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An outline for the construction of an effective theory of interacting solitons in N =2 supergravi-
ty is presented. The solitons are described by their asymptotic properties, carrying translational
and supertranslational degrees of freedom. We discuss briefly the classical and the quantized dy-
namics for the free soliton. The Lagrangian for the motion of a soliton in a curved supergravity
background is exhibited and its implications for an effective supercharge interaction are men-

tioned.

I. INTRODUCTION

The aim of this paper is to set the framework for and
give an outline of a theory of soliton interaction in
{ungauged) N=2 supergravity. It is the first in a se-
quence of four papers (Refs. 1-3) whose final goal is an
effective quantum field theory of supergravity solitons in
an instantaneous-interaction approximation.

Solitons have become an important tool for studying
nonperturbative aspects of quantum field theories. It is
well known that expanding the elementary fields around
a classical “vacuum” (e.g., flat space with all nongravita-
tional fields in the theory set equal to zero) does not in
general incorporate all physical degrees of freedom.

The classical field equations may admit solutions with
spatially localized energy which are stable against classi-
cal and quantum fluctuations. These ‘solitons” are
parametrized by a set of quantities (“collective coordi-
nates”) such as the position (center of mass), momentum,
and some internal variables. Upon quantization, these
additional solitonic degrees of freedom, when added to
the elementary field fluctuations, give rise to a richer
particle spectrum; i.e., they create the “soliton sector”
(or nonperturbative sector) of the full quantized theory.
The first field theory where this has been done with great
success is the famous ‘‘sine-Gordon model” in two di-
mensions.* As a consequence, the perturbative sector
may ““feel” the existence of solitons, even if they are not
excited, and some of its features (such as renormalization
properties) may change. Moreover, solitons or bound
states of solitons may have a direct physical interpreta-
tion.

In this work we are especially interested in solitons
arising within supergravity theories. Although super-
gravity turned out to be nonrenormalizable at the per-
turbative level, some extended versions arise as the field-
theoretical limit of superstring theories. Therefore, it is
of interest to see how the structure of supergravity
theories is enriched by including nonperturbative degrees
of freedom. This investigation is also motivated by the
“duality” conjecture whereby one expects that classical
solutions play also an important role in the strong-
coupling limit.

Gibbons® has pointed out that certain extended super-
gravity theories allow for solitonlike configurations.

37

Generalizing results of Hajicek® for the Einstein-
Maxwell theory he discussed the general soliton struc-
ture of the N <4 and N=38 theories. We shall consider
only the ungauged N=2 theory’ because it is the sim-
plest one admitting solitons. The role of classical soli-
tons therein is played by static extreme black-hole solu-
tions with certain fermionic (gravitino) field excitations.
They saturate a Bogomol'nyi-type inequality

47Gm?>e’+4q?,

which qualifies them of having the least mass (m) for
given electric (e) and magnetic (g) charge (cf. Ref. 8).
Because of an additional fermionic parameter, the super-
charge Q, the solitons to given values of (e,gq) form a su-
permultiplet consisting of all “‘supertranslated” partners
to the purely bosonic black hole.

In a previous paper,” we constructed the exact super-
partners to the bosonic Einstein-Maxwell multisolitons.
The different states of a single soliton are distinguished
by position (center of mass), momentum, and a fermionic
parameter representing two spinorial (classically an-
ticommuting) degrees of freedom associated with the su-
percharge of the configuration. Clearly, such a
configuration represents a single, noninteracting object.
Our aim is to formulate, step by step, an effective dy-
namics for several interacting solitons in the lowest order
of approximation that incorporates the effects of the su-
percharge.

The main idea is to freeze all degrees of freedom in
N=2 supergravity except the solitonic ones. In other
words, we treat the solitons as particles carrying only
translational and supertranslational (spinorial) parame-
ters. This description will only be a good approximation
if little radiation is set off upon interaction, and the dis-
tortions of a soliton configuration by tidal forces is negli-
gible. Since the supergravity field equations admit exact
static multisoliton configurations (the Majumdar-
Papapetrou solutions), there should be a regime where
this truncation of degrees of freedom is justified.

This paper, where we give the program and outline
the method, is organized as follows. In Sec. II we review
the results of Ref. 9 where the supertranslated solutions
were presented, and introduce the point-particle descrip-
tion. In Sec. III the choice of independent Lagrangian
variables associated with a soliton leads to the notation
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of a particle in N=2 rigid (also called ‘““flat”’) superspace.
Section IV is devoted to the construction of the free soli-
ton Lagrangian in the slow-motion limit. Attention is
focused on the fermionic degrees of freedom associated
with the supercharge. Upon quantization, the particle
spectrum emerges as the nonrelativistic version of the
basic N=2 “hypermultiplet.” The relativistic generali-
zation of the dynamics is presented in Sec. V. The
motion of the free soliton is described by a superspace
trajectory. Section VI gives the first steps toward an in-
teraction theory. The soliton is considered as a test par-
ticle in a classical supergravity background. We give the
Lagrangian and mention briefly how to proceed toward
a theory of interacting particles, thereby taking the
background as a classical soliton configuration itself.
From the Lagrangian, one may then read off the interac-
tion potential between two solitons in an instantaneous
approximation. The detailed computations suggested in
Secs. V and VI are given in subsequent papers.!~

Once having a classical (and from that a first-
quantized) theory of soliton interactions, one may
proceed to condense the notion of an arbitrary number
of interacting solitons into the language of an effective
field theory, exhibiting field operators (and thus creation
and annihilation operators) for solitons. This last step,
the construction of an effective quantum field theory of
solitons in the approximation mentioned above, is also
carried out in Ref. 3.

