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If weakly interacting massive particles (WIMP s) are the dark matter in the galactic halo, they
may be detected in low-background ionization detectors now operating or with low-temperature de-
vices under development. In detecting WIMP's of low mass or WIMP's with spin-dependent nu-

clear interactions (e.g., photinos), a principal technical difficulty appears to be achieving very low
thresholds (~ keV) in large (- kg) detectors with low background noise. We present an analytic
treatment of WIMP detection and show that the seasonal modulation of the signal can be used to
detect WIMP's even at low-signal-to-background levels and thus without the necessity of going to
very-low-energy thresholds. As a result, the prospects for detecting a variety of cold-dark-matter
candidates may be closer at hand than previously thought. We discuss in detail the detector charac-
teristics required for a number of WIMP candidates, and carefully work out expected event rates for
several present and proposed detectors.

I. INTRODUCTION

The observed flatness of spiral galaxy rotation curves

strongly suggests that the Milky Way is embedded in a
dark halo, which appears to make up 90% of the mass of
the galaxy. Several arguments suggest that the dark
matter (DM) is not baryonic, but instead may be com-
posed of exotic, stable elementary particles. Elementary-
particle dark-rnatter candidates may be loosely grouped
into two categories, "hot" and "cold," corresponding to
particles which are relativistic (hot) or nonrelativistic
(cold) when galaxy scales enter the horizon. The most
successful candidate theory of galaxy formation to date
assumes that the dark matter is "cold," so that galaxy
scale perturbations are not erased by relativistic free
streaming. ' Furthermore, particle-physics models sug-
gest a host of cold-dark-matter candidates, including
massive Dirac or Majorana neutrinos and various parti-
cles predicted by supersymmetry, such as scalar neutri-
nos, photinos, or Higgsinos. Generally, the constraint
that these particles do not overclose the universe

(QDst & 2) requires particle masses mnst ~ 1 GeV (an ex-

ception is the invisible axion). Clearly, a crucial test of
the cold-dark-matter theory is to find direct evidence for
or against the existence of such weakly interacting mas-

sive particles (WIMP's).
At present, there are significant astrophysical and ex-

perimental constraints on cold-dark-matter candidates.
WIMP's in the halo would be captured by the Sun (if

mtt, ~ 3 GeV} and Earth (for mtt, ~ 12 GeV), where they
would annihilate, and could give rise to an observable
high-energy neutrino signal in proton decay detectors.
If WIMP's constitute the halo, the absence of such a sig-
nal implies that either (i) the WIMP scattering and an-

nihilation rates in the Sun and Earth are both sufticiently
low that the neutrino signal is below the present sensitivi-

ty of proton decay detectors, (ii) the WIMP annihilation

cross section must be suppressed compared to its nuclear
scattering rate (e.g. , Majorana fermions with p-wave
suppressed annihilation), or (iii) the Universe carries a net
asymmetry of WIMP's, so that only a small number of
antiparticles are captured (e.g. , Dirac fermions or com-
plex scalars). In addition, WIMP's tnore massive than
-20 GeV which have coherent (spin-independent) in-
teractions with nuclei (e.g. , Dirac neutrinos, scalar neu-
trinos) would have been seen in ultralow-background
double-beta-decay detectors (again assuming a halo densi-
ty of WIMP's}. These experiments leave open the possi-
bility that the halo may comprise either less massive par-
ticles, m~ ~20 GeV, or particles which have only spin-
dependent interactions with nuclei, e.g., photinos and
Majorana neutrinos.

Recently, there have been several proposals to build
low-temperature devices for the detection of cold-dark-
matter candidates in the galactic halo. ' A new genera-
tion of such cryogenic detectors will be required in order
to reach sensitivity to target nuclei recoiling with ener-
gies ~1 keV due to elastic scattering of —1-GeV-mass
halo particles. Proposed experimental ideas include su-
perheated superconducting colloids and crystal bolome-
ters. Depending on the design, these detectors may sim-
ply register all particles depositing energy above some
threshold, or they may directly measure the energy of the
incoming particles. In this paper we consider detectors
operating in both threshold and energy-sensitive modes.
Our general analysis in this paper is applicable to both
conventional ionization and cryogenic detectors.

Given the ubiquity of background sources, these detec-
tors can be used to set upper limits on the halo WIMP
density more easily than to positively detect WIMP's.
Suppose, for example, that a detector is designed so that
the expected background count rate is of order 2 per day.
And suppose that, from theory, one knows that a halo
mass density of 3-GeV photinos will produce a signal of 4
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per day. Now in an experiment it is found that there are
2 events per day. One may use this to put an upper
bound on the density of 3-GeV photinos of 50% of halo
density. Suppose instead, however, that the experiment
yields 5 events per day. One possible interpretation is
that the background is 2 per day and the density of 3-
GeV photinos is about 75% of halo density. But another
possible, and a priori more likely, interpretation is that
the experimenter underestimated the background. Thus,
finding positive evidence for a halo density of WIMP's
appears to rest critically on a belief in the experimenter's
claims about background.

To remedy this situation, one would like a clear signa-
ture which distinguishes the WIMP signal from other
sources of background. Drukier, Freese, and Spergel
showed that, due to Earth's motion around the Sun, the
WIMP signal would have an annual sinusoidal modula-
tion which peaks in late spring. Thus, they showed it
would be possible, in principle, to demonstrate that the
data were not pure background.

In this paper we analyze in detail the conditions under
which one can measure the modulation of the WIMP sig-
nal. We also emphasize a different attitude toward the
usefulness of modulation. In Ref. 5 modulation was
viewed as a method of confirming a suspected WIMP sig-
nal; given this point of view, WIMP detection requires a
large signal-to-noise ratio, and thus a reliable understand-
ing of background levels. We argue that modulation can
itself be used as the primary means of detecting WIMP's
(rather than as a confirmation), even in the presence of
large backgrounds (i.e, backgrounds comparable to or
even larger than the WIMP signal). As a result, the pros-
pects for detection of particles such as Majorana fer-
mions, which generally have only spin-dependent interac-
tions with nuclei and thus relatively small cross sections,
appear more promising than previously thought. Thus, a
clear understanding of modulation is important not only
in the analysis of data, but also in the design of experi-
ments.

Heretofore, modulation has not been seen as a primary
means of detecting WIMP's for two reasons. First,
modulation is a small effect compared to the absolute
count rate, and thus one naively expects its detection to
require many events and long counting times. However,
even a small periodic component of data superposed with
a much larger random component can be extracted by a
correlation analysis. Second, previous authors tended to-
ward the belief (erroneous, as we will show) that modula-
tion can be measured only at very high detector recoil en-
ergies, for which the signal count rate is severely reduced.
This belief is based on the fact that the modulation, rela-
tive to the average WIMP signal, increases as the thresh-
old energy of the detector is raised. We show below,
however, that a more significant statistical measure of the
modulation is maximized at comparatively low thresh-
olds.

In Sec. II we present an analytic treatment of WIMP
detection and modulation, using an approximate halo
model. In Sec. III we discuss the statistics of modulation
and the prerequisites for its statistically significant detec-
tion. The reader interested only in our numerical results

may skip to Sec. IV, where we present useful, general ex-
pressions for signal and modulation rates, under different
assumptions about background levels. En Sec. V we apply
the analysis to find event rates for a variety of WIMP
candidates for several present and proposed detectors,
and present our results graphically. Section VI contains
our brief conclusions, and some of the technical details
are relegated to the appendixes.

II. ANALYTIC THEORY OF WIMP DETECTION

The rate of WIMP detection can be obtained by fold-
ing in the flux of WIMP s with the probability of their in-
teracting in the detector. For particles with speed w with
respect to Earth and a detector with threshold energy e,
the expected rate of WIMP detection per unit volume V
of detector is

(2.1)

Here f„(w) is the speed distribution of WIMP s in
Earth's frame [the number density of WIMP's with speed
in the range (w, w+dw )], and Q,(w) is the rate per unit
time that a WIMP with speed w scatters with energy loss
at least e, when it is traveling through the detector medi-
um. The parameter g is defined below.

The form of the halo distribution function presumably
depends upon the details of the collapse process which
formed the galaxy. However, general dynamical argu-
ments suggest that the WIMP velocities were "thermal-
ized" by fluctuations in the gravitational potential during
collapse, a process known as violent relaxation. On this
basis, we will assume the WIMP's have an approximately
Maxwell-Boltzmann speed distribution in the galactic
rest frame (the halo is assumed to be nonrotating):

3
fo(U)dv =4mnw.

