional values of finite, nonzero, g
(g =6,3, 2,7, —2), two of the eigenvalues are degenerate.
We shall treat these exceptional values of g separately.
The corresponding eigenvectors (for nonexceptional
values of g) are given by

0 1 1
0 —1 (g —6)/q
1y | o/q | v/3 ’
0 —T/q (g —6)7/(3q)
1

(2g —4)/q
0(2—3q)/[3q(q —2)]
20(2—3q)/(3¢?)

From these expressions we see that the zero eigenvalue A,
corresponds to the arbitrariness of rescaling a,. Using
the method described in Sec. 10 of Ref. 54, to generate
the solution corresponding to time translation invariance,
it can be verified that it takes the form of the eigenvector
corresponding to the eigenvalue A,. The solutions corre-
sponding to the eigenvalues A; and A, also describe de-
caying perturbations (for g <2). From the formulas
presented above, it can be verified that the fractional per-
turbations 8®,/®, and 8a /a corresponding to the eigen-
values A,, A3, and A, vary as powers (A;) of time (up to a
logarithmic factor for the scalar-field fractional perturba-
tion). We may use Eq. (2.9) as an operational definition
of the curvature of the spatial hypersurfaces («*) induced
by these perturbations. Working to first order in the per-
turbations we find that «* vanishes for the first three
modes while, for A,
Ko 2 (g +2)(g —)ads MY .
g’

So, in summary, the A; mode corresponds to the free-
dom in rescaling a, the A, mode corresponds to the free-
dom of shifting the zero of time, the A; mode describes
decaying isocurvature fluctuations, and the A, mode cor-
responds to adiabatic fluctuations that grow if ¢ >2 and
decay if ¢ <2.

For the exceptional value g =2, the fourth eigenvector,
presented above, is not linearly independent of the other

J

o(u (x +8x),p(x

x 4+6x),v(x +6x),r(x +6x))

three eigenvectors. The linearly independent solution
may be determined by choosing a basis, for the small fluc-
tuations, in which the evolution matrix reduces to Jordan
form. The linearly independent solution is then given by

—3/(270)
0
x )
1

and we find that the fractional perturbation in the scale
factor only grows logarithmically with time while
k*c —alv[M(q =2)]>. For the only other exceptional
value, ¢ —g, of interest to us, the fourth eigenvector
above must be replaced by the linearly independent solu-

tion

X
1—x
— (5 ’
v(143x/4)
—v(1+3x)/4

and we find that the fractional perturbation in the scale
factor decays as ¢ ~'In(¢) while

kKo Salp [ M(g=%4)]""/4 .

In the case of a cosmological model dominated by ordi-
nary matter or radiation, the perturbation mode with
k?£0, which is called the adiabatic mode, has a density
contrast, dp/p, that grows with time, with amplitude
proportional to «?. The condition that the value of 8p/p,
at the present epoch, be acceptably small, is equivalent to
a limit on the space curvature fluctuation represented by
«%. In the present model, with g > 2, the condition that ®
remain close to homogeneous is again a limit on space
curvature fluctuations. It is interesting that if ¢ <2, ®
approaches @, as t — o even in the presence of nonzero
space curvature fluctuations.

If the system asymptotically approaches a fixed point
the volume of phase space must decrease. We have, to
lowest order in 6x,

u(x +8x)=u(x)+6x u'(x),

p(x +8x)=p(x)+6x p'(x) s
vix +6x)=v(x)+8xv'(x), '

r(x +86x)=r(x)+6xr'(x),
under which the volume V(x) [not to be confused with

the scalar-field potential V' (®,)] in phase space trans-
forms as

Vix +6x)=

ou (x),p(x),v(x),r(x))

Qu’  0p' O +§r_

1+46x a p + a7

Vix),

Vix)

(3.10)
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where the off-diagonal elements of the Jacobian are
higher order in 6x and have been neglected. This implies

Vix +8x)—V(x) 3du’ 8p" 3dv'  3r’

V(x)6x au T ap Tav T ar

or

A px)=29=3 32 (3.11)
dx q v

(the first term on the right-hand side is just the trace of
the matrix which governs the evolution of the linearized
system), which gives

5—¢q
| 4

ap

ap

(3.12)

o« |V

Near the critical point the first factor on the right-hand
side is constant and the volume in phase space decreases
for g <5; however, only for g <2 does the system ap-
proach an attractive fixed point (the decrease of the
volume of phase space is necessary but not sufficient to
establish that the system approaches a fixed point).
Equation (3.12) is not of much use for studying stability
away from the critical point.

In conclusion, we have shown that our assumed solu-
tion, Eq. (3.5), is the only stable fixed-point solution (in
the finite part of phase space) of the Einstein—scalar-field
equations for the potential given by Eq. (3.3) (if ¢ <2). If
q > 2, the solution is unstable and inhomogeneities grow
in the standard manner. These models do not lead to sa-
tisfactory cosmologies since they do not contain baryons
or radiations. We shall consider more realistic models in
Secs. IV and V.

B. Other models

The models presented in Secs. IV and V are simple
enough for us to be able to analyze them with the tech-
niques developed in the first part of this section. We have
also considered spatially flat models in which the scalar
field obeys the same equation of state in the radiation-
dominated matter-dominated, and current, scalar-field-
dominated epochs. These models are more complicated
than the other models studied in this paper and our
analysis is not complete. One of these models is an exam-
ple of a possibly satisfactory, although complicated
cosmology. These models can be classified by two new
real numbers, p’ (the energy density of the scalar field
now) and ¢ (the index that determines how this energy
density red-shifts), as well as the usual numbers that
characterize baryons and radiation, and will be called E,
models. For the simplest model E; (in which the energy
density of the scalar field red-shifts like a pressureless

J

2
=P =21n 1 Ja B(’}(E %o f’g %o
24, |ag | pg | a P’

1/2
+1’ +—+> G
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fluid) we find

A(Dy— ) — A(Dy—o)
—€e

V(®Py)=S(e )~¢

) (3.13)

where @ is the present value of the scalar field,
e=pR'(pg +pY) ", B=14+(1+2)"% e=eB 2,

0, (0) 1172
P8 +pPo

24p£,(,J )

’

and S=4rmy;pPB~°. (Here pY and p{’ are the
present energy densities in baryons and radiation.)
A special solution of the scalar-field equation of motion

|

Using this solution the phase-space equations for the sca-
lar field can be reduced to first-order form; however, the
coefficients in these equations depend on the independent
variable. The equation that results upon setting the “ve-
locities” to zero has seven roots. The relevant critical
point is stable for a certain range of parameters and for
all time. The complexity of the algebraic equation that
determines the position of the other critical points has
prevented us from completing our analytical study of this
model. In any case, this is not a realistic model since the
scalar-field energy density and the baryon energy density
red-shift in a similar manner.

We have also studied a slightly more interesting spa-
tially flat model: E,. We find

172
+

ap

3‘+L
ap

P)— 0 =4""In!B"!