Let us finally remark that in a number of papers' lo-
calized, static nongauge solutions of the N=2 supergrav-
ity equations have been obtained. However, since it is
not clear whether these “superhair” configurations quali-
fy as solitons, we do not include them in our construc-
tion.

II. STATIC SOLITONS

In this section we review and generalize results con-
cerning the exact superpartners as derived in Ref. 9.
The Majumdar-Papapetrou configuration is considered
as the general static classical multisoliton solution of the
Einstein-Maxwell theory. In suitable coordinates, the
vielrlbein field and the electromagnetic potential are given
by

Oe0—p—1gx0, Oeipdx’, (2.1a)

kO4 =—¢v—1dx° (2.1b)
where

yo1p S 2.2)

J=1 czlx—xj |

and {= +1 or —1. (We follow essentially the conven-
tions of Ref. 9 with the exception that the velocity of
light ¢ is made explicit in all formulas up to Sec. III,
x%=ct, and that the tangent space indices are now taken
from the middle of the alphabet: m,n,r,...; see Appen-
dix A.)

The configuration (2.1) and (2.2) describes an ensemble
of n extreme black holes with masses m; and electric
charges

ey =GEkmy, (2.3)
in equilibrium.'?> ¢ determines the sign of the electric
charges. Since our final aim is to describe the dynamics
of solitons, both values of £ must be considered. For our
purpose we exclude the existence of magnetic charges
which enables us to work with a globally defined elec-
tromagnetic potential.

The Arnowitt-Deser-Misner (ADM) four-momentum
and the total electric charge of the Majumdar-
Papapetrou fields are

PADM

(mc,0,0,0), (2.4)

e= Y e;=ktm . (2.5)
J=1

The configurations (2.1) are also (purely bosonic) solu-
tions of the N=2 supergravity field equations.'”> The
iterative application of a local supersymmetry transfor-
mation to (2.1), with a time-independent gauge spinor
field € which approaches a constant spinor € at infinity,
gives rise to the “supertranslated” solution’

e”‘-—-“’)e"'—%[gymﬁe—(i)\E)y’"e]-{—O(e“) ., (2.62)
kA =k ©O4 +£[€ﬁe—(ﬁ?)e]+0(e4) , (2.6b)
ky=De+0(€), (2.6¢)

where the supercovariant derivative is taken with respect
to the bosonic configuration (2.1). ¢ is the (complex)
Rarita-Schwinger (gravmno) ﬁeld of N=2 supergravity
(p=9'+iy* =y, dx*,e=€'+ie’ where ¥, and € are
Majorana spmors)

The ADM momentum and electric charge of this
configuration are still given by (2.2) and (2.5) while the
supercharge®'*13 of (2.6) is

-3
ic . m
== b vsv Ay=—i |PAPMy — 2|6
2.7
which implies, together with (2.4) and (2.5),
PADMy’"+ e|Q=0 (2.8)

as a constraint for gauge-generated supercharges.
In order to explore the implications of (2.8), it is use-
ful to split up

a+b
€= |g—_b | (2.9)
where a and b are complex two-spinors. Then (2.7) and

(2.8) become (we use the Weyl representation of the y
matrices'®)

Q =—imc(y,—Ee, (2.10)

and



340 P. C. AICHELBURG AND F. EMBACHER 37

(yo+6)2 =0, @2.11)
which implies, for {=1and {=—1,
b
Q=—2imc|_, (2.12a)
and
a
Q =2imc |, |, (2.12b)

respectively. Thus, only half of the components of €
contribute to the supercharge, while the others give rise
to short-range gauge transformations.” A gauge spinor
€, of the form

€.=V 1%, (2.13a)
with

(yo—G&le,,=0 (2.13b)
is supercovarianty constant; i.e., its satisfies

De =0 (2.14)

and leaves the configuration (2.1) invariant. Any gauge
spinor which approaches €, at infinity induces only a
short-range transformation. We identify all
configurations which are short-range gauge related. The
resulting equivalence classes are then parametrized by
only half the components of € (a for {=—1, b for
&=1).

The configurations (2.6) with Q=0 are interpreted as
“superpartners” of the bosonic solution (2.1), much the
same way as spatially translated solitons are “‘transla-
tional” partners of each other. Just like the center of
mass (position), the supercharge becomes a dynamical
variable of the soliton.