2&V

' 3/2

U exp2 3U
dU

2U
(2.2)

where v is the halo velocity dispersion, discussed below,
n~ is the local number density of WIMP's of mass mz,
and the halo density is p„„,=n~m~=0. 007Mo/pc
=0.4 GeV cm (Ref. 8) (there is a factor 2 uncertainty
in this estimate). Equation (2.2) corresponds to an
infinite isothermal sphere, and is consistent with a self-
gravitating halo with a density profile p-r, which
yields a flat rotation curve at large radii.

In actuality, the WIMP distribution will be truncated
at the (local) galactic escape velocity, U, = 500—650
km/sec, and in addition may be anisotropic. For exam-
ple, an anisotropy in the halo distribution is likely to arise
from the partial infall of the dark matter into the gravita-
tional potential of the baryons in the galactic bulge and
disk. However, Drukier, Freese, and Spergel showed
that the modulation is not qualitatively affected by a
small anisotropy, and we show in Appendix A that trun-
cation at the escape velocity likewise has little impact
if detector thresholds are

sufficiently

low. These
modifications to the distribution function will yield only
small quantitative corrections to the results presented in
this paper. Until detailed models of the halo are more
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fully developed, we will take Eq. (2.2) as a provisional
choice, which has the advantage that detection rates can
be given in completely analytic form. The results given
here can obviously be extended, at least numerically, to
more complicated distributions, which we plan to do in a
subsequent publication. (If WIMP's are detected, it
would clearly be important to design experiments to
probe the detailed structure of the halo distribution. )

To convert Eq. (2.2) into the distribution seen by an ob-
server moving with the velocity of Earth U, we make the
Galilean transformation, v =w+ v, where ur is the
WIMP speed with respect to Earth. In Earth's frame,
the WIMP's then have a speed distribution'

f (w)dw= nwx exp[ —(x +g )]
4 z 2 sinh(2x ri )

'9 1/2 2x 'g
dx

(2.3)

where x is the dimensionless WIMP speed (with respect
to Earth) and q is the dimensionless Earth speed with
respect to the halo:

Thus, g (m w, M ) & 1, and the upper limit is achieved

when the WIMP and nuclear masses are matched. For
low-energy, isotropic scattering, it follows from Eq. (2.8)

that the probability distribution for energy loss in a
collision, P (b E /E ), is flat over the interval
0((bE/E) &g(mw, M), or P(bE/E)=g '. The
scattering function 0 is obtained by integrating over this
probability distribution from the threshold, (bE /E)
& (e/E ), and is given by~'0

g(m~, M]
Q,(w)=crnivw J,g(m w, M) 'exp( —bE/Eo)

2e/m ~m

hE
Xd

2 7

mww /2
(2.10)

where nz is the number density of target nuclei and 0. is
the low-energy interaction cross section. The experimen-
tal factor in the integrand takes into account the loss of
coherence in WIMP-nucleus interactions for momentum
transfers comparable to or larger than the inverse nuclear
radius. ' Here, Ep is the nuclear "coherence energy, "

3~
2U

2 ' "
2U

2
(2.4) 3'

2MR 2
(2.1 1)

2 —2 2v circ /v (2.5)

For an isothermal system, the circular velocity (e.g. , of
stars in the galactic disk) is related to the three-
dimensional velocity dispersion by

where R is the mean-square radius of the nucleus, '

1/3

R = 0.91 +0.3 X10 ' cm .
GeV

(2.12)

Since the average local circular velocity about the galac-
tic center [the rotational speed of the local standard of
rest (LSR)] is" v„„=220+20 km/sec, we estimate the
halo velocity dispersion v =270+25 km/sec. Correcting
for the motion of the Sun with respect to the LSR (Ref.
11), we also find the net speed of the Sun with respect to
the galactic rest frame is vo ——232+20 km/sec. Using
Eqs. (2.4) and (2.5), it follows that the yearly average
value of g is gp= 1.05. The orbital speed of Earth around
the Sun is 30 km/sec, and the angle between the axis of
its orbit and the velocity vector of the Sun is approxi-
mately' 5=30.7' (sin5=0. 51). Thus g may be ex-
pressed as a function of time:

Equation (2.10) may be easily evaluated

S 0 E
wQ, (w)= exp

mwg Ep

hE,„—exp E

It is convenient to define the new variables

(2.13)

gmWU
b:— 3E'

A —2
gmwU

(2.14)

in terms of which Eq. (2.13) becomes

wQ, (w)= —v [exp( bA ) —exp—( bx )] . —(2.15)
g(t)=go+brl cos(cot),

where

bg =0.07+0.01, cv =2m. /yr,

(2.6)

(2.7)

The parameter b is the maximum energy loss of a "typi-
cal" halo WIMP as a fraction of the coherence energy;
for b &&1, the departure from coherence is negligible.
This parameter may be estimated to be

mwM2

AE= w (1—cosl9),
(mw+M)

(2.8)

and t is taken to be zero when Earth's speed is at a max-
imum, on' June 2+1.3 days.

The energy lost by a WIMP with speed w in elastic
scattering with a nucleus of mass M is

mw
0.83

40 GeV
2

mw
+1

M
200 GeV

1/3 2

+0.06 U 270,

(2.16)

so that

max

4mwM—=g(mw M)=
(mw+M)

(2.9)

which we show for the reader's convenience in Fig. 1.
The parameter A is roughly the ratio of the threshold
energy to the maximum energy loss of a typical WIMP,
and is given by
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FIG. 1. Coherence loss parameter b [Eqs. (2.14) and (2.16)] as
a function of target nucleus mass M, shown for a variety of
WIMP masses m~. For b &&1, the loss of coherence has a
negligible effect on event rates.
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FIG. 2. Dimensionless threshold energy A2 [Eqs. (2.14) and

(2.17)] as a function of target nucleus mass M, shown for a
variety of WIMP masses m ~.
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(2.17)

where

A~ ——A+g, (2.20)

This is shown in Fig. 2 for a variety of WIMP and nu-

clear masses. Note that, for targets with large atomic
number, A is a sensitive function of the WIMP mass.
From Fig. 1 we see that in most cases of interest, b gal,
and Eq. (2.15) takes the simple form

X(x„x2)=— dy e ~ = [erf(x2) —erf(x, )],
X]

(2.21)

wQ, (w)=trna ,'U (x ——A ) . (2.18)

(S(ri(t), e) ) =

&&[( —A A++-,')X(A, A+)

—A —A+ —,'(A+e —A e +)), (2.19)

We will assume that this limit holds in the remainder of
the body of this paper. However, it must be noted that
when b is not small, i.e., for heavy detector nuclei and rel-
atively large WIMP masses, the conclusions of the paper
must be radically revised. The analysis for arbitrary b is
discussed in Appendix 8, where we show that the modu-
lation is suppressed for large b.

Using Eqs. (2.3) and (2.18), we may now evaluate the
expected signal rate, Eq. (2.1),

' 1/2
8 AN&nwU

3' 271

and Nz is the number of nuclei in the detector. Since
the signal rate is accurately given by the

lowest-order terms in the Taylor series:

(S(g(()))=(S(qc))+( )6gco ( cc)c+as
. an . %

(2.22)

where the first term represents the expected time-
averaged WIMP signal. In evaluating this term, we note
that (S(rjo——1.05) ) differs significantly from (S(ri =0) ),
e.g., by -30% at zero threshold ( A =0), so that it is not
a good approximation to estimate the time-averaged
WIMP signal by considering the detector as stationary
with respect to a Maxwell-Boltzmann distribution. The
second term in Eq. (2.22) we call the absolute modulation
rate, S—:((Bs/Bg)„)b,g, and it is given explicitly by

s =sq(s(q, ))
—A —A

2'()I( A, A+ )+e ++e
—A —A

( —A A++ ) )X(A, A+ )+—,'(A+e —A e +) IO

(2.23)
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To display the dependence of (S(go) & and S on the en-

ergy threshold 3,we define the dimensionless functions

&s(q„a')&, s (~')
y(& )=, P(A )= . (2 24)

S(qo0) ' S (0)

These functions are shown in Fig. 5. (Numerical expres-
sions for the average count rate and modulation are given
in Sec. IV.) As expected, of course, the average signal
drops monotonically with increasing threshold. More
surprising, perhaps, is the fact that the absolute modula-
tion peaks near A =1, i.e., where the threshold energy is
tuned to the maximum energy loss of typical WIMP's.
On the other hand, the relative modulation, given by

X = g 2cos(cot, )D(t;,r),
W years

(3.7)

which projects out the modulating portion of the data.
In what follows, we assume the bin width is much shorter
than the modulation period, ~&&P, e.g. , ~=1 day, P =1
yr. In this case, f(ter/2) = 1, and the results are indepen-
dent of the bin width. Then we find

(X&=S NP, cr (X)=2((s(rto)&+(B&)NP . (3.8)

This leads us to define a new random variable R, the
modulation significance,

We wish to extract information about the modulation
S from measurements of the data D(t, , r) .To accom-
plish this, we define the random variable

Sm p(A )

(s(q, ) &

(2.25) X
o(X) (3.9)

grows monotonically with increasing threshold, as found
in Ref. 5. However, as we discuss in the next section, nei-
ther the absolute nor the relative modulation is the most
relevant quantity to be considered.

with mean

S v'NP
(R &=

V'2[(S(g, ) &+ (B &]
(3.10)

III. STATISTICS OF MODULATION

'(B)=&B & . (3.1)

As discussed in the previous section, the WIMP signal
will be assumed to be composed of two parts:

S(t)=So(t)+S cos(cot ) .