64 (D, — ')
V(dy) = 3m7§p5,9’(A,e TPy,
P
—(d,— ') 2
+Aze 00 )2 (3.14)
where
(0) (0) 172 (0)
_11|p P 1 PB
Al‘z $)+p(°)+1 +1+E o |’
(0)
4= %Zﬁ)) ’
PRt 108 |° PR
37, 2 p p
(0) (0) 172 o 1-1
PR PB 1 PB
X © + o 1 +1+E (0) ’
Po Po Po

and the special solution of the scalar-field equation of
motion is given by
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Our analysis of this model has been as incomplete as
our analysis of E5. In particular, we have not studied the
complete homogeneous phase space but have restricted
our attention to the two-dimensional homogeneous
scalar-field phase plane. We, however, have no reason to
believe that the cosmology following from this model (or
for that matter from any E, _; model) cannot be realistic,
although it requires a rather special form for the poten-
tial. This issue can only be settled after a more detailed
analysis is performed (we have no plans to do this).

IV. FIXED EXPONENTIAL POTENTIAL MODELS

In the previous section we have studied models in
which the functional form of the scalar-field potential
was determined by holding fixed the scalar-field equation
of state (the functional form of the potential, therefore,
depended on the dominant contribution to the stress ten-
sor). In this section, and in the next section, we shall
consider models in which the scalar-field fluid has a
specified equation of state at some epoch. This equation
of state determines the functional form of the scalar-field
potential (as a function of the scalar field) at that epoch.
We then use the scalar-field equation of motion (with this
potential) to determine the scalar-field equation of state at
all other times. These models are again classified by the
same two new real numbers as the models of Sec. III and
will be referred to as ¥, models.

We shall first study V§®. Following the analysis of
Sec. III we have in the baryon-scalar-field-dominated
epoch (for a spatially flat cosmology)

0Py 1 @.1)
da  Aa ’
or
aL: expl A((DO—(DBO))] , (4.2)
0
where
172
| pe +p8
6pQ ’

and @ is the present value of the scalar field. From Eq.
(2.6) we find that this results in

V(®y)=16mmp py exp[ — 4 (®y— 2] . 4.3)

In the baryon-scalar-field-dominated epoch, the
scalar-field equation of motion, Einstein’s equation and
the equation of covariant conservation of the baryon
stress tensor are given by

y‘+3%y—2H2e —y=0,

3%+47Tmp_2 pﬁg) —

R a
pB+3;pB:O ’

where y =3A4(d,—®)) and H?*=6mmy 2(pY+p¥)
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(again, H is not Hubble’s constant). A special solution of
these equations is

a,()=ap[14+H(t —t)]*"?,

yet)=2In[1+H(t —1t,)], (4.5)
(0)

B py(t) .

(n=—t
Ps, [1+H(t —10)]

To study the stability of this solution, it is convenient to
make the change of variables
y(t)=y (t)4+ul(t),
a(t)=a,(th (1),
(4.6)
pp(t)y=pp (O[1+w(1)],
t=ty—H '4e*.

The equations that govern the evolution of u(x), v(x),
and w (x) in phase space are then given by

u'=p,
p'=— 1+ir— p—éL—Z(l—e_"),
v v
U':r, 4.7)
po_r_ AT PO 1_e~u+2p+L2 o
3 3miH? |° 2 BT

’

w=-3"(1+0).
v

The only critical point in the finite part of phase space is
(ug,po, V0,70, Wo)=(0,0,0,0,0), where U is an arbitrary
constant corresponding to the freedom of rescaling a,.
Perturbing about this critical point, one finds that the ei-

genvalues of small oscillations are A =0, A,=—1, A;=2,
and
(0) 172
1 PB
ey |

This system is unstable in the A, direction and is a stable
“spiral” point in the A, 5 directions for any nonzero value
of p¥). The A, mode corresponds to the arbitrariness in
rescaling a,, the A, mode corresponds to the freedom of
shifting the origin of time, the A; mode is the usual grow-
ing perturbation and the A, s modes describe decaying
perturbations. In the limit p{’—0 these eigenvalues
reduce to the eigenvalues of the g =3 model of Sec. IIT A.
In this limit we have a new zero eigenvalue A5, which cor-
responds to the freedom of shifting pp (When pp is negli-
gible).

Although this is not a realistic model, since pgy/pp is
time independent, it is instructive to examine the behav-
ior of pg during the radiation-dominated epoch. Replac-
ing the independent variable ¢ by x =a /a, in the scalar-
field equation of motion, and assuming that pg is not
significant during the radiation-dominated epoch, we find
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y"+%y'+Sx2e =0, (4.8)

where S = —9(p0’ +p¥’) /(2p"). The critical-point solu-
tion is y (x)= In(—Sx*/4). Using Egs. (4.2) and (2.6) we
find, for the homogeneous scalar-field fluid, in the
radiation-dominated epoch,

(0)
4 Po
Po= Pr - (4.9)
3 [+l

This solution for a pure exponential potential requires
that the energy density in the scalar field red-shifts in ex-
actly the same way as the energy density of the dominant
component of the stress tensor. This means that the
Universe could have been initially radiation dominated
only in the limit p'—0. This solution is phenomenolog-
ically untenable since the scalar-field energy density
would have to contribute a significant fraction of the en-
ergy density at nucleosynthesis, if it does so at the present
epoch.

We have also examined V;P; models. It may be
verified that when the Universe is baryon dominated,
these models are very similar to the models of the next
section. When the Universe is dominated by the scalar-
field energy density they reduce to the models of Sec. III.

It is instructive to consider a different solution of the
model corresponding to the potential

a®,

V(dg)=xe " °, (4.10)

where a and k are real parameters. In the approximate
solution, valid for t <<t; and t >>¢, (with different values
for the constant C),

a(t)ect”, <I>0(t)=iln[C(t2+t%)], 4.11)
the scalar-field equation of motion reduces to
212 a? k
3 1— =——; 4.12
n+ Pil 4 C (4.12)
hence, for t <<,
2
a‘k
= 4.13
¢ 4(3n +1) @.13)
and, for ¢t >>1t,
a’k
=—. 4.14
¢ 4(3n —1) ( )

The scalar-field energy density is given by

mp 1 ) )
=81Ta2 (tz-{-—t2)2[3nt +(3n +l)t1]> (4.15)
1

pq>(t)

which is constant for t << ¢, and varies as t ~? for t >>1,.
Since pg ca ~*ct ", for n > 2 the Universe is dominat-
ed by the scalar-field energy density for ¢t >>¢,. During

this epoch Einstein’s equation becomes
nt=n/a’; (4.16)

so once n is specified we may determine a. For t <<t,
the energy density in the scalar field is time independent
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and the Universe is baryon dominated. To satisfy
Einstein’s equation during this epoch we must have the
usual n =§. Clearly at even earlier epochs, when radia-
tion is present, the energy density in radiation will be sub-
stantially larger than that in the scalar field. We have not
analyzed the phase-space structure of this solution, al-
though we have studied it numerically and find it to be
fairly stable. This solution for a pure exponential poten-
tial will not perturb the canonical nucleosynthesis
scenario; however, it does require a very substantial drop
in the scalar-field energy density at reheating since the
scalar-field energy density is initially time independent.
This model is very similar to the constant A model, the
only significant difference is during the scalar-field-
dominated epoch, when pg ot 2. Models that require
less fine-tuning will be discussed in the next section.