In Ref. 9, the iteration (2.6) was carried out to all or-
ders in € for {=1, and the exact superpartner was
displayed. One may fix a certain configuration of every
equivalence class by a suitable choice of € for a given
value of Q, e.g.,

e=V~"1%_ (2.15a)
with

(ro+8le,=0 (2.15b)
which implies the gauge condition

Oyry, =0, (2.16)

where V4 is the part of i which is linear in €. The su-
percharge is then proportional to € :

Q =2imcle, . (2.17)

With this choice, the lowest order in the expansion (2.6)
of the superpartners reads

o=V -ldx%+ V‘ZV,kekj,-@jdx'#O(e“) )
(2.18a)
e'=Vdx'+ V=V 1€,;,C,dx°+0 ('),

kA =8~V ldx"+ V7V 1€,;Cidx")+0(€)
(2.18b)

kp=(V 3V 1y dx°+ VW v, vdx e+ 0(€)

(2.18c¢)
where, in the case {=1,
C,=b'o,b, (2.19)
whereas for {=—1,
C,=a'o,a . (2.20)

The ADM four-momentum, the electric charge, and
the supercharge of (2.18) are given by (2.4), (2.5), and
(2.17), respectively. Moreover, the g, components of
the metric associated with the vierbein field (2.18a) give
rise to an angular momentum

S;=mcC; . (2.21)
We refer to it as the classical “spin” (angular momentum
in the rest frame) of the object. As stated in Ref. 9,
there is also a magnetic moment associated with the
spin, giving the correct quantum-mechanical gyromag-
netic ratio.

Our aim is to describe these configurations solely by
their long-range properties, thereby assuming that the
solitons play the role of fundamental entities of the
theory. Gauge transformations which do not tend to
unity at infinity will in general change the asymptotic
properties of a configuration, and thus the physical state
of the system. The generators of these ‘“‘improper”
gauge transformations (ADM four-momentum, ADM
angular momentum, and supercharge) are given by sur-
face integrals at spatial infinity which transform accord-
ing to the flat-space (Poincaré) supersymmetry algebra.'>
[The electric charge, which may be considered as the
global U(1) generator, enters the algebra as a central
charge.] The asymptotic spatial translations and rota-
tions as well as the previously considered supertransla-
tions maintain the time independence of the configur-
ation. This gauge freedom gives rise to collective coor-
dinates which play the role of dynamical variables in an
asymptotic description. For the single soliton (n=1)
configuration, we associate a position (center-of-mass)
variable with the translational and a spinorial variable,
the supercharge, with the supertranslational degrees of
freedom. The spatial rotations may be absorbed into the
supersymmetry transformations, the reason being, that
the nonspherically symmetric part of (2.18) comes from
the supercharge.

Describing the soliton only by position and super-
charge, means that all other degrees of freedom are
neglected. For the interacting case, which is our final
aim, this implies that we are working with a highly trun-
cated theory which will only be a good approximation to
the underlying field theory if conditions are such that
the other degrees of freedom are (almost) not excited.
For a soliton in an external field (the subject of Sec. VI



37 SUPERGRAVITY SOLITONS. 1. GENERAL FRAMEWORK 341

and Ref. 2), this can be expected if accelerations and ti-
dal forces are small. In an effective soliton-soliton in-
teraction picture (Ref. 3), one can at best expect validity
in the slow-motion limit, where radiation effects are
negligible. For the quantum version, this implies that
the excitations of the elementary quanta (gravitons,
gravitinos, and photons) are suppressed.

The single soliton configuration may then be looked
upon as a classical point particle in Minkowski space
with mass m and electric charge

e=%km . (2.22)

We associate with it (in a relativistic formulation which
may be achieved by Lorentz boosting the static
configurations) a spacetime variable x*(s), a four-
momentum P#(s), and a (Grassmann-valued, anticom-
muting) supercharge Q (s) obeying the constraint

0 =0. (2.23)

P#y”+%e

As the basic equations of motion for the single free soli-
ton we postulate
d

£ pr_o

s (2.24a)

and

d

5 2=0" (2.24b)
However, it will turn out in the next section that Q is
not the appropriate independent variable in a Lagrang-
ian formulation (as opposed to x#). In Secs. IV and V
we will construct an effective Lagrangian for a point par-
ticle which reproduces the dynamics (2.24) and the con-
straint (2.23).

III. THE SUPERTRANSLATIONAL FREEDOM

First we have to find suitable independent dynamical
variables. For the bosonic part we have already confined
ourselves to the position x#(s) describing the translation-
al motion of the soliton as a whole. But how to include
the fermionic variable Q in a Lagrange formulation?
Since the constraint (2.23) depends on P#, the set of all
possible supercharges Q is not defined a priori, but de-
pends on the motion of the soliton. Some trial and error
reveals that it is rather problemetic to use Q as an in-
dependent dynamical variable in the Lagrangian. We
therefore propose a different approach which carries
over to the interacting case and which will be, at a later
stage of our argumentation, in natural agreement with
the existence of the local supersymmetry in the underly-
ing field theory.