The first term, So, is a Poisson random variable with

(3.2)

We consider an N-year-long experiment in which the
signal and background rates are represented by random
variables S(t) and B(t), respectively. The background
will be assumed to be a Poisson random variable, which
implies that its variance is equal to its mean:

D,„„= gD (—t),
all year

then

365S N'
R

&2&D.„„&

(3.11)

(3.12)

where N is the number of years the experiment runs. For
a year long ex-periment, we expect (D,„„&~p 1, so that, to
an excellent approximation,

For definiteness, consider a bin width of ~=1 day, so that
S represents the daily modulation. If we define the ran-
dom variable representing the annual data,

o'(s, )=(s, &—= &s(q, ) &, (3.3) +2d,„„
(3.13)

and the second term in Eq. (3.2) is the absolute modula-
tion rate, with period P =2'/co=1 yr. Strictly speaking,
S should also be treated as a random variable, but since,
in cases of interest, S «(S(qo)&, the modulation S
may be treated as a constant, i.e., its variance may be
neglected. The rate of data per unit time is then a con-
tinuous random variable

f,. + 7-/2

D(t, , r)= J dtD(t) (3.5)

obeys a Poisson distribution with mean

(D(t;, r) & =(S(qo) &r+(B &r+S rf(tow/2) cos(tot, ) .

(3.6)

Here, the window function f (y) = siny /y.

D(t) =S(t)+B(t)=So—(t)+B(t)+S cos(cot ) . (3.4)

In actuality, of course, the data are discrete. Thus, in a
time bin of width v. centered at time t,-, the number of
detections

may be regarded as a measurement of R; here x and d,„„
are, respectively, measurements of X (for 1 yr) and D,„„.
For pure noise (S =0), R is a (nearly) Gaussian random
variable with zero mean and unit variance:

„2~2p„(r)dr = —e " ~ dr .
&2~

(3.14)

The modulation significance R is precisely what we
want to measure, because it contains both phase and am-
plitude information about the signal and has simple sta-
tistical properties. If a measurement of R yields the value
ro, it will be generated by a real modulation in the signal
(as opposed to noise) with confidence level

co ro
C.L. =1— p„(r)dr = —,'+ —,'erf

0
(3.15)

For reference, we list several values of ro with their
respective confidence levels: ro = 1(84%), 1.29(90%),
1.64(95%), 2(97—,'%), and 3(99—,'%). That is, a measure-
ment of ro=1.3 would be a fairly reliable indicator of
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2
0

PD(co)= g D(t/)exp( icot }—
0 j=]

(3.17)

At the signal frequency cu0, the expected value of the
power due to the signal is

N0S
Ps =

m 4
(3.18)

and the power due to the noise is just the total variance:

(D.„„)P„=o (So}+o (B)=
365

(3.19}

Thus, for one year of data, the signal-to-noise ratio is

s.(g)=
P„

(3.20)

For Gaussian noise, the power at a given frequency has
an exponential probability distribution,

p„(g)dg =exp( —Q )dQ (3.21)

(note that Q is measured in units of the variance of the
noise), so the statistical significance of an observed power
z at a selected frequency is just Pr( Q & z ) =exp( —z ).

Suppose that a measurement of the modulation
significance R =1, or Q=0.5. According to Eq. (3.15),
the confidence that this measurement is due to signal is
84%, while the power spectrum analysis yields a statisti-
cal significance, according to Eq. (3.21), of only 61%, a
far lower confidence level than the method given above.
The reason for the reduced confidence of the power
analysis is twofold. First, the power Q does not discrim-
inate between positive or negative values of the amplitude
R; clearly, however, a negative measurement of R should
be rejected as noise. Second, the Fourier transform (3.17}
degrades information about the phase of the signal,
which is retained in the cosine transform (3.7). Thus, in
looking for a signal of known frequency and phase, the
variable R is more useful than the conventional signal-
to-noise ratio.

The reader, aware that 2-a and even 3-o. bumps on a
power spectrum are notoriously unreliable, may be
tempted to regard the foregoing confidence level claims
as absurdly optimistic. It should be recalled however,
that in the analysis of power spectra, one typically asks

modulation and a measurement of r0 =2 would be a very

reliable indicator.
It is instructive to compare the foregoing analysis with

the standard power spectrum, or periodogram, analysis. '

In a power spectrum analysis, the relevant discrete data
variable is

D(t, ) =S,(t, ) —(S, )+B(t, ) —(B)+S cos(cootj ),
(3.16)

which we consider as the sum of a Gaussian "noise" term
(with zero mean) and a periodic signal. If the data are
binned into days and the experiment counts for N0 days,
the periodogram is defined as the absolute square of the
discrete Fourier transform:

how much power there is at N different frequencies. That
is, one actually conducts N independent experiments.
Consequently, there is a strong likelihood (or high false
alarm probability) that one or several of these experi-
ments will yield a 2-o. or 3-o. result, even in the absence
of an underlying signal. Such results are rightly received
with skepticism. By contrast, the analysis given above at-
tempts to answer only one question, not N.

It is also important to emphasize that the significance
of these measurements does not depend in any way on the
relative magnitude of the signal and background. The
only assumption which has been made about the back-
ground is that it is unmodulated (or, more precisely, has
no near-annual component to its modulation). This as-
sumption is surely reasonable and, in any event, can be
partially checked by measuring the annual component of
modulation orthogonal to X:

2 sin(cot )D(t; ) .
W years

(3.22)

If a measurement of X is statistically significant in the
sense given above but a measurement of Y is not, this
may be regarded as evidence that there is no annual
modulation in the background, except one satanically
peaked in June or December. In fact, there are a number
of potential sources of background which do have sys-
tematic time dependences: solar neutrinos, seasonal vari-
ations in temperature, the 11-year solar cycle and its
modulation of the cosmic-ray fiux, drifts in the cryogenic
system, and variations in nearby human activity (drilling,
mining, etc.). In principle, these sources must be careful-
ly investigated, but it is believed that their contributions
to the background are subdominant in comparison with
natural radioactive contamination. For example, the
solar-neutrino signal will show an annual modulation due
to the ellipticity of Earth's orbit, but the expected count
rates are negligible (far below 1 per kg day) compared to
the halo WIMP signal (its phase is also different from the
WIMP signal).

For illustration, in Figs. 3 and 4 we show two typical
data sets D (t), binned into daily counts, generated at ran-
dom by computer. In both cases the "noise" term,
So(t)+B(t), was generated from a parent Poisson distri-
bution with (So)+(B)=10 counts per day and vari-
ance equal to the mean. Figure 3 corresponds to pure
noise, that is, (R ) =S =0. In this run, the measured
values were d,„„=3680total counts, x = —0.95, modula-
tion significance r= —0. 11, and orthogonal modulation
significance y/+2d, „„=—0.56. Such data would right-
ly be considered a null result for modulation. On the oth-
er hand, Fig. 4 was generated by the same noise plus a
cosine modulation with 365S =160 and (R ) =1.87.
For (So)=(B)=5 counts per day, this would corre-
spond to a relative modulation S /(S(go)) =0.09, typi-
cal of expectations for a WIMP experiment with a
moderate threshold. For this run, the measured values
were d,„„=3628 total counts, x = 190.6, modulation
significance r =2.24, and orthogonal modulation
y/+2d, „„=—0.05. In this case, although the modula-
tion cannot be picked out from the data by eye (even if
one filters out high frequencies by using longer bins), the
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20 IV. SIGNAL AND MODULATION RATES

l5

a
O
cn (0—

5—

We now apply the foregoing statistical analysis to the
measurement of WIMP signal modulation. The expected
value of the modulation significance is given by Eq.
(3.12). In designing an experiment, one should aim to en-

sure that a halo mass density of a given type of WIMP
will generate a significant modulation measurement, say,
&R &) 1.3 (90% confidence level), in the proposed ap-

paratus in a year. To see what this means in terms of
detection rates, we can invert (3.12) to find

0
0

I I I I I I I I I I I I

i 00 200 300
DAYS

FIG. 3. Sample data set for 1 yr, showing the daily count rate
D(t). The data were generated form Poisson noise with a mean
of 10 counts per day. The expected modulation significance
& R & =0 and the measured value for this run is r = —0. 11.

modulation analysis strongly suggests the presence of the
true signal.