V. NEGATIVE-PRESSURE SCALAR FIELD
WITH A POWER-LAW POTENTIAL

In this section we construct another class of spatially
flat modes: V}°%". Consider a scalar-field whose energy
density red-shifts with exponent g ( <3) in a universe
dominated by radiation. Using the same arguments as in
the previous section we find that the scalar-field equation
of motion is

yll+_)2€_yl+ Ax2y—(4+q)/(4—q):0 . (5.1
We have assumed pg <<pr so a(t) is not perturbed.
Here y =®,— & (Y is the value of ®, at a =0),
x =a/ag,, primes denote derivatives with respect to x,
and

(0) 2 () 19/(4—q)
=t
—4 | pr —4q | pr
The special solution of Eq. (5.1) is
) 2p(0) 172
@ 4—9)/2
Yox)=(2q|—— | —| x“- 972, (5.2)
‘ 4—q | py’

As in the previous two sections, we wish to examine the
behavior of spatially homogeneous solutions of Eq. (5.1),
not necessarily close to this special solution, in which
Dy(1) t*~97* and py(t) « t 7972 To study the structure
of the spatially homogeneous phase space of Eq. (5.1) it is

convenient to make the change of variables,
(y,x)—(u,7),
y(xX)=y,(x)u(x), x=e. (5.3)

The phase-space equations governing the evolution of
u (1) are then given by

u=p,
p=—(5—q)p

4—q
2

6—q ~(4+q/4—q)
2 b

(v —u (5.4)

where an overdot denotes a derivative with respect to 7.
The only relevant critical point is at (ug,py)=(1,0).



(In general, there are a number of critical points at p =0
with u a [(4—gq)8 ']th root of unity; since # must be
real, we may discard the complex fixed points. For some
isolated values of ¢, Eq. (5.1) is invariant under y — —y;
in this case there are two real critical points; since we are
interested in solutions for which y’ >0 we discard one of
the critical points.) On linearizing about this critical
point we find that the eigenvalues of small fluctuations
are given by

A,=1[g —5%i(23429 —¢H)'?] . (5.5)
These eigenvalues show that the critical point is in fact a
spiral fixed point, for the values of ¢ (0 <g <3) that we
are interested in. The volume in phase space decreases
with time as V(a/ay)=(ay/a)’~?. Clearly, if g <4,
Po/pPr is an increasing function of time. A more detailed
discussion of the phase space of these equations is
presented in the Appendix. The eigenvalues A, , are de-
rived in another way in Sec. IX A.

Let us now consider the behavior of the scalar field in
the same potential (as a function of the scalar field) dur-
ing the baryon-dominated epoch (pg <<pp). The scalar-
field equation of motion is

(0)

2 u+ Sxy +AP(0) 3y—(4+q)/(4—q)___0. (5.6)
PR
A special solution of this equation is
ye(x)szSM—q)/S , (57)
where
(4—q)/8
128 gq(6—q) pPo | °
9 (4—gA8—¢q) P
2 /8
l4=a | pP
Making the change of variables
y(x)=y,(x)u(x), x=e’ (5.8)

[we have used the same symbols u,7 to denote the new
variables introduced to rewrite Eq. (5.6) as we did to
rewrite Eq. (5.1); we hope this does not lead to undue
confusion], the equations governing the evolution of tra-
jectories in phase space become

u=p,
p=—3(6—qp—5(4—q)(8—q)(u —

(5.9)
—(4+q)/t4—q)) X

The only relevant critical point is (u,pq)=(1,0) and the
eigenvalues of small fluctuations are given by

Ay ,=3[q —6%i(28+4g9 —q*)'"?], (5.10)

which show that it is a spiral fixed point for the range of
q of interest. The volume in phase space decreases with
time as V(a/ay)=(ay/a)*®~?/% These eigenvalues are
derived in a different way in Sec. IXB. A more detailed
discussion of the phase space of these equations is
presented in the Appendix.
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Since there is only one fixed point for the scalar-field
equation of motion in both the radiation- and baryon-
dominated epochs, it seems reasonable to assume (in our
simplified model) that there is only one fixed point during
the transition of the Universe from radiation to baryon
dominance. .

From the special solution, Eq. (5.7), we see (®;)?
V(dy) < (ag/a)?’* so during the baryon-dominated
epoch the scalar stress tensor red-shifts slower than in the
radiation-dominated epoch (if g >0), while pg,/pp is an
increasing function of time (if ¢ <4). We note that in
both the radiation- and matter-dominated epochs, the
fractional perturbations in the scalar field, ®,/®,, are
given by u, (where u =uq+u).

In the scalar-field-dominated epoch, the scalar-field
equation of motion and Einsten’s equation are coupled
because we can no longer neglect the scalar-field contri-
bution to the stress tensor. These equations are given by

j;+3£'y+cy—(4+q)/(4—q)zo ,
a

2 (5.11)

1., C

4—gq
27" 12

q

—2q/(4—q)
’

a
a

where

ulém 2o
3(4—q)

2
4—q

X

2 (0) 19/t4—9)

P
(0)

PRr

In this case, we may safely work with the version of
Einstein’s equation given by Eq. (2.8) since we are only
interested in determining the spatially homogeneous solu-
tion for k*=0. We find, at large times, the scalar-field
stress tensor is dominated by the potential term and the
asymptotic form of the solution is

—(DE)O):DIM—‘I)AS_") ,

(5.12)
£ exp( Wt(8—2q)/(8—q))
a, ’
where
(4—q)/(8—q)
_39_ 8—(g‘:(6—)2g)1/2(167rm —2 (0))1/2]
q
2 (0) 19/[2(8—9)]
2q 42 p—?:g ,
9] pr
12 (5.13)
8—¢q —C(4—q) p-9/t4—9
8—2g 12¢ ’
and, at late times,
po(t)=Et~2/8-9 (5.14)
where
_ ( (0))2 —q/(8—q)
E=529,0| T _(5_g26—q L%
6 mg Po
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As expected, at late times, the Universe expands slower
than if it were dominated by a constant cosmological con-
stant.

The evolution of spatially inhomogeneous perturba-
tions, in these models, is analyzed in Secs. VII-IX.

VI. THE CLASSICAL TESTS
OF GRAVITY THEORIES

We summarize here the constraints on the scalar term
in the action from the classical tests of gravity theories.
Our analysis of the cosmological tests for the power-law
potential model is described in Ref. 17. We note, in par-
ticular, that the energy density of the scalar field has been
chosen to red-shift slower than radiation (i.e., in one of
the models of Secs. III-V), so the scalar energy density
would not greatly modify the expansion rate at nu-
cleosynthesis. (The scalar energy density at nucleosyn-
thesis is determined by its energy density now. Typically
we desire pi0’ /p\9 ~5.)