We assign to the soliton a (classically anticommuting)
dynamical fermionic variable 8=(0%) [a complex four-
spinor which is decomposed into its Majorana parts as
6=0'+i6*=(6/)]. The dynamics of the particle is
determined by the set (x#(s),0%s)), in other words, by a
trajectory in N=2 superspace. The supercharge Q will
then arise as the generator of translations in 6, i.e., of

global supersymmetry transformations, the same way as
the momentum P, is associated with the space transla-
tions [see (5.2) below]. As a by-product, we obtain an
additional gauge symmetry acting on 6 and rendering
two of its components physically superfluous, thus
reidentifying Q and 0 in a special gauge. Moreover, Q
will essentially play the role of the momentum conjugate
to 8. Of course the idea to describe a supersymmetric
particle by a trajectory through superspace is not new,
and several supersymmetric point particle Lagrangians
have been studied (cf. Refs. 17 and 18).

Treating the fermoinic superspace variable as the
analogue of x¥, two questions naturally arise. (i) What is
the physical meaning of the global supertranslations act-
ing on 6? (ii) May one associate a certain value for 6
with a given soliton configuration?

To answer the first question, let us first note that the
soliton configurations are obtained by long-range super-
gravity gauge transformations acting on bosonic (black-
hole) solutions. According to (2.7), only the value at
infinity of the gauge parameter contributes to the super-
charge. The remaining local gauge freedom is lost in the
asymptotic description.

Acting on a soliton configuration by a further asymp-
totic gauge transformation just means to change the
value at infinity of the gauge parameter (i.e., to pass to
another soliton configuration):

€,—€, . (3.1

Let us denote the infinitesimal version of such a varia-
tion as

Se_=—F¢. (3.2)

[The minus sign will give rise to the usual signs in the
supersymmetry (SUSY) law.] The according variation of
the supercharge is read off from (2.7):

Pyt—ele. (3.3)

8Q =i X

It is now natural to identify these variations with the
rigid supertranslations acting on the N=2 superspace in
terms of which the point-particle dynamics is formulat-
ed. In other words, the space of all values for € is
identified with the space of all 6’s. Postulating the
correspondence

0—>—e¢_ , (3.4)
(3.2) becomes the action of global SUSY in superspace:
860=¢ . (3.5)

The identification (3.4) is in accordance with the expec-
tation that a purely bosonic soliton (the extreme
Reissner-Nordstrom solution) is associated with the
value 6=0. Thus, the answer to the first question is the
following: The global N=2 SUSY reflects the fact that
soliton field configurations are related by (long-range)
gauge transformations.

As a consequence of this interpretation, the answer to
the second question turns out to be negative. Because of
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the constraint (2.23), only half of the components of €
(and thus of 8) contribute to the supercharge. Varying 6
by an € which satisfies

Py — e |e=0 (3.6)

|0

has no effect on Q and thus on the physical state. At
this stage it should not be surprising that, as will be
worked out in Ref. 1, € in (3.6) may also depend on the
time variable s, giving rise to an additional local gauge
symmetry of the particle dynamics. This symmetry may
be used to impose a gauge condition on 6. At the level
of soliton field configurations, this corresponds to a
choice of € for each value of Q. One possible choice
has been made in (2.15b) and (2.17). For notational ease,
from now on € is simply denoted by e.

In the rest frame (and also in the low-velocity limit)
the decomposition of 8 in gauge and nongauge contribu-
tion follows from (2.9):

a—+b

y b (3.7)

The gauge condition (2.15b) imposed on €, now reads

a=0 (3.8a)
for positive e and
b=0 (3.8b)

for negative e. The remaining components of 0 are then
in one-to-one correspondence with Q and constitute the
“true” degrees of freedom [cf. Eq. (2.17)]. The nonrela-
tivistic Lagrangian as given in the next section will be
formulated entirely in terms of these. From the super-
space point of view, we have now exhibited the reason
why this is possible: The gauge components of 6 will
not enter the nonrelativistic Lagrangian and are there-
fore completely arbitrary. Getting rid of them is most
naturally done by setting them equal to zero, as in (3.8).
The decomposition (3.7) will be used to evaluate the
nonrelativistic limit of the full Lagrangian in Ref. 1. It
carries over to the case of interacting solitons.>? Its rel-
ativistic generalization is also worked out in Refs. 1-3.
Moreover, by suitably eliminating the redundant de-
grees of freedom in the relativistic version, the relation
between four-momentum and four-velocity will become

Pt=m——

ds

if s is the proper time.

(3.9)

IV. NONRELATIVISTIC DYNAMICS
OF THE FREE SOLITON

Let us first consider the slow-motion (nonrelativistic)
limit. The lowest-order term of the constraint (2.23) is
just (2.11) and therefore independent of the velocity.
From Egs. (2.12a) and (2.12b) we infer that, to this or-
der, the possible supercharges are parametrized by b or a
for {=1 to {=—1, respectively. These quantities we

take as the independent dynamical variables.

The problem in the slow-motion limit is posed as fol-
lows. Can we find a point-particle Lagrangian with x(z)
and a (¢) or b(¢) as dynamical variables, which describes
the free slowly moving soliton and which reproduces the
correct supercharge and spin?