The analysis in this section has implicitly assumed that
data is taken continuously, without interruption, over the
course of the year(s). In reality, this may not be feasible.
If the required "down time" periods are short (of order
days to weeks), then the best strategy is to sprinkle the
data-taking runs uniformly over the year. If the experi-
ment runs for n days out of the year, the above formulas
may be used, with the replacement 365~n. On the other
hand, if the total running time of the experiment is limit-
ed to a small fraction of a year, the runs should be
scheduled near the peaks (early June and December) of
the modulation, and away from the nodes (early March
and September). In this case, in the definition of X [Eq.
(3.7)], one should make the replacement D(t;, r)
~[D(t, , r) &D &], wh—ere &D & is the average of D(t;, r)
over the data-taking run.

2(1+ & B &/&S, &) &R &'
N=

365 & So & (S /So )2
(4.1)

m wMg(m w~M )
cr =5.2&(10 crn

(GeV)
(4.2)

where g(mw, M) is given by Eq. (2.9). Here, Q is a pa-
rameter which depends on the detector nucleus and the
WIMP identity, examples of which we discuss in the next
section.

To evaluate the modulation significance R, we must
first calculate the expected average daily signal &So&
from a halo density of WIMP's, per kg day of detection,
at a given energy threshold A [see Eq. (2.17)]. From
Eqs. (2.19) and (4.2), the time-averaged count rate is

&S(q„~)& counts=0.32g(mw, M)Q y(A )U27opo. 4kg
'

kg day

For example, suppose the average signal rate is &So & =2
counts per day, the background & B & = 1, and the thresh-
old is set at 3 =2. Then S /&So&=0. 09 and formally
N=0. 9 yr for a 90%-C.L. measurement. After two
years, this would rise to a 97% confidence level. Thus,
the counting rates required for a significant modulation
measurement in a reasonable running time are not unreal-
istically high.

The WIMP's in question will be assumed to have an
isotropic velocity-independent cross section, which we
parametrize by

20 s & s

i

v s

(4.3)

15

O

l i i » I0
0 l00 200 300

DAYS

FIG. 4. Same as Fig. 3, but with an added cosine modulation
S =160, peaked at days 0 and 365. The expected modulation
significance (R ) =1.87 and the measured value for this run is
r =2.24.

where the halo velocity dispersion v=270v270 km/sec
[see Eq. (2.5) and discussion following], the local halo
density p„„,=0.4po 4 GeV/cm, and y( A ) gives the sig-
nal at energy threshold A as a fraction of its value at
zero threshold (see Fig. 5).' Note that, for values of
A 7, the effects of the galactic escape velocity on the
WIMP distribution can be safely ignored (see Appendix
A). For A )7, the function y(A ) should be replaced
by y( A ), shown in Fig. 6.

We now consider the modulation under two different
assumptions about the background. First assume that
the expected background rate is much greater than the
time-average signal, & B &» & So &, and is given in units of
tens per kilogram per day, &B &/kg= 10B,o kg '. In this
case, the modulation significance is proportional to
S /& B &, and from Eqs. (2.23) and (3.12) is given by
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2.0

l.5

absolute modulation expressed as a daily rate,

m 3 2 2 counts=9.4X10 gQ P(A )pp4vp7p „kg day kg day
(4.5)

I.Q

0.5

Now consider the opposite limit: suppose that the
background from other sources is small compared
to the time-averaged WIMP signal, &8) «&Sp). In
this case, from Eqs. (2.19), (2.23), and (3.12), one finds

that &R )-S /+&So), or
' 1/2

0

N
~df

dA~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ «~ ~

'~ ~ ~ ~ ~

I I

4 6 8

&R )s=0.23g' Qa(A ) po. 4"27o
kg yr

where

(4.6)

Md„
&R ) =0 041 Q P(A )8

kg yr

1/2

PO. 4V 270

(4.4)

where Md„ is the detector mass, and t is the duration of
the experiment. The function P, shown in Fig. 5, gives
the absolute modulation of the signal at energy threshold
A2 as a fraction of its value at zero threshold [see Eq.
(2.23)). We note the important fact that, although the
signal-to-noise ratio & Sp ) /& 8 ) is approximately in-

dependent of detector size and counting time, the modu-
lation significance scales as the square root of the number
of kg yr of detection. For reference, we also give here the

lO

A

FIG. 5. Dimensionless measures of the %'IMP signal (y), the
signal per unit energy ( —d y /d A '), and the modulation
significance when the signal is much greater than (a), or much
less than (P) the background. These functions are plotted
against the dimensionless threshold energy A . For definitions,
see discussion following Eqs. (2.23) and also Eqs. (3.23)—(3.28).

a(A )—: , &2y'" (4.7)

Clearly, in designing optimal detectors, one would vary
the mass of the detector nucleus M and the threshold en-

ergy e (or equivalently A ) to maximize the functions in
Eqs. (4.3)—(4.6) over a wide range of WIMP masses. In
practice, such a project will be limited by availability of
materials and the technological difficulty of achieving low
thresholds in large detectors. We discuss examples of
detectors and event rates in the next section.

Although the discussion above is completely general, it
has not exploited the fact that conventional ionization

The function a is shown in Fig. 5. Note that it retains a
value of a=1.5 over a fairly broad range. The effects of
finite galactic escape velocity on the modulation parame-
ters a and P are shown in Fig. 7. As we discuss in Ap-
pendix A, the escape velocity has negligible impact on the
modulation for A & 7.

We note here that the theoretical uncertainty in R is
dominated by the uncertainty in the local halo density.
Also, for cases in which the background and signal are
comparable ( —,', & (So/8) & 10), one should use the exact
expression for the modulation significance (used in gen-
erating the figures below), which can be shown to be

&R),&R),
&R)'+&R)' '" (4.8)
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""
mesc = 575 k~/SeC

FIG. 6. Dimensionless measure of the WIMP signal shown
for two halo models: an isothermal Maxwell-Boltzmann distri-
bution with infinite escape velocity (y, dotted curve), and a
Maxwell distribution truncated at an escape velocity of 575
km/sec (y, solid curve). Also shown is the signal per unit ener-

gy in the truncated model ( —dy'/d A, dashed curve).
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FIG. 7. Same as Fig. 6, for the modulation parameters a and
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(S(rio, e, hE)) ms,=1.19Q
kg CxeV

dr
dA

where

P0.4 counts
X

U 270 kg day keV
(4.9)

detectors, and possibly cryogenic detectors, have substan-
tial energy resolution. For an energy-sensitive detector,
the average daily count rate at nuclear recoil energy b,E
can be found from the derivative of Eq. (4.3):

al variation in the number of counts per energy bin is
small unless the WIMP signal is very large. For our pur-
poses, energy resolution is primarily useful in rejecting
background in the following way. Once the threshold of
an experiment is fixed, one can determine from Fig. 5 the
energy range, e &hE &E, over which one must look to
see the bulk (say, 90%%uo) of the modulation for a range of
WIMP masses. We then reject all counts in the energy
range AE & E as due primarily to noise, and evaluate the
modulation significance R using only the remaining low-
energy data. Note that this method of background rejec-
tion is independent of assumptions about background lev-
els, and depends only on the expected signal level.

hE
0

36E
gm ~U

(4. 10)
V. PARTICLES AND DETECTION RATES
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FIG. 8. Modulation of the recoil energy spectrum.

and A is given by Eq. (2.17). The function —dy/dA is
shown in Fig. 5; again, for velocities near the galactic es-
cape velocity, i.e., for A ~7, the function —dy/dA,
shown in Fig. 6, should be used. Note that Eq. (4.9) is the
detection rate per keV of nuclear recoil energy, which is
about a factor 3 —5 times the equivalent electron energy,
depending on material and energy range. Here and
below, all energies and count rates will be expressed in
terms of nuclear rather than electron depositions.