Expanding the scalar field about the homogeneous
background field ®;, we find that the equation of motion
for the fluctuation ¢ is given by

&+3%$—%V2¢+mé¢+ =0, (6.1)

where mj=_1V"(®,). In model E; (Sec. III), e~107%,
so for red-shifts 14z < 104 Eq. (3.13) reduces to

_ a0
Y —Se 64(P)— o )’ 6.2)
SO
3
a
V' =364V =24mm; Xp0+p) [— | ,  (6.3)
which gives
a 372
my=~5x10"20}2h | == | cm™
372
a
~107320)2h | | eV, (6.4)

where we have taken pf'4pf’=5%1.9x10"¥Qh>
3

gcm ™. For the power-law potentials considered in Sec.
V, in the baryon-dominated epoch, we find
3
3T o
2 (0)
my=——>pp (4+q)(8—q) | — (6.5)
¢ 8m,2> PB q q a

This results in numbers comparable to those of Eq. (6.4).
As one would expect by dimensional analysis, m r is on
the order of the distance to the horizon when Qq~ 1.

Coherent  scalar-boson exchange between light
(<<Mgyt) fermions will result in an effective Newton’s
constant:

(g, _m,
(my2¢

GN,eﬁ'= GN+ (6.6)

where (gy) is a dimensionless number representing the

weighted average (over the experimental objects) strength
of the Yukawa interaction, (m ) is the weighted average
fermion mass and r is the proper size of the experiment.
Since m, is exceedingly small, for any experiment
e 1.

By far the strongest constraint on (g, ) is the E5tvds-
Dicke experiment®® which indicates that the acceleration
towards the Sun is independent of the material to an ac-
curacy of better than a part in 10'°. Thus the difference
between the accelerations of a neutron (a, ) and a proton
(a,, ), on the Earth, due to the Sun (which we may crudely
approximate as being composed of N neutrons of mass

m,, and P protons of mass m, ), is
2
a, _ap mp 2 N 2 P
= — = , 6.7
g Nm, +Pm, &n m, & m, €7

where g is the acceleration due to the Sun at the Earth
and g, and g, are the Yukawa couplings of the scalar
field to neutrons and protons. From the EoGtvos-Dicke
experiment, we have |(a,—a,)/g| S 10719 As a rough
approximation, we take m, ~m,~1 GeV. Eq. (6.7) then
reduces to

(N+P)"'(gIN —g2P)S10~* (6.8)

where (N +P)~'N and (N +P)"'P are factors of order
unity. To avoid having to require an unreasonable coin-
cidental similarity between different Yukawa couplings,
we must require that the scalar field couple only exceed-
ingly weakly to light matter, i.e.,

8,8, <1073, (6.9)

This constraint on Yukawa couplings might lead to a
serious problem for two, not totally unrelated, reasons.
Even if we ensure that the scalar does not explicitly cou-
ple to ordinary, light matter, radiative corrections might
generate effective Yukawa couplings whose values differ
by more than is allowed by Eq. (6.8). (It is unclear how
one would estimate the magnitude of radiatively generat-
ed Yukawa couplings in such a nonrenormalizable field
theory. One might, however, be able to ensure the ab-
sence of such couplings through the use of an appropriate
symmetry.) The second problem arises if we wish to use
the decay of the scalar field to heavy (GUT mass) parti-
cles (which subsequently decay to light particles) to
create matter and radiation. We have not estimated if
this leads to a contradiction with the bound of Eq. (6.8).

One might have thought that the gravitational field of
the Sun would perturb the local value of ®. If so, the lo-
cal perturbation of pg could affect the classical tests of
gravity theory in the Solar System. Wagoner®® showed
that this is not so if one ignores the general expansion of
the Universe. (The class of theories we are considering is
Wagoner’s case yy=const.) The effect of the expansion of
the Universe can be taken into account as follows. Ignor-
ing pg, We can choose a spherically symmetric static line
element in the neighborhood of the Sun. In these coordi-
nates the equation for the scalar field is



ooaz<1> 1 3|, = nd®

— 1y —
s o |88, |V (@)=0

(6.10)

In the limit

approach constant values and
1

where we have assumed that ®=®&(¢,r).

r—0, g®° and g~
—g —r?, so if ® varied as the power-law solution 7~

at small 7, it would have to be singular at » —0, which is

not allowed. Rather, the r dependence is

Hr?

t———

b~
2

) (6.11)

where the second term in the argument comes from the
first-order Doppler shift in the transformation from ex-
panding coordinates, and we have ignored gravitational
red-shift terms of order Gm /r. This means that the local
mass density in the scalar field would be very nearly equal
to the large-scale mean value, which, as we know from
discussions of the cosmological constant, would have
negligible effect on the Solar System.

VII. LINEAR PERTURBATION THEORY
FOR THE EVOLUTION OF INHOMOGENEITIES:
GENERALITIES

In this section we derive the equations of relativistic
linear perturbation theory that determine the evolution of
inhomogeneities, generalizing the equations of Chap. V of
Ref. 54 to include the effects of the scalar field.

The equation we need to linearize are (i) Einstein’s
equations
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which determine how gravitational perturbations evolve,
(ii) the scalar-field equation of motion

1 1 oV
—a VvV _ggh, P ®)=0 .
v (V' —gg"o )+5 3¢ @) (7.2)
which determines how scalar-field perturbations evolve,
and (iii) the equation of covariant conservation of stress
energy

T,".,=0, (7.3)

which determines how perfect-fluid perturbations evolve.
We work in synchronous gauge and linearize the
metric about a spatially flat Friedmann-Robertson-
Walker background, so the line element is given by
ds*=dt*—a?

(t)(s’l_h‘.’ )dxidxj ’

the scalar field about a homogeneous background,
O(x,1)=Dy(1)+d(x,t) , (7.4)

and the perfect fluid about a homogeneous background.>*
We find that the homogeneous part of the scalar field
obeys
Do+35dy+ LV (Dy)=0 (7.5)
a
which is just Eq. (2.8
motion is given by

), while the first-order equation of

$+3%¢;_;‘2—v2¢+%V"<¢0)¢—%A¢0=0. (7.6)

We shall need the expansion,to quadratic order in the

R, =8mmp b T,—38uwT), (7.1) perturbations, of the scalar-field stress tensor:
J
mi m}
Too= 5 L1807+ (@)]+ T [ Do+ V(D)1 + 1o (6124 2<V¢>2+%V“<¢o>¢2 ) @.7)
2
Toj=—— 16 Dd;¢)+ ¢a é), (7.8)
2.2 242
mpa . ,
Tij=‘§;5ij[(¢o V((Do)]+ {511[2‘1)04’ V'(®o)p]—h; [(q’o —V(®g)]}
ja?
+ 55 |8y |- L(vgr- ‘V"(d>0)¢2] —hy (2006 — Vi(@opl+ 23,60 ¢] (7.9)
I
. . . 2
We have previously noted that covariant conservation of ) mp . . ,
the scalar-field stress energy is equivalent to Egs. (7.5) cspod= 167 [Pod—3V'(Po)P] - (7.12)

and (7.6). Comparing the zeroth- and first-order terms of
the perturbed scalar-field stress tensor to those of a per-
turbed perfect-fluid stress tensor, we may make the
identifications

mpo
p¢6=1_6ﬂ:[q)0¢+7V(¢0)¢] )
P bdd)
16w 0% ,

(7.10)

—aXpp+polui= (7.11)

Here § is the fractional perturbation in the energy density
of the scalar-field fluid, u’ is the coordinate peculiar ve-
locity, and ¢, the speed of sound in the scalar-field fluid.
Using the results of Sec. II, we see that Eqs. (7.10) and
(7.11) give operational definitions of the scalar-field
energy-density perturbation and peculiar velocity; howev-
er, Eq. (7.12) shows that the speed of propagation of
acoustic waves in a scalar-field background is a
spacetime-dependent quantity. This means that the per-
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turbed scalar field does not behave like a perturbed ideal
fluid. This is exceedingly fortunate, since inhomo-
geneities in a negative-pressure perfect fluid (excluding
the case p =—p) collapse on very small scales. (This
would strongly affect the classical tests of gravity theories
in the Solar System.)