We restrict ourselves to the case {=—1 (the other
case is completely analogous). Assuming that the La-
grangian L depends only on x(#), x(¢), a (), and d(¢) (the
overdot denoting the derivative with respect to ¢ and the
components a 4,d ,, A=1,2, anticommute with each oth-
er), we impose the following conditions: (i) The resulting
equations of motion should read X=0 and ¢=0; (ii) the
bosonic part of L (i.e., setting a =d=0) should be that of
a free nonrelativistic particle with mass m; (iii) the La-
grangian should be translational and rotational invariant
[a 4 transforming as an SU(2) spinor]; (iv) since we want
to suppress all (self-) interactions at this level, L is re-
quired to be quadratic in @ and 4.

Conditions (i)—(iv) lead to the ansatz

L=imx’+mela'f(x,x)d +H.c.], 4.1)

where f is a dimensionless 2 X2 matrix function which,
when expanded in powers of x/c, reads
S X 2,2

f(x,x)=al+pB . 0;+0(x"/c?) 4.2)
with a and 8 complex constants. This follows essentially
from the requirement (iii). We only keep the lowest-
order term and determine a by a method that proved
useful in the theory of scalar field solitons in two dimen-
sions (see Ref. 19). Replace a by a(?) in the explicit su-
perpartner solution (2.18) and insert into the field-
theoretical Lagrangian of N=2 supergravity.”’ From
the result

[d’x L=imc(a'a —a'a)+0(a*) 4.3)
we read off a=i.

At this point we should critically remark that this
method is problematic in curved space: Applying it to
the position variable x(¢) of a black hole gives, apart
from a constant and a total time derivative,

[d*x £L=1mx (4.4)
but M is coordinate dependent and may even be infinite.

However, further support for the value of a is ob-
tained by computing the conserved quantities associated
with spatial rotations. Applying

dx'=e Mxk, 8a=— —;—Aial«a , (4.5)
to L, one finds the generator of rotations to be

L, =€, x'p,—iamcC, , (4.6a)

p=mx . (4.6b)

The first part of L; is the usual orbital angular momen-
tum, the second part, the classical spin, coincides with
(2.21) only for the above choice of a.
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Thus, the nonrelativistic limit of the free point-particle
Lagrangian is

L=1mx*+imec(a’a—a'a) @.7)
for {=—1, and

L=1mx*+imc(b'6—5") 4.8)
in the {=1 case. A similar Lagrangian was considered
in a different context (in N=1 supersymmetry) by Casal-
buoni.2! Note that the combinations x,c !/%a, respective-
ly, ¢!/?b, play a role of “nonrelativistic’ quantities.

We recall that the fermionic parts of these Lagrang-
ians are obtained by taking the superpartner
configurations in a specific gauge. The gauge freedom of
choosing a different gauge spinor €' than in (2.15), lead-
ing to the same Supercharge, is reflected by an additional
term to (4.7) of the form

L guge=—2ime(a'F —fla)+ 0,

where

(4.9)

e—e=V'"?

7
and

‘ llim f(x)=0.
The form of the gauge Lagrangian (4.9) will be justified
in Ref. 3. In the present context it can be obtained by
the following heuristic argument. First let f(¢,x) and
find, using the field-theoretical Lagrangian of N=2 su-
pergravity.

Lgauge= —2imc a+%[f(t,0)]—H.C.

+0(f?).

Substituting the position vector into the second argu-
ment and omitting the explicit time dependence of f,
one arrives at (4.9). The freedom described by this part
of the whole Lagrangian corresponds to the local super-
symmetry of the underlying field theory. In the quan-
tum version, it may be compensated by an adequate lo-
cal gauge transformation on the physical states, as we
shall see below.

The canonical momenta associated with the fermionic
variables (a and a' treated as independent variables) are

—

‘rr———gé.)—;L =—imca , (4.10a)
a
f_p 0 . 4
T =L5—.=tmca . (4.10b)
a

Calculating the Hamiltonian, we notice that the fermion-
ic part does not contribute to the total energy:

[T

s (4.11)

This is in agreement with the superpartner

configurations where the fermionic part in the vierbein
does not contribute to the ADM energy integral. Let us
now quantize the system (4.7). The relations (4.10) are
second-class constraints.”? Introducing graded Dirac
brackets [ , }, to eliminate the 7’s and going over to the

graded commutator, we arrive at the canonical
(anti)commutation relations

[x'p;1=ifid'; , (4.12a)

g 4.12b

{a,a5)} 2me 4B (4.12b)

all others vanish. The supercharge as operator on the
quantum states is defined by (2.12b). One easily checks
that the anticommutation relations among the a’s and
aPs are identical with

(0%0%={0,,05}=0,
(4.13)
(Q%,0p) =2A(P,y"+mc)% ,
where

P,=(mc,0,0,0) .

This algebra is exactly the N=2 SUSY algebra with cen-
tral electric charge e = —km acting on states in the rest
frame. (For a review on the global SUSY algebra see,
e.g., Ref. 23.) This also justifies the value of a.

