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Complex frequencies of the normal modes of the Reissner-Nordstrom black hole are computed by
two independent methods. The first is a high-order WKB approach devised by Schutz and Will and
extended by Iyer and Will for the Schwarzschild case. The second is direct numerical integration
using a method developed by Chandrasekhar and Detweiler, thereby extending earlier results of
Gunter. The WKB results agree with the numerical ones with an error less than 1% for the lowest-
order modes. For somewhat higher orders, the numerical techniques fail but the WKB method con-
tinues to give eigenfrequencies that should be reasonably accurate.

I. INTRODUCTION

The Reissner-Nordstrom metric is a solution of the
coupled Einstein-Maxwell equations and describes a
spherically symmetric space-time appropriate for a black
hole with mass M and charge Q. The perturbation theory
for the exterior Reissner-Nordstrom geometry has been
developed in the past decade by the work of Moncrief,
Zerilli, Chandrasekhar, Xanthopoulos, ' and other au-
thors. A complete review can be found in Chap. 5 of Ref.
2.

The perturbation equations of the Reissner-Nordstrom
geometry separate (Moncrief, Zerilli ) into two pairs
of Schrodinger-type equations describing the odd- and
even-parity oscillations. They have the form

d2 z(k)+(~2 y(k))z(k) 0
2 I J J

where the ( + ) corresponds to even and ( —) to odd-
parity modes:

( ) b, 4QV' '= —1 (1 +1)r —q;+J 5 r
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where

b, =r 2r+Q, i j—=1,2 (i+j }, (4a)
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qp =3—[9+4(l —1)(l +2)Q ]'
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and where Q is the black-hole charge, 1 is the angular
harmonic index, and we have set M =e =G= l. The tor-
toise coordinate r, is related to r by the equation
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r+ and r are the radius of the outer and the inner hor-
izon of the black hole and are the solutions of the equa-
tion 5=0. Equation (5) is the solution of the following
convenient form:

dr~ r2

dr

Chandrasekhar has shown that the solution Zj ' for
the odd-parity oscillations can be deduced from the solu-
tion Z'+' for the even-parity oscillations, and thus (as in
the Schwarzschild case} it is enough to find the solutions
for one parity. We shall study the odd-parity modes.

The quasinormal modes represent the resonant nonra-
dial deformations of black holes. They are solutions of
the wave equation (1) which correspond to purely ingoing
waves at the horizon and purely outgoing at in6nity. The
spectrum of their complex frequencies is discrete; the real
part represents the frequency of the black-hole oscillation
and the imaginary part the rate at which each mode is
damped as a result of emission of gravitational and elec-
tromagnetic radiation. The complex frequencies are
uniquely determined by the mass M, the charge Q, the
angular harmonic index 1, and the degree (overtone index
n) of the mode.

There is a basic difference concerning the quasinormal
modes of a Reissner-Nordstrom black hole compared
with the Schwarzschild black hole; there is no quasinor-
mal mode which is purely electromagnetic or purely
gravitational. Instead any quasinormal mode of oscilla-
tion will be accompanied by the emission of both elec-
tromagnetic and gravitational radiation. Equation (1) in
the special case of Q=O corresponds to purely elec-
tromagnetic perturbations for Z& and purely gravitation-
al perturbations for Zz.
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In the next two sections we describe the techniques
used to obtain the eigenfrequencies listed in Tables I and
II. The Anal section provides interpretation and con-
clusions.

II. THE WKB METHOD

The WKB approximation scheme derived by Schutz
and Will has been improved recently by Iyer and Will.
They have shown it to be very efficient in determining the
lowest overtones among the complex frequencies of an os-
cillating Schwarzschild black hole (Iyer' }. The approxi-
mation gets better as the angular harmonic index I in-
creases but it gets worse as the overtone index increases.