For a linear perfect fluid (which we shall use to de-
scribe baryons and radiation), with the definitions

pix,t)=p, ()[1+8(x,1)],
p(x,8)=py(t)+vp, (£)8(x,t) ,
TH=(p+plutu¥—gtp

(where p, and p, are the homogeneous background ener-
gy density and pressure of the baryon or radiation fluid),
and the assumption

.P_ E
dp p’
where v is a constant, we find
’ 8
a T
— | =——(pp+po) » (7.13)
a 3m}2) PbTPo
d
—(a’p,)+3a%p, =0, (7.14)
dt
. h
65+ (14v) 9—3 =0, (7.15)
J
5+2 454 ——8— (1—+—v(1+3v)pb8 (14v)dod—

mP

where we have used Egs. (7.15) and (7.16) to rewrite Eq.
(7.17).

For some purposes, it proves useful to have the equa-
tion

.. 7 . 2
8423w L84 Vg 11
a a 2

1'1.+(2—3v)£}i
a

(7.22)

which can be derived from Egs. (7.15) and (7.16).

We shall analyze solutions of these equations, for the
power-law potential models of Sec. V, in the following
two sections. Our analysis outside the horizon (for long-
wavelength fluctuations) shall be restricted to the
radiation- and baryon-dominated epochs. This is because
our lowest-order solutions, in the scalar-field-dominated
epoch, are only valid at asymptotically large times. How-
ever, since the scalar field could have come to dominate
the Universe only very recently, the behavior of fluctua-
tions outside the horizon, in the scalar-field-dominated
epoch, are not of much current observational
significance. Results of a numerical analysis of short-
wavelength fluctuations in the baryon distribution (in the
baryon- and scalar-field-dominated epochs) are described
in Ref. 17.

. 2
6+2-m Lot Yoy, (7.16)
1-+—V a?
%I}.—f—%ﬁ:41rmp_2pb8(l+3v)+<bo¢ Ly(@,)4 ,
(7.17)
h—hy;=—16mmp2ap,(14+v)v'+ P36 , (7.18)

3a

1 . a -
?(hij,kk +h i —hag k=R ) — Thij — ;h‘sij —h

=8rmp 28,,p,8(1—v)+ 7’ V'(®gé  (7.19)

(here vi=au' is the proper fluid velocity in synchronous
gauge and 6=v';/a). Compared to Chap. V of Ref. 54,
we have two more equations [(7.5) and (7.6)] and Egs.
(7.17)—(7.19) have new source terms.

We find that the wave equations for the fluctuations ¢
and & are given by (after a spatial Fourier transform,
where k is the spatial coordinate momentum)

.. 7 . k2 ..
¢+3%¢+;7¢+;'V"(¢0)¢=%h<1>0=

1+v
(7.20)

where we have used Eq. (7.15) to rewrite (7.6), and

14+v

(¢0)¢—3v(1+v)§e , (7.21)

VIII. EVOLUTION OF SHORT-WAVELENGTH
INHOMOGENEITIES IN THE POWER-LAW
POTENTIAL MODEL

In this section we study the evolution of short-
wavelength inhomogeneities (i.e., fluctuations inside the
horizon) in the scalar field, in the radiation fluid and in
the baryon fluid during the three distinct epochs of the
power-law scalar-field potential model of Sec. V.

Let us first consider fluctuations in the scalar field, ¢,
and in a relativistic fluid (i.e., vs0), 6. For short-
wavelength fluctuations (i.e., fluctuations for which
k2>>a?) we see, from Eqgs. (7.20) and (7.22), that ¢ and
oscillate rapidly. This regime is best studied in a WKB
approximation (Sec. 16 of Ref. 54). We take the fluctua-
tions to be of the form

iWD+C,)

#(1)=F(t)e o 8(t)=G(1)e!V MO | (8.1)

where (?) is a rapidly varying function of time, C is an
arbitrary constant, and F(t) and G (t) vary slowly with
time. Since there are no VA terms in Eq. (7.17) we see
that & cannot oscillate rapidly, in fact, # will not be able
to react, in lowest order, to the rapidly oscillating source
terms in Eq. (7.17). From Eq. (7.15) or (7.16) we see that
6 will oscillate coherently with 6. However, 8§ does not



oscillate coherently with ¢, Eq. (8.1). Hence the dom-
inant terms in the adiabatic expansions of the first of Egs.
(7.20) and Eq. (7.22) are the first three terms on the left-

hand sides. Working to first order in the adiabatic ap-
proximation, we find
1 ot dt’
(1) k
(8.2)
S(I)c([a(t)]uv_l)/zexp )

Perturbations in the scalar field and in a relativistic fluid
always oscillate inside the horizon. It is pleasing to note
that the leading behavior ¢ «ka ~'¢ implies that the
quadratic small fluctuation term (8T(') in Eq. (7.7)
red-shifts like a —% i.e., inside the horizon, scalar field
fluctuations behave like relativistic matter.
For a zero-pressure fluid, it proves convenient to work
with Eq. (7.21). When v=0 this equation reduces to
5422 6———pb6 bod—

LV'(®g) . (8.3)

To lowest order, the source terms average to zero and the
equation reduces to the standard form discussed in Sec.
11 of Ref. 54 and analyzed for the power-law potential
models in Ref. 17.

We next consider special cases of the above results for
the power-law potential models of Sec. V. We shall
present the general form of the wave equations, in the
radiation- and baryon-dominated epochs, for the power-
law potential models, since they are also required for our
analysis of fluctuations outside the horizon in Sec. IX.

A. Radiation-dominated epoch

In this case the wave equations that govern the evolu-
tion of small fluctuations ¢ and & (the fluctuation in the
radiation fluid) derived in Sec. VII, become

K Ee 3B, . By
¢+ ¢ SRt 2t2 o— W7 _—tq/49 0 (8.4)
and

k2 1 4BR .
8 8 — [6—
+ + 6Rt 12 3tq/4¢

2
-f-md’-{——@ 0, (8.5

where we have taken v=1. The time-independent
coefficients Bg,Dg,Eg, and R are given by

) 1172 (4—q)/8
B, — ifﬂL 327 o ! (8.6)
R — 2 3m}2) R
172 —q/8
T 327
Do=—(6—g) (0) el (0) , (8.7)
R q 3 gQPw 3m,2> PR
ER:(6_‘1)8(4+‘” , (8.8)
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R= |—5pRa; (8.9)
3m12) R %0
From Eq. (8.2) we find
5 1"

Y= |» kt'?4C, (8.10)

(where C is a constant of integration) and

Cr

F(t):tl/?_’ (1)=Cg (8.11)

(here Cr and Cg are constants of integration).