The operators a and a’ (or b and b", for &=1) consti-
tute a four-dimensional Clifford algebra. They play the
role of the (nonrelativistic) supercharge and change the
spin by t#/2, respectively. Together with the standard
L*(R®) representation for (4.12a), the algebra may be
realized on the space of superfields
172
e alx A,

Y(x,t,ah)=¢(x,1)+ p

+ %ﬁﬁc—e’wala;k(x,t)
¢
= |X 4.14)
A
with a; acting by left multiplication and
i3
_ 4.15
ag=5 o’ (4.15)
The spin operator
S;=mca to a
obeys the SO(3) algebra, and its action on VW is
¢—0, X—-»ga‘,-)(, A—O0. (4.16)

Thus the quantum states for the free soliton form a mul-
tiplet with spins (0,1,0).

The global SUSY transformation induced by a on the
superfield is
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8W=(me /f)"a'v—via)¥ (4.17)
which for the components reads

8¢=—v,x, , (4.18a)

X g =—v, b+€5vEA, (4.18b)

SA=—€, v Xp , (4.18c¢)

where v=(v,) is a constant anticommuting spinor.
This may be considered as the nonrelativistic limit of the
transformation law for the basic N=2 “hypermultiplet”
(which has extreme central charges®*).

Varying the multiplet according to (4.18) by a local
v(x) compensates the effect of the gauge Lagrangian
(4.9) if we identify

v(x)=2(mc /8)2f (x) . (4.19)

(This is in analogy to the local phase-factor transforma-
tion of the Dirac field to compensate a gauge transfor-
mation of the electromagnetic potential.) The possibility
of altering L by such a term corresponds to the freedom
of generating a gravitino field Y¥=de from flat space.
Equation (4.18) with local v therefore reflects the ex-
istence of the supergauge freedom in N=2 supergravity.
The time evolution for the superfield is given by the
Hamiltonian (4.11)

., 0 #?

i# or V= m AV
which consists of two free Schrodinger equations for the
scalar fields and a free Pauli equation for the spinor field.

The multiplet structure coincides with results derived
by Gibbons® who has discussed the possibility of solitons
in extended supergravity theories. Relying on the gauge
condition (2.16), he argued that only the extreme
charged black holes have superpartners and may be con-
sidered as solitons [for remarks on (2.16) see Ref. 9].

(4.20)

V. RELATIVISTIC DYNAMICS OF
THE FREE SOLITON

Having set up the multiplet structure for the quan-
tized free soliton in the nonrelativistic limit, we proceed
in our task to find a method for describing interacting
solitons by generalizing the previous results to the rela-
tivistic regime. We have in mind a Lorentz-invariant
particle dynamics in rigid (flat) N=2 superspace. The
dynamics of the soliton is to be described by a Lagrang-
ian L (x*,%",0% 6%) (where the overdot means d /ds, and
from now on we set ¢=1) which should have the follow-
ing properties.

(i) Setting 6=60=0, L reduces to the usual,
reparametrization-invariant Lagrangian
L=—mV3i"%, . (5.1

(ii) L is invariant under global supersymmetry trans-
formations

SxH= —;-?jy“ej = i(?y"@—e_}/“e), 80=¢ . (5.2)

(iii) The conserved quantity associated with this sym-
metry (the supercharge) belongs to the N=2 SUSY alge-
bra (represented by Poisson brackets or their quantum
version) with extreme central electric charge e =¢&km.

(iv) The condition (2.23) on the supercharge emerges
as a constraint of the theory.

(v) The nonrelativistic limit coincides with the model
of the previous section.

The following arguments lead to a Lagrangian compa-
tible with the requirements (i)-(v). First replace x* by
(cf. Ref. 21)

x*‘-éé!‘y“é/ (5.3
in (5.1) to ensure N=2 supersymmetry, but with zero
central charges. To generate the correct central charges,
the supercharge, as the generator of supertranslations
acting on superfields,

3 4
C=2ifi— — —(y*0)* .
Q i 28, 2 (y#6)%9, , (5.4)
has to be modified by adding the term
——éé‘m 6° . (5.5)

One then checks that the term 1&me*9/6* varies under
(5.2) into a total derivative and when added to L, pro-
duces the above superspace representation of Q. We
thus end up with

L=—mVA*A,+19, (5.6)
where

A#=x“_é§fy“éf , (5.7)

szefkéfé", e2=k2m? . (5.8)

This Lagrangian has been studied previously in a
different context by Azcarraga, Lukierski, Frydryszak,
and Lusanna.!” We have not proven that the conditions
(i)—(v) lead uniquely to (5.6). We also remark that one
may attach a magnetic charge to the particle as well.
For the soliton configuration this is achieved by a duali-
ty transformation®2® which carries over to the point par-
ticle model.

In the forthcoming paper,' we shall study the implica-
tions of this Lagrangian in detail, showing that the re-
quirements are indeed satisfied. Upon (first) quantiza-
tion, one arrives at the basic N=2 hypermultiplet.?*

VI. SOLITONS IN CURVED SUPERSPACE

Having obtained a relativistically invariant and global-
ly supersymmetric point-particle Lagrangian for the free
soliton, we would like to incorporate interactions. We
start by studying the dynamics of the point particle in an
external field. Since our goal is to derive an effective
soliton-soliton interaction, we take the external fields to
be those of N=2 supergravity. In other words, we seek
a locally supersymmetric extension of the Lagrangian
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constructed so far. This leads naturally to the formula-
tion of the theory in (curved) superspace of N=2 super-
gravity.?’ The dynamics of the system is then described
by the motion of a “test” particle in this superspace.
The motion of such a “small” soliton should, in princi-
ple, follow from the supergravity field equations in a
suitable approximation. Since this has not been achieved
in a consistent way even for pure gravity, we proceed
heuristically and try to anticipate the outcome of such
an approximation.