The method is based on the similarity of Eq. (1) with
the one-dimensional Schrodinger equation for a potential
barrier. We summarize it here. Consider the scattering
of a wave incident on the barrier from r, =00 with a
given amplitude. In general, if the function V(r, ) —~ is

positive over a reasonable range of r, , then the reflected
amplitude is,comparable to the incident amplitude, while
the transmitted amplitude is very small. But in our
normal-mode problem the boundary conditions are
different: at r, = ~ the waves are purely outgoing and
for causality reasons at r, = —oo (i.e., the horizon) the
waves should be "outgoing" again. ("Outgoing" from the
potential barrier for r, ~—oo means the waves are going

I

~(n) =( Vo+A) i (n—+-,')( —2VO )'~'(1+0),

where

(7)

across the horizon into the hole. ) Thus it is expected that
in the normal-mode case the "reflected" and transmit-
ted" waves should have comparable amplitudes, with the
incident wave's amplitude zero. In quantum mechanics
this occurs when the energy (here the frequency squared)
coincides with the peak of the potential V(r, ). In this
case the %KB method gives outgoing waves with equal
amplitudes each of factor —, times the incident amplitude.
This suggests that if normal modes exist for a given po-
tential, they must exist "nearby" for complex frequencies
such that max[V(r, )]=co . In that case the classical
turning points are very close and an exact analytic pro-
cedure for continuing the solution from one turning point
to the other is available. Thus, outside the turning points
one can take the normal WKB solutions to Eq. (1), but
between the two turning points, V(r~ ) is replaced by the
first terms of its Taylor expansion about its maximum.
The solution between the two turning points then turns
out to be given as a combination of parabolic cylinder
functions. '

The matching conditions finally reduce the problem of
finding the quasinormal-mode frequencies co(n) of the
solution of a very simple equation (Iyer and Will ):

V(4)
A(n)= —(a'+ &

)
8 V" ' 2880

VIII

(7+60a ), (8a)

O(n)= 1
VIII Vlll2 V(4)

6912 Vo 384 Vo' 2304
(77+188a ) — 51+100a +

V/II V(5) V(6)
+

q
(19+28a )—

288 V," 288 V,
" (5+4a )

V(4)

(65+68a )
Vo

(8b)

Here a = n +—,'; the primes and the superscript ( n ) denote
differentiation with respect to r, of the corresponding
potential V' ' given in Eq. (2); and the subscript 0 on a
function denotes the value of the function at the point ro
which corresponds to the peak of the potential. The
derivatives of the potential have been calculated using the
algebraic computing language MACSYMA (Ref. 11).

The listing of a FORTRAN subroutine which calculates
the potential and its first six derivatives for any values of
r and the parameters is available on request from the
second author. Note, however that ro must be found nu-
merically.

The WK8 approximation method is expected to
behave badly for large n, i.e., for n &&I because higher-
order normal modes have larger imaginary parts which
seem to increase as -n/4 for larger n, at least for the
Schwarzschild black hole. ' In this case the method used
here is no longer adequate to handle the problem because
the "turning points" in the complex r plane again become
well separated, so the local Taylor expansion of V(r„)
becomes a poorer approximation.

III. THE NUMERICAL METHOD

The numerical technique that we have used is based on
that developed first by Chandrasekhar and Detweiler. '

The boundary conditions as mentioned before are that
the radiation is purely outgoing at infinity and purely in-
going on the horizon. Only complex frequencies can
satisfy these boundary conditions. This makes the nu-
merical integration of Eq. (1) very difficult, since the ratio
of ingoing to outgoing solution in each asymptotic region
falls off exponentially with r. Thus by direct numerical
integration only frequencies with relatively small imagi-
nary part can be found. Using this method Gunter'
determined the fundamental frequencies (n=0) which
have a very small imaginary part, less than 0.1. He also
calculated the next overtone (n= 1} modes, finding that
their eigenfrequencies had similar real parts and imagi-
nary part "approximately 0.3/M. '* But he did not pub-
lish these. With our root-finding algorithms (described
below), we have managed to determine these n= 1 eigen-
frequencies with reasonable accuracy, largely verifying
Gunter's remarks about them. (See Tables I and II.)
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TABLE I. The complex frequencies belonging to the eigenfunction Z2 for the angular harmonic in-
dex. (a) 1=2, (b) 1=3, (c) 1=4, and (d) 1=5.