A convenient measure of the temporal behavior of
energy- densxty ﬁuctuatlons m the scalar field ¢ i
(ST("“)/TOO , where Too and 8T are deﬁned
through Eq. (7.7). We find, for the slowest decaying com-
ponent,

(5T 2

@y = (A2
Ty

(8.12)

which decays for ¢ <4. The scalar-field source terms in
the graviton equations of motion, Egs. (7.17)-(7.19),
behave in much the same way as the radiation source
terms. Hence the analysis of the graviton equations in
our model will not differ significantly from the analysis in
the standard radiation-dominated model. So, inside the
horizon, in the radiation-dominated epoch, the inhomo-
geneities in the scalar field and in the radiation fluid do
not grow. We have ignored the fluctuations in the
baryonic fluid since they behave in much the same way as
in the standard radiation-dominated universe.'®

B. Baryon-dominated epoch

Rather than explicitly solving the time-averaged form
of Eq. (8.3) (i.e., averaged over times long compared to
the oscillation period of the scalar field but short com-
pared to the time scale set by the expansion), we choose
to investigate Egs. (7.20) and (7.21), the wave equations
for the fluctuations ¢ and & (the fluctuation in the baryon
energy density). In the baryon-dominated epoch we have
v=0. Using Eq. (7.16) to replace 6(¢) in Eq. (7.20) by
Cyt ~*/3, we find that these equations become

473
. z 2 1 EB BB :
¢+ ¢ ¢+ IM 473 +? ¢~ (a/4
By Cy
~ e i =0 (8.13)
and
By . Dy
8+§78 3t2 Tz ¢+ 4rla+474 ¢=0. (8.14)

Since v=0, 6(¢) is not a source for &(¢) during the
baryon-dominated  epoch. The time-independent
coefficients By, Dy, Eg, and M are given by
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6 3 (4—q)/8 p(o) 172
_ || 0=9 | 247 0 qre
By=||5= "p 155 . 61
g )3mp PR
4 12
Dp=— |q(6—¢)(8—q)——py’
Img
6 32 e
X | | ==L | =5 , (8.16)
8—q | 3m}
EB=——~——(4+‘7;(8“7) : (8.17)
172
87 (0 3
= |——=pp a (8.18)
3m}2’pB 0

Equation (8.14) does not include the effect of radiation
drag on the baryonic perturbations. This may be ac-
counted for in exactly the same manner as in the stan-
dard baryon-dominated model."®

For short-wavelength fluctuations [k2>>(3Mt/2)*3],
we see that ¢ will oscillate. Using the WKB approxima-
tion for ¢(¢), (8.1), we find, to leading order,
173

12¢
+Cy

Y=k —AF (8.19)

where C is a constant of integration. To the next order
in the adiabatic expansion of Eqgs. (8.13) and (8.14) we
have

(8.20)

2 8(1)

5(1)+ >

(8.21)

where the relevant term, to this order, in Hg(?) is given
by

2 By )
< F iY(r) .
3 (t)e

Hy(=ik e

Equations (8.20) and (8.21) may be integrated to give

o
F(t)=—+—

R (8.22)

o
E‘>(t)=C1z2/3+T2
+%f’(z')2/3 [f"(t")mHa(z”)dz“ dr' (823

(here C,;, C,, and C are constants of integration). We
see, from Eq. (8.23), that baryonic inhomogeneities, in
our model, behave in exactly the same way as in the stan-
dard baryon-dominated model (Sec. 11 of Ref. 54): the
oscillatory term in Eq. (8.23) is suppressed by one factor
of k~! (Hg~k and integrating twice by parts brings
down two powers of k ~!). The presence of the scalar
field does not affect the growth of baryonic inhomo-
geneities.

Using Eq. (8.22) we find, for the slowest decaying term,
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(5T g2
o .
(@) (16—3¢)/6 °
Too’ t

(8.24)

this means that scalar-field inhomogeneities do not grow
(for the relevant range of g) during the baryon-dominated
epoch of our model. The analysis of the graviton equa-
tions of motion, Egs. (7.17)-(7.19), in our model, is not
significantly different from the analysis in the standard
baryon-dominated model, since the new scalar source
terms oscillate much too rapidly for the gravitons to be
be able to react.

C. Scalar-field-dominated epoch

In the scalar-dominated epoch, scalar-field perturba-
tions do not grow to lowest order, Eq. (8.2), as is true in
general inside the horizon. The rapidly oscillating source
terms in the wave equation for the baryonic fluctuations
will only contribute terms of order k ~!; ignoring them,
the baryonic fluctuations obey the usual equation

S+2%S—47rm,:2p,,6=o . (8.25)
The complicated time dependence of the scale factor, Eq.
(5.12), has prevented us from analytically integrating this
equation, even for asymptotically large times. A numeri-
cal integration of Eq. (8.25), discussed in Ref. 17, shows
that the presence of a substantial amount of scalar-field
energy density inhibits the growth of perturbations in the
baryonic fluid (a very similar effect occurs in a radiation-
dominated universe'®). This is one of the reasons why the
scalar field could have come to dominate the Universe
only very recently if galaxies formed by gravitational in-
stability.

IX. EVOLUTION OF LONG-WAVELENGTH
INHOMOGENEITIES IN THE POWER-LAW
POTENTIAL MODEL

In this section we use the equations of Sec. VII to study
the evolution of long-wavelength inhomogeneities, out-
side the horizon, in the scalar field and the radiation fluid
in a universe dominated by radiation and in the scalar
field and the baryonic fluid in a universe dominated by
baryons. The scalar-field potential is taken to be of the
power-law form derived in Sec. V

A. Radiation-dominated epoch

In the radiation-dominated epoch, for long-wavelength
fluctuations (k?—0), we find, from Eq. (7.16),

Co
9(t)=ﬁ , 9.1)
where C, is a constant of integration. For long-

wavelength fluctuations, Eqs. (8.4) and (8.5) reduce to

BxC, 3By .