If the background has a different dependence on energy
than the signal, resolution is useful in distinguishing the
two. For example, the noise seen in ultralow background
Ge double-beta decay detectors appears to be only weakly
energy dependent: current background rates in these ex-
periments are of order 0.1 —0.3 per kg per keV per day
above -40 keV (nuclear recoil energy). By contrast, Fig.
5 shows the expected WIMP signal is strongly peaked at
low energy. Thus, if low thresholds can be achieved, and
if the background does not increase sharply at low ener-

gy, one might hope to see the dark-matter peak.
What role does energy resolution play in the detection

of modulation? As Fig. 8 shows, modulation of the
WIMP signal gives rise to a sinusoidal dependence not
only of the total count rate but of the recoil energy spec-
trum as well. (Figure 8 also shows why the modulation is
maximal for A = 1, for this yields the maximum
difference in the energy-integrated signal between June
and December. ) In practice, the modulation in the ener-

gy spectrum will be difficult to detect, because the season-

In this section we evaluate the modulation significance
and expected event rates for a variety of WIMP halo can-
didates and detectors. We first discuss the scattering pa-
rameter Q of Eq. (4.2). For the well-known cases, we sim-

ply compile the results for reference. For cases which are
less familiar or in which the literature provides no con-
sensus, we provide more discussion. As mentioned in the
Introduction, WIMP's can be classified according to
whether their interactions with nuclei are (a) coherent,
i.e., nuclear-spin independent, or (b) spin dependent. We
will discuss examples of each type.

A. Coherent particles and cosmions

For particles with spin-independent interactions, Q is
roughly proportional to the atomic number of the nu-
cleus, i.e., to the nuclear mass. For example, for Dirac
neutrinos, neutral-current interactions give

Q, =N (1—4sin 0~—)Z =N 0. 12Z, —
D

(N+2Z)
4~

h
m, Mg(m„M ),

m4~
(5.2)

where h is a Yukawa coupling constant, m, is the
cosmion mass, and m& is the mass of the exchanged
heavy scalar. To solve the solar-neutrino problem re-
quires that the cosmion have an average scattering cross
section of = (2—10)X 10 cm per baryon in the Sun. '

slightly less than the number of neutrons. (We are ignor-
ing the small contribution due to the axial-vector cou-
pling, which is negligible for Z 2.) For scalar neutrinos,
candidates for the lightest supersymmetric particle,
Q„=2Q, . From Eq. (4.2), it follows that heavy target

nuclei are preferred for detecting these particles.
Another class of "coherent" cold-dark-matter candi-

dates are cosmions, relatively light particles (35m, ~7
GeV) with larger nuclear interaction cross sections than
the particles above, which are candidates to solve the
solar-neutrino problem. ' As an example, we will consid-
er one of the cosmions proposed by Gelmini, Hall, and
Lin' (GHL), a Dirac fermion with a cosmic asymmetry,
which interacts with light quarks via a heavy colored sca-
lar P. The low-energy cross section for cosmion nucleus
scattering is
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If we fix the ratio (h/m&) =4 6(m, /GeV) '(100
GeV), then for cosmion masses of 3 and 10 GeV, the
cosmion-proton cross sections are 4)& 10 and 2 & 10
cm, respectively. Consequently, from Eq. (4.2), the
cosmion scattering parameter is approximately

—1/2

Q, =53(N+2Z)
GeV

(5.3)

In this example, the cosmion has coherent interactions
with nuclei; we note that in other models, the cosmion
may have only spin-dependent interactions. '

B. Spin-dependent interactions

Popular candidates for halo particles with spin-
dependent nuclear interactions include three Majorana
fermions: Majorana neutrinos, Higgsinos, and photinos.
For Majorana neutrinos,

Q'„=20.5A, 'J(J+1), (5.4)

QH
—Q„cos 2a, (5.5)

where tana=v2/v, is the ratio of the vacuum expecta-
tion values of the two Higgs doublets. The result in Eq.
(5.5) assumes Higgsinos scatter predominantly through
Zo (rather than squark) exchange, which holds provided
a is not too close to m/4, i.e., for tana&1. Theoretical
prejudice appears to favor tana & 1.

For photinos, the nuclear scattering cross sections are
somewhat uncertain. The calculation proceeds in two
steps: we first evaluate the cross sections for scattering of
photinos by protons and neutrons and then use the nu-
clear shell model to obtain photino-nucleus cross sec-
tions. Assuming all scalar-quark masses I are degen-
crate and negligible left-right squark mixing, the
photino-nucleon cross section can be written ' (N= p, n )

where A, J(J+1) is a parameter which depends on the
nucleus. Here and below, we have normalized our
definitions of Q so that the values of A, J(J+1)given by
Goodman and Witten (Ref. 4) and Drukier, Freese, and
Spergel (Ref. 5) should be used, even in cases where our
estimates for cross sections differ. The nuclear shell mod-
el parameter I, J(J+1) is only appreciable for nuclei
with an odd number of protons or neutrons. For several
favorable nuclei, A, J(J+1)=0.5 ( Li, "B), 0.91 (' F),
0.42 ( Al), and 0.40 ( 'V).

In supersymmetric theories, the lightest supersym-
metric particle (LSP) may be a Majorana fermion, a
partner to ordinary bosons. In general, the lowest mass
eigenstate will be a mixture of the photino, Higgsinos,
and the Z-ino. We will consider two limiting cases in
which the LSP is an almost pure Higgsino or an almost
pure photino. For Higgsinos,

defined by the matrix elements of the axial-vector quark
current for nucleon eigenstates,

where p (p'), s (s') denote the initial (final) four-
momentum and spin of the nucleon. By decomposing the
axial-vector current into isosinglet and isovector parts,
the axial charges can be related to the vector and singlet
coupling constants g„3 and g~o.

d u 2(gAO+gA3) ~

Gu =Gd =
2 (g Ao

(5.&)

The isovector coupling constant is measured to be
g g 3

—1 .25; unfortunately, the isosinglet coupling g z 0 is
not determined experimentally, so we will retain it as a
parameter.

Putting these results together gives the cross section
for photinos on nucleons; multiplying by the shell-model
factor 1.1A. J(J+1) [since A, J(J+1) „=0.91] and using
Eq. (4.2) finally yields

Q' =271.5 A, 'J(J+1)
P7l

1 5 125
2

(5.9)

where the + ( —) sign is for shells with an extra proton
(neutron) or proton (neutron) hole. The five elements de-
scribed above all have an extra proton or proton hole. In
this expression, we have scaled the cross section to that
for a scalar-quark mass of 50 GeV, the lower limit set by
UA1 data.

It is often assumed that the photino halo arises from a
critical cosmological density of photinos, 0 =1. Howev-

y
er, this assumption depends upon unknown details of
galaxy formation (e.g. , biasing) and uncertainties in the
amount of dark matter in galaxy halos. At this point, it
is equally plausible that 0 =0.2—0.6, the range of values
of recent measurements of the density parameter. If we
further assume degeneracy between the lightest squark
and slepton masses, a Lee-Weinberg calculation implies
an approximate relation between squark and photino
masses ' (for m ~ 10 GeV):

y

m =56 GeV(1+0.04m )'~
Q Q

2
y

0.25
(5.10)

&»p'»'
~ qy, y5q ~

N p, s) =G uN(p', s')y„y5&N(p s)

(5.7)

4m.a
2

mq

m m

(m +MN )
(5.6)

where e is the quark electric charge. Here, 6 are the
axial charges associated with the constituent quarks,

where m is the photino mass in GeV, h =Ho/(100
y

km sec 'Mpc ') is a measure of the Hubble constant,
and we have approximately scaled the results from the
case 0 h = —,

' treated in Ref. 21. Given these assump-
tions, we can express the photino scattering parameter as
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' —1

43.D,'J (J+1)
r 1+0.04m 0 25

( ~gqo+0. 417) 20 -.