Once the Lagrangian has been found, the background
is taken to be a soliton configuration, thus leading to an
effective ““force” between two solitons in an instantane-
ous interaction approximation. This idea was applied by
Gibbons and Ruback?® to study the dynamics of extreme
black holes within the Einstein-Maxwell theory.

Taking into account the foregoing, we require L to
meet the following criteria: (i) L is N=2 supersym-
metric in the sense that a local supersymmetry transfor-
mation of the background induces a corresponding
transformation of the particle variables; (ii) by choosing
the background to be flat, L reduces to (5.6)—(5.8); (iii)
the purely bosonic part of L corresponds to the dynam-
ics of a charged particle in the Einstein-Maxwell theory:

L(0=0=0)=—mV x"%"g,, —ei*4,

ol k2m? . (6.1)
We proceed to construct L in terms of the simplest su-
percovariant objects. Again, we have no proof that the
resulting Lagrangian is unique. N=2 supergravity in su-
perspace is usually formulated in terms of two
superfields, the supervielbein ¥,,# and the U(l) gauge
field By, (see Appendix B). These fields are defined on
superspace with coordinates zM=(x#,0%). A straight-
forward generalization of g,,,%*x " is

MYy ANV En L, (6.2)
where
Mmn O
Map= | g BC., (6.3)

and B an arbitrary constant. One checks that the case
B0 disagrees with the property (ii). Thus, we take for
the “gravitational” parts of L the term (6.2) with =0 in
(6.3). A suitable generalization of the second term in
(6.1) is obtained by replacing x* by z™ and e4 . by
(e /k)B,,. The resulting Lagrangian reads

£

L=—-mV A" A", — kz'MBM , (6.4)
where
AM=:My, " e =k®m? . (6.5)

Equation (6.4) is at the same time the supersymmetric
extension of the Einstein-Maxwell-dynamic (6.1) as well
as the extension of the flat superspace Lagrangian
(5.6)—(5.8) to curved space. Note that & of (5.6) which
was essential for producing the correct central charge in

the algebra, is seen to be the leftover of the U(1) gauge
potential B,, in the flat-space limit of (6.4), see also Eq.
(B4f) in Appendix B.

The same Lagrangian has been used by Lusanna and
Milewski'® to derive part of the superfield constraints.
For our purpose, (6.4) gives the dynamics of a “small”
soliton, classically described by the trajectory
(x*(s),0%(s)) is curved superspace. The supergravity
field configuration (e™, 4,v) which enters L through the
superfields V,,” and B,, are assumed to satisfy the field
equations'® (in contrast with Ref. 18).

We will study this dynamics in detail in Ref. 2. To
quote some of the results we remark that the equations
of motion (in an approximation where third-order fer-
mion terms are neglected) are of the type

my#—j‘uip;;—%J —2?0+ku“¢# =0, (6.6)

mu

EDS— \/uPZP =€quv
+Qj(k$w,j+%ﬁmjk0k)u"+ cee
(6.7)
where
M
u“=%

¥ and Q are the gravitino field strength and “supercur-
vature,” respectively. The local gauge freedom of (6.6)
as well as the terms denoted by dots are exhibited in
Ref. 2. The last term of (6.7) contains the expression
RS patt” (6.8)
where S,,, is the spin tensor, and therefore constitutes a
supersymmetric generalization of the Mathisson-
Papapetrou equation of motion for a spinning particle.?’
As mentioned above, a further step is to choose a soli-
ton configuration for the background and derive from L
the force between two solitons in the low-velocity limit.
As an example of the results derived in Ref. 3, we
display the interaction potential between two solitons,
both with {= —1, and masses m and m’. Their respec-
tive position variables are x and x’, the (nonrelativistic)
supercharge parameters a and a’. Up to some gauge
freedom (which will be omitted here), the interaction La-
grangian (which is the negative of the interaction poten-
tial) in the instantaneous approximation and for large
distances is
= I (3 x e
c|x—x|
x(a—a")o la—a'). (6.9)
This is a sort of generalized spin-orbit coupling, where
the well-known purely bosonic interaction terms (cf. Ref.
26), which are of the same order, are not included.
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The last step in our program is to interpret the instan-
taneous two-soliton dynamics as the two-particle sector
of a (second quantized) field theory. The fields ¢, X, and
A which form the multiplet (4.14) will then become field
operators in an effective quantum field theory of solitons.
This is accomplished in Ref. 3.

VII. CONCLUSIONS

In this paper we have presented the framework for a
theory of soliton interaction in N=2 supergravity. The
solitons are described by their asymptotic properties in
terms of translational and supertranslational degrees of
freedom, the latter being associated with the super-
charge. By looking at the algebra of asymptotic gauge
transformations, we argued that the motion of a soliton
can be described by a trajectory in N=2 superspace. In-
teractions are implemented by considering curved super-
space. Taking the superspace fields to be soliton solu-
tions of N=2 supergravity, gives rise to an effective in-
teraction Lagrangian for several solitons in the slow-
motion limit.