PR P A B L (9.2)
o+ 2t¢+ 242 ¢— t(2+q)/4 - 41974 ’ :
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S U | 2C, 4B, . Dy
8+78_78+ 3372 31974 ¢— 3t(4+q)/4¢ :

9.3)

Assuming ¢~ ¢ /t, 6 ~8/t, it may be verified that the per-
turbations of 6 induced by the scalar-field source terms in
Eq. (9.3) induce a perturbation of the scalar field, via Eq.
(9.2), A¢ that obeys A¢/¢~py/pr and similarly
AS/8~pg/pr. So, in the limit py <<pp (i.e., when the
Universe is radiation dominated) we may neglect the §
and ¢ source terms on the right-hand sides of Egs. (9.2)
and (9.3) and solve the equations for ¢ and §. If we wish
to, we may then define the sources in terms of these solu-
tions and then solve the modified equations to determine
order (pg/pg) corrections. Explicitly, A¢/¢ and AS/d
are of order B3t"“~972 or of order Bg Dgt'*~?/? which
are of the order

—-2.(0) 2)(4—q)/4

(P /pR ) m, 2pR't ~Po/PR -

Equivalently, the energy density in the ¢ perturbation
induced by the &pg source in Eq. (9.2) obeys
Apy~(pe/pr)Opr. We have the limit dpg /pr < 10~*on
the scales probed by the microwave background anisotro-
py and, on smaller scales, 8pg /pr << 1 from the condi-
tion that density fluctuations not over produce black-
holes. Thus the perturbations to ¢ produced by the
baryon (and radiation) energy-density fluctuations wanted
to produce galaxies are always small: Ap,/pg <<1. Once
the scalar-field fluctuations enter the horizon, they will
begin to oscillate away, Sec. VIII.

The solution of Eq. (9.2), with the source terms
neglected, is

n n 4 BrCy
H=C.t *+C_t ~+———t 079" 9.4
H)=C,t "+C_t ~+ 3 6—q) 9.4)
where C . are time-independent functions of k and
n.=i—1£i(23429 —¢*)'"?]. 9.5)

The solution of Eq. (9.3) with the source terms neglected
is

8(t)=Cg t +Cyyt "'+ 5Cot'"%, (9.6)

where Cg, 5, are time-independent functions of k. The
third term in Eq. (9.4) is proportional to
172

20 e, 9.7)

C
GPR

it is a growing perturbation. There are other growing
perturbations, some of which grow faster than Eq. (9.7).
To determine these modes, we may use Egs. (9.4) and
(9.6) to define the source terms in Egs. (9.2) and (9.3) and
then integrate the resulting equation to determine all
corrections to order (pg/pg ). For instance, retaining the
fastest growing mode in 8, Cj;, we find that the source in
Eq. (9.2) becomes

3 —
TBRCGI (/4 .

This induces a new mode in ¢:
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The fastest growing mode in ¢, « C,, induces a term

A8(1)~§_¢61/2 Py (99)

R

where 8, ,, is the mode « Cy4 in Eq. (9.6). Clearly such
terms, A5, are subdominant and are of significance only
at low red-shift, when pg,/pg ~ 1.

The fractional perturbations in the scalar field
5P,/ Py=¢ /P, corresponding to the modes C,, vary as
powers of time, ¢ /®,« t*, with

Aa=1[g —5+i(23+2g9 —¢»)'"?]. (9.10)

This agrees with Eq. (5.5) (where x ~t'/2).

Furthermore, as is easily verified, in this limit the sca-
lar source terms in the graviton equations of motion are
negligible compared to the radiation source terms [they
lead to corrections of order (pg,/pg)]. So, outside the
horizon, the inhomogeneities in the scalar field essentially
decouple from the inhomogeneities in the radiation fluid
and in the gravitational field (to the lowest order). The
analysis of the radiation-graviton system is presented in
Sec. 86 of Ref. 54.

B. Baryon-dominated epoch

In the baryon-dominated epoch, for long-wavelength
fluctuations (k>—0), in the limit py <<pp, it may be
verified, from an analysis similar to that of Sec. IX A,
that the only significant new feature (compared to the
analysis in Sec. 86 of Ref. 54) is the equation of motion of
scalar inhomogeneities [Eq. (8.13)] which reduces to

. 2. Eg
—¢+—¢=0, 9.11
b+ b+ 5o ©.11)
where the constant Ep has been defined in Sec. VIIIB.
The solution of this equation is given by

d)=C, t"*+C_ 1", 9.12)
where C. are time-independent functions of k and
n.=i—2+i(2844q9 —¢*)'"?]. (9.13)

The fractional perturbations 8®,/®q=¢ /P, vary as
powers of time ¢* with

A ,=+[qg —6£i(28+4g —q?)'?] . (9.14)

This agrees with Eq. (5.10) (where x ~22/3).

X. DISCUSSION

In the past three decades there has been much discus-
sion of cosmological models with scalar fields. The pos-
tulated scalar fields have been used for a variety of
purposes—to elaborate on the steady-state cosmology
model, to dynamically explain the hierarchy problem, to
incorporate Mach’s principle in gravitation theory, to
dynamically suppress the classical cosmological constant,



3424

as a candidate for CDM (the axion), and to drive
inflation. In this paper we have suggested yet another use
for a cosmological scalar field. (It is worth keeping in
mind, however, that there is not yet any experimental or
observational indication that such scalar fields exist.)
Our models require a rather definite form of scalar-field
potential. It is not inconceivable that a potential of the
kind we require might arise in one of the currently popu-
lar theories of particle physics. Scalar fields are present
in the theory of superstrings as well as in a large number
of Kaluza-Klein and supergravity models.

Our models are meant to provide a possible way to
resolve the discrepancy between the low dynamical esti-
mates of the mean mass density and the negligibly small
space curvature preferred by the inflationary scenario.
Two appealing features of our models are that they can
simultaneously accommodate the nucleosynthesis re-
quirement of low baryon density and the wanted large to-
tal mass density of the Universe®’ and that they require
that the distribution of galaxies (light) be clumpier than
the distribution of mass (which is dominated by the
scalar-field energy density). There are other models
which also preserve the observational consequences of
the standard nucleosynthesis scenario while allowing a
substantially larger baryon mass density. These models
are either based on the assumption that the QCD quark-
hadron transition would strongly perturb the standard
nucleosynthesis scenario (without affecting, too strongly,
the calculated abundances of most of the light elements)*®
or on the assumed existence of a late-decaying particle
(for instance, the gravitino), which could be responsible
for a low-energy nucleosynthesis epoch (again, the abun-
dance of most light elements would not greatly disagree
with the observed abundances).”® There is also the stan-
dard CDM scenario, which assumes the existence of a
large amount of nonbaryonic matter with low present
pressure.” However, further analysis is needed to decide
whether or not any of these other models “bias” galaxy
formation in an astrophysically consistent way.

The scalar-field solutions that we have presented are
remarkably stable (for the appropriate range of a parame-
ter), so, given the equations of motion, no fine-tuning is
needed to make the time evolution of the scalar-field en-
ergy density approach the wanted form. Because of this
time variation we can argue that the classical cosmologi-
cal constant is small (compared to the scale set by the ra-
diation temperature at reheating) now because the
Universe is old (compared to the age of the Universe at
the time of reheating). This is somewhat reminiscent of
the mechanism proposed to dynamically reduce the grav-
itational constant.?®?* Numerically, using Eq. (14) of
Ref. 17, a crude estimate of the energy scale set by the
cosmological constant at reheating, m, ~ (Vg )!/* (where
Vg is the value of the potential of the scalar field at
reheating), gives m, ~5.6x 10° GeV (for g ~3 in the pre-
ferred models of Sec. V; this is about as high as this scale
can be in these simple power-law potential models). This
should be compared to the scale in the constant-A model,
Eq. (1.1), which is ~10~3 eV. Although a cursory exam-
ination might seem to suggest that the reduction in the
fine-tuning of the cosmological constant, in these models,
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has been achieved at the cost of introducing an, equally
undesirable, exceedingly low-mass scalar-field fluctuation
(i.e., an exceedingly flat potential), this is, in fact, not
true. A rough estimate of the mass of the scalar-field
fluctuation, Eq. (6.5), at reheating, gives my~1.2 MeV.
Subsequently, the cosmological expansion reduces this to
~107°% eV at the present epoch. (We note that these
models have not been proposed to, and do not, resolve
the quantum-mechanical cosmological constant “prob-
lem.”)