Ge Detector

1

(5.11)

Different values for the axial isosinglet coupling g~o
have been used in the literature. Goodman and Witten
use the quark-model prediction g~o=1, while Srednicki,
Olive, and Silk use the quark-model relation

g„o——( —', )g„3——0.75; Kane and Kani ' use SU(3)-flavor re-

lations to obtain gzo ——0.45. Although these values give
differing cross sections, they all imply that nuclei with an
extra proton are favored over those with an extra neutron
for photino detection. Recently, however, the spin-
dependent structure function of the proton was measured
by the European Muon Collaboration (EMC) at q =3
GeV, giving a value approximately half of that predicted
by the quark model. If we assume the structure function
does not have strong dependence on q, this may be inter-
preted ' as implying a much smaller value for the iso-
singlet coupling, g~o-0. 01. In this case, aside from
shell-model factors, nuclei with an extra proton or an ex-
tra neutron would be roughly equally favorable for pho-
tino detection. For several nuclei with neutron or neu-
tron holes, A, J(J+1)=0.91 ( He, Si), 0.5 ( Be), and
0 37 ( Ge).

C. Detection rates

O
I 5

)
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(/)
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IO 25 50

FIG. 9. Counts per energy bin as a function of nuclear recoil
energy hE for germanium detector, shown for Dirac neutrinos
of mass m~ ——10, 15, and 20 GeV. The horizontal dotted line
corresponds to a background rate of order 0.1 per kg per keV
per day, which has been achieved in this detector at recoil ener-
gies above 40 keV. The two boxed points correspond to data
points (presumably noise) measured in the UCSB-LBL double-
beta decay detector before its recent upgrading. Similar count
rates have been recorded in the USC-PNL detector. The verti-
cal dotted line corresponds to the approximate threshold in the
upgraded versions of these detectors.

In this subsection, we apply the foregoing results to
calculate detection and modulation rates for a variety of
WIMP's in several detectors: germanium, silicon, boron,
and fluorine.

20—

Dir

I.Skg Ge

1. Germanium

Experiments to detect neutrinoless double-beta decay
using ultralow background Ge detectors have been

operating for some time. Two groups have used these
detectors to place an upper bound on the mass of
coherently interacting halo WIMP's, I~ ~ 20 GeV.
These detectors were operated at a threshold of 4-keV
equivalent electron energy, corresponding to a=17-keV
nuclear recoil threshold. Near the threshold, both detec-
tors measured count rates =2. 5 kg 'keV 'day
(nuclear recoil energy), dropping to 0.1 —0.3
kg 'keV 'day ' at recoil energies above -40 keV (see
Fig. 9). Recently, both the UCSB-LBL and USC-PNL
Collaborations have decreased their thresholds to 1.5-
keV equivalent electron energy, or @=7.5-keV nuclear
recoil, with detector masses of 1.8 and 2.3 kg, respective-

ly, and will be running in the near future.
In Figs. 9—13, we show the expected recoil energy

spectra, abso1ute count rates, and modulation significance
in the upgraded Ge detectors for the coherently interact-
ing particles discussed in Sec. V A above. Figures 9, 11,
and 12 show that the minimum mass WIMP detectable
via direct measurement of the recoil spectrum depends
sensitively on the background level near the threshold.
For example, Fig. 9 shows that Dirac neutrinos of mass
as low as 10 GeV can be detected with the recoil spec-
trum if the background near threshold is well below 1 per

l5p

'A

IO—

95%

0 ""'
IO 20

FIG. 10. Modulation significance for Dirac neutrinos for 1.8
kgyr of germanium, assuming a threshold energy m=7. 5 keV.
Shown are the expected signal count rate in units of 10 per day,
the modulation significance (R ) and the 95% confidence level

R =1.64, the dimensionless threshold energy A, and the ex-

pected number of background counts per day, assuming a back-
ground rate of 0.2/(kgkeUday) (nuclear recoil energy}. This
corresponds to 1 yr of running the upgraded UCSB-LBL detec-
tor. For the upgraded USC-PNL detector, Md„=2.3 kg, the
signal and background per day should be scaled up by a factor
1.28 and the modulation significance by approximately 1.13.
For scalar neutrinos, the signal should be scaled up by a factor 4
and the modulation significance by roughly 2. Note that this
figure assumes v, = ~. For the reduction in the modulation at
large A due to finite v „see Fig. 7.
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FIG. 11. Counts per energy bin for Ge detector, for GHL
cosmions of mass m ~——6, 8, 10 GeV, assuming no cutoff for the
halo distribution (U„,=00). Also shown is the dimensionless

energy parameter Ao [Eq. 14.10)] for each cosmion mass, as a
function of the nuclear recoil energy. For Ao ~8, the rates
shown here are significantly higher than the corresponding rates
with a cutoff of U„, =575 km/sec imposed (Fig. 12). Vertical
dotted line shows threshold for upgraded detectors.
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FIG. 12. Same as Fig. 11, for cosmion masses 7, 8, and 10
GeV, assuming a local galactic escape velocity of 575 km/sec.
Note the reduction in count rate and the steepening of the recoil
spectrum due to the cutoff.

kg per keV per day. (In this figure, the vertical dotted
line corresponds to the threshold in the upgraded version
of the Ge detectors. The horizontal dotted line corre-
sponds to a background rate of order 0.1 per kg per keV
per day which has been achieved in this detector at recoil
energies above 40 keV. ) On the other hand, if the back-
ground rate at the new threshold of 7.5 keV is of order
2 —3 per kg per keV per day, i.e., comparable to the back-
ground rate at the old threshold (boxed points in Fig. 9),
then the minimum mass Dirac neutrino detectable
through the recoil spectrum is increased to 12 GeV.

Figure 10 shows the modulation significance for Dirac
neutrinos for the upgraded UCSB-LBL detector (the
numbers for the USC-PNL detector are slightly higher).
We see that a 95%%uo-confidence-level measurement of the
modulation can be achieved in 1 yr down to a neutrino

0 I

6 7

mass of 8 GeV. Here, the total background has been es-
timated by integrating an assumed constant background
rate of 0.2 per kg per keV per day from the threshold up
to a cutoff energy E chosen such that 90%%uo of the modula-
tion signal is retained. Thus, if a signal is seen in the
recoil spectrum, it can easily be confirmed via modulation
in a year. Furthermore, even with the relatively low
background level assumed here, modulation can be used
to probe to a lower neutrino mass than can be seen with
the recoil spectrum (8 GeV vs 10 GeV). In addition, if
the background level at low recoil energies is higher (as
discussed above), the minimum neutrino mass detectable
via modulation is only slightly increased, while the
minimum mass detectable through the recoil spectrum
rises more sharply with increasing background. Thus, for
high background levels, modulation can be used as a
method of direct detection of WIMP's.

For cosmion detection, Figs. 11 and 12 show that the
detection rate and minimum detectable mass depend sen-
sitively on the galactic escape velocity. In Fig. 11, where
v„,= ~ is assumed, the rates are much higher than in
Fig. 12, where a cutoff with U„,=575 km/sec is assumed.
Thus, in detecting low-mass WIMP s, it is important to
include the effects of the galactic cutoff. If a cutoff of 575
km/sec is assumed (see Appendix A), the Ge detector can
directly probe down to a cosmion mass of order 7 GeV,
which is the approximate upper limit on the mass for
effective heat transport in the Sun. ' A statistically
significant modulation could be measured down to 6.6
GeV in a year for GHL cosmions with this detector.

2. Silicon

Recently, a proposal to build a 500-g conventional sil-
icon detector with a threshold of a=1.8 keV nuclear
recoil has been made, in order to test the solar cosmion
hypothesis. Compared to germanium, this detector has
the advantage that its lower nuclear mass allows low-
mass WIMP's to be more easily detected (for a given
threshold). In addition, silicon appears to be more
efficient as a detector of nuclear recoil.

I I

8 9 I 0 I I I 2

w IMP ( GeV )

FIG. 13. Modulation significance for GHL cosmions for 1.8
kg yr of germanium. The signal count rate is shown in units of
1000 per day and the modulation significance in units of 10. In
this figure, the halo distribution was not cut off.
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Figures 14—17 show expected event rates in this detec-
tor for Dirac neutrinos and GHL cosmions. Again, for
Dirac neutrinos, the minimum detectable mass (via the
recoil spectrum) depends crucially on the background
rate at low energy. As the noise level is increased from
0.5 to 5 counts per keV per kg per day, the minimum
mass rises from 3.5 to approximately 9 GeV. As Fig. 15
shows, for a 95%-confidence-level modulation measure-
ment in 1 yr, the minimum mass rises much more slowly
as background levels increase over the same ra frange, rom

to GeV. Thus, for large background levels, modula-
tion can be used to detect or rule out Dirac neutrinos
down to lower masses than can be achieved with the
direct signal, in fact, down to masses for which the
signal-to-noise ratio is we11 below 1. Figures 16 d 17

' ues an
s ow that GHL cosmions in the mass range of interest,
3—7 GeV, can be easily detected, and their modulation
easily measured with a Si detector operating for a year.
n this case, signal levels are so high that modulation of

the recoil spectrum (Fig. 8) should be measurable; this
would be a valuable probe of the halo distribution func-
tion.