(a)

n=O

Approximate-WKB
Re(m) Im(co) Re(co)

Numerical
Im(co)

0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=1
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=2
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=3
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.373 16
0.374 23
0.377 92
0.381 15
0.391 90
0.400 54
0.428 30

0.34602
0.347 14
0.350 98
0.35441
0.365 80
0.375 48
0.403 38

0.302 93
0.304 15
0.308 18
0.311 89
0.32401
0.335 84
0.367 18

0.247 46
0.248 81
0.253 10
0.257 23
0.270 29
0.285 50
0.32600

0.089 22
0.089 33
0.089 64
0.089 84
0.09003
0.089 84
0.085 32

0.274 91
0.275 25
0.276 09
0.276 62
0.276 25
0.276 25
0.264 34

0.471 06
0.471 61
0.472 92
0.473 74
0.473 75
0.472 74
0.456 76

0.672 90
0.673 64
0.675 44
0.676 52
0.676 34
0.674 74
0.655 79

0.373 67
0.374 75
0.378 44
0.381 68
0.392 50
0.401 22
0.429 30

0.346 71
0.348 02
0.349 42
0.350 70
0.368 95
0.413 10
0.404 93

0.301 05

0.251 50

0.088 96'
0.089 07'
0.089 40'
0.089 61'
0.089 90'
0.089 64'
0.084 27'

0.273 91
0.281 12b

0.275 45
0.273 48
0.275 02
0.290 60b

0.265 02b

0.478 277

0 705 15

0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.178 75
0.18028
0.184 91
0.189 61
0.203 94
0.223 70
0.278 67

0.878 67
0.879 60
0.881 85
0.883 14
0.882 74
0.88009
0.857 16

0.207 52 0.946 87

n=O

(b)
Approximate-WKB

Re(co) Im(co) Re(co)
Numerical

Im(co)

0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=1
0.00
0.20
0.40

0.599 27
0.600 85
0.606 88
0.61247
0.631 68
0.647 34
0.699 80

0.582 35
0.583 98
0.590 22

0.092 73
0.092 81
0.093 09
0.093 25
0.093 47
0.093 12
0.087 13

0.281 41
0.281 65
0.282 46

0.59944
0.601 03
0.607 05
0.612 65
0.631 87
0.647 55
0.700 10

0.582 64
0.583 73
0.590 22

0.092 70'
0.092 79'
0.093 06'
0.093 24'
0.093 12'
0.093 12'
0.086 98'

0.281 60b

0.281 72b

0.282 40b
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TABLE I. (Continued).

0.50
0.70
0.80
0.99

n=2
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=3
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=4
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.595 96
0.61602
0.632 34
0.68405

0.282 83
0.283 36
0.282 12
0.263 98

0.553 20
0.554 88
0.561 54
0.567 37
0.554 19
0.606 24
0.655 91

0.476 68
0.477 06
0.478 39
0.478 78
0.680 77
0.476 97
0.446 94

0.515 75
0.517 49
0.524 78
0.530 55
0.554 19
0.572 67
0.61931

0.677 43
0.67793
0.679 77
0.680 11
0.680 77
0.676 96
0.636 20

0.471 07
0.472 88
0.481 03
0.486 61
0.51300
0.532 88
0.576 40

0.881654
0.882 16
0.88448
0.884 78
0.885 37
0.88020
0.83006

(b)
Approximate-WKB

Re(~) Im(cg) Re(co)

0.594 88
0.616 30
0.629 08
0.68001

0.551 68

0.511 96

0.470 19

Numerical
Im(co)