Our models offer no new insight into why the net mean
mass density should approach zero as the cosmological
expansion parameter a(t) approaches infinity, but the
models do suggest a possible connection between the
inflaton field that drove inflation and the cosmological
constant of the present epoch, as outlined in Sec. IC. In
our models, the scalar field interacts at exceedingly weak-
ly with light matter (if it interacts at all). Hence the
scalar-field stress tensor is covariantly conserved. A ma-
jor unsolved issue here is whether, in the unified scalar-
field picture, the coupling of ® to matter can be arranged
so as to produce entropy during reheating without violat-
ing the EoOtvos-Dicke experiment. Also, quantum
mechanically, the present models presumably suffer from
the same fine-tuning problem that renormalizable scalar-
field theories have.”> These models need a mechanism
that prevents the potential from being drastically altered
by quantum-mechanical effects.

Perhaps the most pressing unresolved issue is the prob-
lem of galaxy formation. We suspect that the present
model is not viable in the usual adiabatic perturbations
picture because without nonbaryonic matter it is difficult
to reconcile the limits on the small-scale anisotropy of the
microwave background radiation with the wanted
present amplitude of mass-density fluctuations.®* The
other, currently popular, models for galaxy formation are
isocurvature fluctuations,®! the explosion scenario,®? and
cosmic strings.®> We suspect that any of these mecha-
nisms can be incorporated in our models. We defer a de-
tailed discussion of galaxy formation to later work.%*
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APPENDIX: GLOBAL STRUCTURE OF PHASE SPACE
OF EQS. (5.4) AND (5.9

In Sec. V we have analyzed the power-law potential
models in the radiation- and matter-dominated epochs.
We found a fixed point in both epochs (in the finite part
of the phase plane), studied small fluctuations about these
fixed points, and showed that the fixed points were stable
(for some range of ¢). This analysis was local; it cannot
be used to show whether there are any Poincaré limit cy-
cles in the phase plane or to study critical points at oo. It
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is also of interest to determine the domain of attraction of
the fixed points found in Sec. V and to analyze the possi-
bility of chaotic behavior of phase trajectories. For-
tunately, the rather extensive theory of the two-
dimensional phase plane, Ref. 53, allows us to clarify
some of these issues.

1. Poincaré limit cycles
Equations (5.4) and (5.9) are of the form
x=f(xy), y=r(xy). (A1)

If there is a simply connected closed orbit C in the x,y
plane that encloses an area A4, then

0= clf1(x,9)dy —f(x,p)dx]

af1(x,p)  Af,(x,p)
4 dx ay

dxdy , (A2)

where we have used the Stokes-Green’s theorem and as-
sumed that f,(x,y) and f,(x,y) are sufficiently smooth.
From Eq. (A2) we see that there can be no closed phase
trajectories in the phase plane unless V-f vanishes or
changes sign. This is known as Bendixson’s theorem.
Evaluating V-f for Egs. (5.4) and (5.9) we see that there
are no limit cycles in either case (for the relevant range of
Q.

2. The structure of phase space at o

A convenient strategy to adopt for such an analysis is
to map o to a finite part of the phase plane and then
study the critical point structure of the finite part of the
phase space of the transformed equations. We shall first
consider the mapping

u 1

v=— r=-—

p p
which maps all points at infinity to the finite part of
phase space except the line p =0; we shall then consider
the transformation

r ,_1
u u

, (A3)

v= R (A4)
which maps all points at infinity to the finite part of
phase space except the line u =0.

Using the transformation (A3) one finds, for the system
described by Eq. (5.4), that the fixed points in the finite
part of the (v,r) phase plane are at

(v,r)= (AS)
and

(v,r)= (A6)

—_ ,0
6—q

the linearized equations at these fixed points are given by

2

. . q
Oy =—vy, F= r

and
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2

The first fixed point is a saddle point for g <4 and the
second fixed point is an unstable node for g < 6 (the criti-
cal point in the finite part of the original phase plane has
been mapped to «). Under the mapping (A4) our origi-
nal fixed point remains in the finite part of phase space
and the new fixed points have exactly the same behavior
as (AS5) and (A6). There are methods for deciding which
of these four fixed points at infinity are distinct, however,
for our purposes it suffices to know that none of the fixed
points at infinity are stable. We have thus established a
global picture of the original phase space of Eq. (5.4):
there is a single attractive fixed point in the finite part of
phase space and all phase trajectories that start in the
finite part of the phase plane must flow into it; the phase
trajectories that flow into the saddle points at infinity
must flow out of the unstable fixed points at infinity.
Very similar conclusions hold for the phase-space struc-
ture of Eq. (5.9).

l')1=v1, f'l= rl.

3. Estimate of the domain of attraction
of the fixed points of Sec. V

Equations (5.4) and (5.9) can be rewritten in the

second-order form
i+Fu+F,(u)=0, (A7)

where F; does not depend on u. It is convenient to define
a “potential energy”’

V)= ["F,(u")du’ (A8)
and an “energy”’
EM)=Xa)?+V(u). (A9)
From Eq. (A7) it is easily established that
dE .
E:—Fl(u)z (A10)
or
h
E(t,)—E(ty)=—F, [ ()4t . (A11)
0

Now F, > 0 for both Egs. (5.4) and (5.9), hence the “ener-
gy” decreases along any phase flow. The contours of con-
stant “energy,” for the radiation-dominated model, are
given by

£i+ 6—q ||4=¢g
2 2 2
w | A4 A2 |y —2ee-a | _¢ (A12)
2 2q E>

where Cp is a constant. These contours are centered (and
minimized) at (u,p)=(1,0) and extend over the whole of
the finite part of the phase plane. Phase trajectories flow
to minimize the “‘energy’’; hence the domain of attraction
of our fixed point is essentially the whole phase plane.
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Although there is a value of ¢ (in some of our models)
which acts as a dividing point between stable and unsta-
ble behavior at the critical point in the finite part of the
phase plane, we expect the (possibly bifurcating) solution
corresponding to this value of ¢ to, probably, have no
cosmological significance since the value of g is not in the
range 0 < g < 3. The models of Sec. V evolve in the phase
plane governed by differential equations with ‘‘time”-
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independent coefficients (autonomous differential equa-
tions). As far as we are aware there are no examples of
such dynamical systems that exhibit chaotic behavior;
however, we are also unaware of any theorem which
guarantees that this is universally true. We believe that
the arguments presented in this appendix, almost certain-
ly, rule out the existence of chaotic phase-space trajec-
tories in these models.
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