Unfortunately, the isotope of silicon useful for detect-
ing particles with spin-dependent interactions, Si, has a
natural abundance of only 4.7%. Thus, unless a large
mass of pure Si can be made, this detector will not be
useful for finding Majorana fermions.

3. Boron and fluorine

Ass mentioned in Sec. V B, two odd nuclei well suited to
detection of spin-dependent particles are 8 and ' F. In
Fi s. 18—22'g . —,we show expected daily event rates and
yearly modulation significance for Majorana neutrinos
and photinos, assuming 2-kg detectors of boron and
fluorine. In a11 cases, a background level of 0.5 per kg per
day was assumed.

First consider Majorana neutrinos. Figures 18 and 21
show that a 90%-confidence-level measurement of the
modulation can be achieved in a year over a wide range

500 gm Si
Diroc Neutrino e = 1.8 keV Threshold

I

Bkgnd =0.5 cts/(keV kg day)

.:.(R&
~ ~ ~ ~~

0 10 15 20
~WIMP (GeV)

FIG. 15. Mod &u.ation significance for Dirac neutrinos with
500 g yr Si detector with threshold of 1.8 keV. Shown are the
signal in units of 10 per day and (R ) for the two background
rates shown in Fig. 14.

of WIMP masses, e.g., 5-70 GeV for fluorine, at a
moderate threshold of order 3 keV. Note that, for
fluorine, at the lower end of this mass range, the signal-
to-noise ratio is only of order 1 and at the upper end it is
of order 6.6. This demonstrates once again the possib'1'
of measuring the modulation at low signal-to-background
levels. More to the point, this can be achieved at thresh-
olds above 1 keV, which appears to be accessible to con-
ventional detectors. Although the signal can be increased
by going to sub-keV thresholds, recall that the modula-
tion significance is optimized at A =2, which corre-
sponds to a fluorine threshold of 3 keV for a WIMP mass
of 7 GeV. Except at the very lowest masses, and modulo
considerations of the detector efficiency of different ma-
terials, fluorine appears to be a better choice for Majora-
na neutrino detection than boron. We also note that the
signal rate for Higgsinos can be obtained from Figs. 18
and 21 by multiplying by the factor cos 2a [Eq. (5.5)].
The modulation significance (R ) for Higgsinos is ob-
tained from the Majorana neutrino significance by multi-
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Thr e sho Id
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205 10 15

Erecoil ( keV)

FIG. 14. RRecoil energy spectrum for Si detector, for Dirac
neutrinos of mass 3.5, 5, and 10 GeV. Vertical dotted line cor-
responds to the proposed threshold of 1.8 keV (nuclear recoil)
Also shown are two constant background rates: 0.5
counts/(kgkeVday) (dotted) and 5 counts/(kgkeVday) (dot-
dash).
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FIG. 16. Recoil energy spectrum in Si detector for GHL
cosmions of mass 3.5, 5, and 7 GeV, with same background
rates as in Fig. 14.
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FIG. 17. Modulation significance and signal for GHL
cosmions in the proposed 500-g Si detector, for 1 yr of data.

WIMP ( )

FIG. 19. Photino detection rate for 2-kg boron detector with
2.5-keV threshold, assuming Eq. (5.11) for the scattering param-
eter and axial-vector coupling g&0 ——0.45. Dashed curves corre-
spond to 0 =0.2, h=0. 5, dotted curves to 0 =1, h =0.5.
Here h =Ho /100 km/sec Mpc.

plying by a factor between cos 2a (for background larger
than signal) and cos2a (for signal larger than back-
ground).

For photinos, the scattering rate was calculated using
Eq. (5.11), with isosinglet coupling g„o=0.45, for two
different cosmological photino densities (assuming fixed
halo density): 0 = 1,h =0.5 (dotted curves) and
0 =0.2, h =0.5 (dashed curves}. If the value for g„o in-

ferred from the recent EMC data proves correct, the pho-
tino signal rate will be approximately a factor 2.5 smaller
than that assumed here; the modulation significance will
fall by a factor between 1.6 (for signal larger than back-
ground} and 2.5 (for background larger than signal}. [On
the other hand, if the quark-model prediction gyp=0. 75
is used, the photino signal will be a factor 1.56 larger
than that shown here, and (R ) will increase by a factor

between 1.2 (for So »B) and 1.56 (for So «B).] Figure
22 shows that 90%-C.L. photino detection in a year is
feasible with a 2-kg fluorine detector and 2-keV threshold
for a photino mass below 15 GeV, assuming a low cosmo-
logical photino density. Figures 19 and 20 give the corre-
sponding rates for photinos on boron for two different
values of the threshold. This comparison shows again
that the signal rate can be significantly improved by
lowering the threshold, but that the modulation is opti-
mized at moderate threshold, above 1 keV. In these
figures, we have only shown photino masses larger than 7
GeV, for which Eq. (5.10) is a reasonable approximation.
In addition, for smaller photino masses, the Lee-
Weinberg value of the squark mass [Eq. (5.10)] ap-
proaches the experimental lower bound of 50 GeV.
Thus, for low-mass photinos, 3 ~ m ~ 7 GeV, one can es-r
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FIG. 18. Majorana neutrino detection rate and modulation
significance for 2-kg "Bdetector with 2.5-keV threshold.
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FIG. 20. Same as Fig. 19, but with threshold 200 eV. Al-
though the signal is significantly enhanced at the lower thresh-
old, the modulation significance is reduced.
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FIG. 21. Majorana neutrino rate and modulation significance
for ' F detector with 3-keV threshold.

timate the photino scattering rate using Eq. (5.9) instead
of (5.11). In this mass range, for a fixed squark mass of
50 GeV, the photino detection rate can be inferred from
the Majorana neutrino rate using the relation

Q (m =50 GeV)=1.47Q,

VI. CONCLUSION
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FIG. 22. Same as Fig. 19 for the fluorine detector.

We have presented a general analytic discussion of
WIMP detection, applicable to a wide variety of cold-
dark-matter candidates and particle detectors. Our prin-
cipal analytic results are shown in Sec. IV. The reader
can use these results to instantly calculate event rates for
his or her favorite WIMP by using the following simple
procedure. First, select the detector (nuclear mass M)
and threshold energy e. Use Fig. 1 to ensure that the
coherence loss parameter b &&1 for the WIMP mass
range of interest; if not, choose a detector with lighter nu-
clei. Second, use Eq. (2.17) or Fig. 2 to find the threshold
parameter 3 for a given WIMP mass, and use this to
read out the signal and modulation parameters a, P, y,

and —dy/dA from Figs. 5, 6, or 7. Third, use Eq. (4.2)
to find the value of the scattering parameter Q, and use
Eq. (2.9) to calculate g (m ii„M ). Finally, use Eqs.
(4.3)—(4.9) to calculate the signal rate, the recoil spec-
trum, and the modulation significance for different as-
sumptions about the background rate.

%'e have made a careful study of expected event rates
in several detectors, including threshold effects and the
galactic escape velocity. We have investigated the condi-
tions for the modulation of the WIMP signal to be statist-
ically significant, and have demonstrated the use of
modulation as a primary means of WIMP detection at
low signal-to-noise levels. In particular, this implies that
modulation can be used to probe to smaller WIMP
masses than the recoil energy spectrum. For most parti-
cles and detectors, the modulation significance is opti-
mized at moderate thresholds, possibly accessible to con-
ventional detectors. For example, a 2-kg detector of ' F
with a threshold of 3 keV operating for a year can detect
the otherwise elusive Majorana fermions (Majorana neu-
trinos, photinos, Higgsinos) at the 90—95% confidence
level over a wide range of masses. Thus, we believe that
many of the proposed halo WIMP candidates can be
detected with devices which could be implemented in the
near future.