0.283 99
0.284 04
0.281 12
0.270 17

Q 47909

0.690 34

0.915 65

(c)
Approximate-WKB

Re(u) Im() Re(a) )

Numerical
Im(cg)

n=0
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=1
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=2
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.809 10
0.811 26
0.820 12
0.828 49
0.857 19
0.88047
0.959 14

0.796 50
0.798 70
0.807 73
0.81629
0.845 61
0.869 50
0.947 35

0.773 64
0.775 88
0.785 25
0.794 12
0.824 39
0.849 34
0.924 10

0.094 17
0.094 25
0.094 54
0.094 74
0.094 97
0.094 65
0.087 98

0.284637
0.284 60
0.285 45
0.286 02
0.286 49
0.285 42
0.26446

0.478 97
0.479 34
0.480 71
0.481 60
0.481 83
0.479 81
0.442 46

0.809 18
0.811634
0.820 20
0.828 58
0.857 27
0.880 57
0.959 28

0.796 63
0.798 65
0.808 42
0.812 76
0.85044
0.888 53
1.036 64

0.772 71

0.094 16'
0.094 25'
0.094 53'
0.094 74'
0.095 00'
0.094 67'
0.088 13'

0.284 33
Q.286 37b

0.285 28'
0.285 48
0.267 13
0.282 17
0.267 68b

0.479 91
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TABLE I. (Continued).

Approximate-WKB
Re(co) Im(co) Re(co)

Numerical

n=3
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=4
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.743 31
0.745 61
0.755 45
0.764 72
0.795 92
0.822 26
0.889 94

0.707 21
0.709 56
0.72002
0.729 78
0.761 78
0.789 81
0.845 45

0.678 30
0.678 78
0.680 65
0.681 80
0.681 42
0.678 27
0.622 73

0.881 27
0.881 85
0.884 22
0.885 60
0.88443
0.88009
0.805 78

Approximate-WKB
Re(~) Im(co) Re(co)

Numerical
Im(co)

n=0
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=1
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=2
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=3
0.00
0.20
0.40
0.50
0.70
0.80
0.99

1.012 25
1.015 06
1.027 10
1.038 48
1.077 12
1.108 27
1.213 73

1.002 15
1.004 99
1.017 18
1.028 72
1.067 97
1.099 62
1.204 34

0.983 26
0.986 16
0.998 64
1.01045
1.050 87
1.083 35
1.185 02

0.957 48
0.96046
0.973 31
0.985 49
1.027 53
1.061 01
1.15490

0.094 87
0.094 96
0.095 27
0.095 49
0.095 81
0.095 49
0.088 44

9.285 83
0.286 08
0.286 99
0.287 64
0.288 54
0.287 46
0.26499

0.479 90
0.480 31
0.481 78
0.482 79
0.484 15
0.482 03
0.440 76

0.677 80
0.678 36
0.680 34
0.681 66
0.683 36
0.679 91
0.615 71

1.012 29
1.015 10
1.027 15
1.038 53
1.077 16
1.108 31
1.213 81

1.002 22
1.001 41
1.001 54
1.001 54
1.005 21
1.000 10
1.204 22

0.982 70

0.956 85

0.094 87'
0.094 96'
0.095 27'
0.095 49'
0.095 80'
0 095 49'
0.088 70'

0.285 82b

0.280 80
0.289 26b

0.289 90b

0.289 27b

0.280 34
0.272 23b

0.480 33

0.682 18b
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TABLE I. (Continued).

(d)
Approximate-WKB

Re(co) Im(co) Re(co)
Numerical

Im(co)

n=4
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.926 36
0.929 44
0.942 75
0.955 35
0.99947
1.033 97
1.11308

0.879 19
0.879 91
0.882 37
0.883 96
0.885 94
0.880 95
0.790 36

'Numerical results coming from Gunter.
New numerical results that we have found.

TABLE II. The complex frequencies belonging to the eigenfunction Z& for the angular harmonic in-
dex. (a) 1=2, (b) I=3, (c) l =4, and (d) I=5.