It is not surprising that in order to set up the dynam-
ics, we often had to use heuristic arguments instead of
strictly deducing it from the underlying field theory.
Nevertheless, we feel that the results that follow from
the presented Lagrangian seem to be reasonable generali-
zations of what is known in general relativity, e.g., for
the motion of a spinning particle in an external gravita-
tional field. We have condensed the line of argumenta-
tion in the first of the papers; the forthcoming ones will
proceed in a more deductive way making use of the as-
sumptions made here.
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APPENDIX A: CONVENTIONS AND NOTATIONS

Our conventions follow essentially those of Refs. 9, 13,
and 16. Especially the metric signature is (4 — — —),
and k*’=4xG. In contrast with Ref. 9, the velocity of
light is kept explicitly in Secs. II-IV. The tangent space
indices are now taken from the middle of the alphabet
(m,n,r,s,...). Four-spinor indices are denoted by
a,3,7, . .. while in Secs. IV, 4 and B are two-spinor in-
dices.

For the y matrices we use the Weyl representation,'®
especially

which is the reason for the decomposition (2.9). All
complex four-spinors may be decomposed into their Ma-
jorana parts by X=X'4+ix>=(X/). The global SO(2)
then acts on the index j. For simplicity we write the in-
dex j sometimes downstairs (e.g., X, j)-

The index convention in superspace is taken from Ref.
20:

M,N =(u,v, ...;aj,Bj, .
A,B=(m,n, .

..) natural indices ,
..;aj,bj,...) tangent space indices .
The summation is always of the form

(left upstairs index) X (right downstairs index) ,

e.g., MV, 4. By (—)™ we mean + 1 for M =g and —1
for M =aj, analogously (—)4.

APPENDIX B: N=2 SUPERGRAVITY SUPERSPACE

The coordinates of superspace are zM=(x*,6%). The
fundamental superfields are the supervielbein V,,# and
the U(1) gauge potential B,, (Refs. 20 and 28), defined by
their transformation properties under local supertransla-
tions =M(z), Lorentz rotations L™"(z)= —L"(z), and
U(1) gauge transformations A(z):

8Vy =By ENVy +EN0y Vy A+ 1L "X, ) 5 Vi

(Bla)
8By =3, EV)By +EM3y By +0yA , (B1b)
where

L™ 0
LX) = | 1L™(0,,, )%,

To lowest order in 6 one requires
EM=(&t,e7)4+0(0) ,
A=kA+0(0),
L™=1""40(8),

e, kv,

0 88

By =(kA4,,00+0(9),

+0(),

VMA=

where (e’"#,tlj#“j, A,) are the elementary N=2 super-
gravity fields and (&*,€%,1™" L) are the parameters of lo-
cal space-time translations, supergauge transformations,
local Lorentz rotations, and U(1) gauge transformations,
respectively. On the level of the (space-time) supergravi-
ty fields,°

de™, = —ik&y™p S+ L™, +1" ", , (B2a)
A TP . mn .

Sll’uj:—]:D#ej"'ig'/’#I*‘%l Tty (B2b)

84, = _efkgflp#k + LA, +3,A . (B2c¢)

L, is the Lie derivative acting only on the world indices,
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e.g.,
L™, =(3,6)e"™,+E3,e™,

Since we assume that (e™,y, 4) satisfy the supergravity
field equations,”® the variation of the connection w,™"
and other derived quantities follows from (B2).

It is now required that the superspace transformation
law (B1) just reproduces (B2). This determines the ex-
pansion of Z¥, L™", A, and the fields ¥y, *, By in terms
of 6% and the space-time supergravity fields (and their
derivatives). Making use of the local gauge algebra, one
arrives at the results

E“:g"—ééfy“ej+%(5’7/“:11,,’)(5"7”6")4—0(03) ,
(B3a)

gei—ey X (0 kyreky, o — Lm0, 0/)°+0(6%) ,
(B3b)

L'""=1'""~é'(§fyﬂef)m#'""

—%efkgf(ﬁ’""+%e"'"”" g Vs)EF+0(6%)

(B3c)

A=kr—k (ny“ef)A legiek+0(6%), (B3d)

Vi =e",—ik(8y )~ 8y "D, 6 +0(6°)

(B4a)
j j ik gk 2
V, Y=k, +(D,*6*1+0(6%) , (Bdo)
Ve k=88 , (B4d)
o .

B,=kA,—ke Oy, —L1eM8/D,MON+0(),
(Bde)

Boj=—16"0u , (B4f)

where
D=1 #”0,581'"—%61-,‘1?"0,37# . (B5)

This combination also appears in the supercovariant
derivative

D =3, +D,*x* . (B6)

Note that V, J"’ and B «j do not vanish even in the case

of a flat background configuration. This fact is responsi-
ble for (6.4) to attain the correct flat-space limit (5.6).
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