Finally, we emphasize that we have tried to clarify
some issues in detector design by analyzing an idealized
hypothetical experiment, and that we have not given a
statistical analysis of a real experiment in advance. In
particular, we have not treated in detail the case of back-
grounds with systematic time variations which could
mimic the modulation signal. Thus, we do not expect
that a measurement of (R ) =1 would (or should) be tak-
en as incontrovertible evidence for WIMP's. Rather,
such a measurement should give the experimenter
confidence to continue running for several years under
conditions which attempt to minimize time-dependent
backgrounds.
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APPENDIX A: MODULATION AND THE GALACTIC
ESCAPE VELOCITY

In the body of the paper we assume that the WIMP
speed distribution is Maxwellian, but in reality the distri-
bution will be cut off at the local galactic escape velocity.
Here we wish to show that our approximation introduces
no significant errors in the evaluation of the signal modu-
lation, unless the threshold is very high. One way to do
this is to consider Fig. 7, where we show the modulation
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function a(A ), calculated with u = ao, compared with
the function a, for which a cutoff at 575 km/sec was as-
sumed (see discussion below). For A 511, there is a
negligible difference in the results. However, this can
also be understood analytically.

Let the WIMP distribution in the (nonrotating) galac-

tic rest frame, fo"', be cut off at the escape velocity v„,:

f() '(v) =fo(v)&(u„.—v ), (Al)

where fo( v ) is the Gaussian distribution given by Eq.
(2.2). By the same Galilean transformation as before, one
finds the truncated distribution in Earth's frame:

f'„"'(x)=f„(x), x &p —rt,
pl prx 2 2 2

2 P —X —'gf'"'(x)= exp[ —(x —rt) ]—exp —x+
2x

2'1

p —'g (x (p + 'g

(A2)

(A3)

23v esc
P = (A4)

where f„(x) is the untruncated distribution given by
(2.3), x and rt are defined in (2.4), and the parameter p is
the dimensionless escape speed,

sitive velocity dependence of the WIMP distribution
function, not from the cutoff. (Alternatively, for a flatter
distribution function, modulation would be more sensi-
tive to the escape velocity. )

To demonstrate this concretely, we evaluate the loga-
rithmic derivative of Eq. (A5); using the values of the pa-
rameters given above yields

At x =p, i.e., for particles moving at the escape veloci-
ty relative to Earth, the ratio of the cutoff to the nontrun-
cated distribution is

df;"'(p) 1 df„(p) =0.04 .f " (p) dt) f„(p) drt
(A7)

fc"((p) e
—(p —v) e

—(p —v /2p)

f„(p) —(p —v) —(p+g)
T

= 1 —exp —2pg+2g —
24p2

(A5)

The local galactic escape velocity is not well determined,
but studies of high proper motion stars indicate v, ~ 500
km/sec (Ref. 26). Assuming the galaxy has a flat rotation
curve extending from rp, the solar galactocentric dis-
tance, to a cutoff radius rh, the local escape velocity can
be inferred from the local circular speed [see discussion
following Eq. (2.5)]:

Vesc

V circ
=2 ln +2.

rp
(A6)

Using rp-9 kpc and assuming rh -100 kpc yields
u„,=575+50 km/sec. (The probable error quoted here
is due solely to the uncertainty in the circular speed. )

The central value of this estimate corresponds to p=2. 6.
Evaluating (A5) at this value and using go = 1.05 yields
(f'„"'/f„)„p=0.96. Thus, the flux at the cutoff veloci-

ty, in Earth's frame, is very close to its value in the non-
cutoff case. The reason for this is that most of the parti-
cles moving at 575 km/sec in Earth's frame come from
the densely populated region of phase space near 340
km/sec (x =p —ri) in the galaxy frame, not from the
high-velocity tail. In the noncutoff case, the contribution
to the flux at x =p from particles above the escape veloci-
ty is exponentially suppressed. This is not surprising,
since less than 1% of the particles in a Gaussian distribu-
tion are above the virial escape velocity. Thus, as Eq.
(2.3) suggests, modulation arises principally from the sen-

This shows that the cutoff has little effect on the sensitivi-
ty of the distribution function to a small change in g.
But it is precisely this sensitivity which gives rise to the
modulation. [Recall that the relative modulation is given
by (dI/drt)(Art/I) and I-f„.] On the other hand, if
the detector threshold is set very high, so that the dimen-
sionless threshold energy A—:x;„~p, the detector will
sample all corresponding incoming WIMP velocities
above this value. Since, according to Eq. (A3), the cutoff
distribution goes smoothly to zero as x ~p+q, while the
noncutoff distribution remains finite, the logarithmic
derivative (A7) will clearly be larger at these higher ve-
locities (i.e., at x & p). Thus, one might expect the cutoff
to have a large impact on the modulation at this high
threshold. However, for x ~p+g, the noncutoff distri-
bution is also highly Boltzmann suppressed, so that in-
clusion of this region does not qualitatively change our
conclusions. That is, the detector will mainly be sensitive
to WIMP's with energies very near the threshold,
x ='x;„=p, where the effect of the cutoff is small.

In Figs. 6 and 7, we show the count rate and modula-
tion modified to include the effects of the cutoff at the es-
cape velocity. In Fig. 6, the function y(A ) defined
above, which is relevant for v„,= Do, is compared with
the corresponding function y( A ) the relative count rate
for v„,=575 km/sec. Similarly, in Fig. 7, the corre-
sponding modulation functions are compared in the
cutoff'and noncutoff cases. [The functions y, a, and P are
obtained by using Eqs. (A2) and (A3) in Eqs. (2.1), in
place of (2.3).] For A =8, the count rates (y and y)
differ by -30%, while for A =12 the rate is reduced by
an order of magnitude in the cutoff case. Note that, with
the cutoff, the count rate is strictly zero for) (p+g) =13.3.



3404 KATHERINE FREESE, JOSHUA FRIEMAN, AND ANDREW GOULD 37

APPENDIX 8: MODULATION AND LOSS
OF COHERENCE

I .5

For Dirac neutrinos, scalar neutrinos, or other
WIMP's with coherent nuclear interactions, the signal is
greatly enhanced by using detectors composed of heavy
nuclei [see Eqs. (S.l) and (5.3)]. However, if the WIMP
mass is also large, one finds from Eq. (2.16) that the
coherence loss parameter b is no longer negligibly small
(see Fig. 1). In this case the detection integral (2.1) must
be done using the general expression for the scattering
parameter, Eq. (2.15), rather than (2.18). Then, for the
detection rate, Eq. (2.19) is replaced by

I.Q

0.5

0

p2

FIG. 23. Modulation parameter a( A ) for various choices of
the coherence loss parameter b.

&s(q, ~)) = 8

3'
1/2

oNn U

e "X(A,A )—+

exp
b

(1+b)
( 1+b )1/2

' X(A, A+) (B1)

where

A+ = A+r],

A~ = A(1+b)'"+
(1+b )'"

(B2)

Figure 23 shows the modulation function a( A ) for a
range of values of b =0.0,0. 1, . . . , 1.0. We see that, for
large values of b —1, i.e., if the loss of coherence is
significant, the modulation may be severely reduced or el-
irninated at both large and small thresholds, and may
even reverse its sign. The explanation for this reduction
is straightforward: when Earth is moving faster through
the halo in June, the average momentum transfer be-
tween WIMP's and detector nuclei is increased. From
Eq. (2.10), this leads to a greater reduction in the signal
due to loss of coherence than at other times of the year,
so the net modulation is decreased.

For most cases of interest, this potential loss of coher-
ence and modulation is not important for detector design.
For example, consider a Dirac neutrino with a mass of 20
GeV, the upper limit set by Ge double-beta decay experi-
ments. For the germanium detectors now in operation,

the coherence loss parameter is b =0.07. For the recent-
ly upgraded detectors, the threshold is a=7.5 keV, corre-
sponding to A =1.9. From Fig. 23 we see that the ex-
pected modulation significance ( R ) is reduced by = 14%
(assuming signal much larger than background). Howev-
er, as Fig. 9 shows, the expected value of (R ) for 1.8 kg
of Ge and a 20-GeV Dirac neutrino is 17.2 for 1 yr, not
corrected for the effects of coherence loss. In this case,
coherence loss leads to a small reduction in the magni-
tude of the modulation and thus to a small adjustment in
the analysis of an experiment, but it would not be great
enough to affect the design of the detector.

If the WIMP mass is above 20 GeV, the Ge detector
bounds on the scattering cross section suggest that such a
particle has only spin-dependent interactions with nuclei.
In this case, if the WIMP mass is not very large (which
seems likely from cosmological abundance arguments),
lighter detector nuclei will be preferred, and coherence
loss is not a problem. Of course, one is free to imagine a
very massive WIMP candidate with small but coherent
nuclear interactions (say, with Q = 10 X ), for which
coherence loss would be a serious difficulty. However,
such particles do not seem theoretically well motivated at
the present.
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