(a)
Approximate-WKB

Re(co) Im(co) Re()
Numerical

Im(cu)

n=0
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=1
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=2
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=3
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=4
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.457 13
0.462 50
0.479 48
0.493 25
0.536 14
0.569 76
0.692 50

0.435 83
0.441 43
0.459 28
0.473 77
0.519 13
0.554 06
0.678 94

0.402 32
0.408 22
0.427 40
0.443 01
0.492 51
0.528 40
0.657 03

0.360 50
0.366 76
0.387 79
0.404 95
0.460 35
0.496 40
0.632 15

0.309 80
0.31654
0.340 01
0.359 23
0.422 56
0.458 37
0.606 40

0.095 06
0.095 42
0.096 48
0.096 22
0.098 85
0.098 99
0.089 17

0.290 97
0.291 93
0.294 84
0.296 88
0.301 25
0.300 68
0.271 15

0.495 86
0.497 31
0.501 84
0.504 96
0.511 55
0.509 04
0.461 08

0.705 64
0.707 59
0.713 66
0.717 82
0.726 52
0.721 86
0.658 04

0.91790
0.920 33
0.926 85
0.932 96
0.943 50
0.936 90
0.858 95

0.457 60
0.462 96
0.479 93
0.493 68
0.536 51
0.570 13
0.692 75

0.436 54
0.441 55
0.467 79
0.473 66
0.526 08
0.539 65
0.653 82

0.401 21

0.095 00'
0.095 37'
0.096 44'
0.097 19'
0.098 77'
0.09907'
0.088 64'

0.290 71
0.294 24
0.291 84b

0.294 24
0.30008
0.293 28b

0.273 34

0.501 58
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TABLE II. (Continued).

(b)
Approximate-WKB

Re(co) Im(co) Re(co)
Numerical

Im(co)

n=0
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=l
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=2
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=3
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=4
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.656 73
0.664 20
0.687 12
0.705 25
0.760 36
0.802 71
0.951 89

0.641 47
0.649 14
0.672 65
0.691 25
0.747 92
0.791 51
0.940 34

0.615 11
0.623 10
0.647 57
0.666 97
0.726 22
0.771 87
0.91628

0.581 41
0.589 83
0.615 54
0.635 93
0.698 50
0.746 77
0.878 35

0.541 60
0.550 57
0.577 83
0.599 47
0.666 18
0.717 70
0.825 50

0.095 63
0.095 99
0.096 98
0.097 65
0.098 98
0.099 12
0.088 91

0.289 80
0.290 93
0.293 67
0.295 57
0.299 23
0.299 40
0.266 27

0.490 06
0.491 70
0.496 16
0.499 17
0.504 53
0.504 27
0.442 64

0.695 55
0.697 77
0.703 75
0.707 66
0.714 54
0.713 60
0.61840

0.904 26
0.907 05
0.914 52
0.91936
0.926 61
0.925 93
0.794 84

0.656 90
0.664 37
0.687 28
0.705 40
0.760 50
0.802 84
0.952 06

0.641 74
0.649 14
0.674 24
0.693 36
0.748 68
0.793 52
0.943 88

0.613 85

0.095 62'
0.095 97'
0.096 97'
0.097 65'
0.098 98'
0.099 11'
0.089 32'

0.289 73
0.288 60'
0.294 41
0.295 57
0.294 75
0.300 11
0.270 68b

0.492 05

(c)
Approximate-WKB

Re(~) Im(~) Re(co)
Numerical

Im(co)

n=0
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=1
0.00
0.20
0.40

0.853 02
0.862 52
0.890 92
0.91303
0.979 59
1.030 34
1.206 56

0.841 14
0.850 79
0.879 64

0.095 86
0.096 21
0.097 16
0.097 80
0.098 99
0.099 05
0.089 37

0.289 34
0.290 37
0.293 13

0.853 10
0.862 60
0.891 00
0.913 10
0.979 66
1.030 39
1.206 65

0.841 27
0.846 85
0.91095

0.095 86'
0.096 21'
0.097 16'
0.097 79'
0.098 98'
0.099 03'
0.089 79'

0.289 31
0.292 55
0.279 62b
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TABLE II. (Continued)

Approximate-WKB
Re(co) Im(co) Re(co)

Numerical
Im(co)

0.50
0.70
0.80
0.99

n=2
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=3
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=4
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.902 13
0.969 86
1.021 53
1.197 60

0.819 56
0.829 47
0.859 11
0.882 30
0.952 08
1.005 42
1.179 12

0.790 94
0.801 21
0.831 86
0.85604
0.928 51
0.98406
1.15020

0.756 97
0.767 67
0.799 55
0.825 02
0.900 77
0.959 03
1 ~ 10991

0.295 00
0.298 39
0.298 45
0.267 75

0.487 01
0.488 66
0.493 08
0.496 12
0.501 32
0.501 09
0.445 23

0.689 23
0.691 48
0.697 43
0.701 58
0.708 28
0.707 53
0.621 76

0.895 02
0.897 85
0.905 28
0.91053
0.918 58
0.917 22
0.797 79

0.912 91
0.970 60
1.025 24
1.204 68

0.818 73

0.295 30
0.299 92
0.298 49
0.266 75b

0.487 84

Approximate-WKB
Re(~) Im(co) Re(m)

Numerical

n=0
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=1
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=2
0.00
0.20
0.40
0.50
0.70
0.80
0.99

1.047 87
1.059 34
1.092 87
1.11875
1.196637
1.255 38
1.458 84

1.038 15
1.049 73
1.083 63
1.109 79
1.188 35
1.248 07
1.451 49

1.01997
1.031 78
1.066 33
1.093 00
1.173 30
1.234 27
1.436 43

0.095 98
0.096 33
0.097 24
0.097 83
0.098 94
0.098 93
0.089 61

0.289 11
0.290 13
0.292 82
0.294 56
0.297 78
0.297 62
0.268 53

0.485 25
0.486 90
0.491 25
0.494 03
0.499 15
0.498 49
0.446 68

1.045 91
1.059 38
1.092 91
1.11879
1.196640
1.255 41
1.458 89

1.038 22
1.076 59
1.077 76
1.075 59
1.200 00
1.250 77
1.441 24

1.01944

0.095 98'
0.096 33'
0.097 42'
0 097 83'
0.098 93'
0.098 47'
0.089 79'

0.289 10
0.285 86b

0.29003
0.291 40
0.29Soob
0.289 44
0.271 57b

0.48S 6S'
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TABLE II. (Conti nued).

(d)
Approximate-WKB

Re(co) Im(co) Re(co)
Numerical

fl =3
0.00
0.20
0.40
0.50
0.70
0.80
0.99

n=4
0.00
0.20
0.40
0.50
0.70
0.80
0.99

0.995 13
1.007 24
1.042 67
1.07002
1.152 71
1.215 23
1.41301

0.965 18
0.977 65
1.014 14
1.042 29
1.126 96
1.192 16
1.380 51

0.685 11
0.687 36
0.693 27
0.696 98
0.703 77
0.702 23
0.623 85

0.888 40
0.891 24
0.898 64
0.903 22
0.911 54
0.908 82
0.800 15

'Numerical results coming from Gunter.
New numerical results that we have found.

The Chandrasekhar-Detweiler method is to use the
transformation

ing. We integrate Eq. (10) inwards from r„=23 where
the initial values of integration have been found using
asymptotic expansions of the form

T

z~ =exp i J pjdr„ Z'- '= e
'""* ~ A "'r '-"n"

n=1
(12)

in order to transform Eq. (1) into a Riccati-type
differential equation of the form

where the coefficients A„" are given by the recurrence re-
lation'

i +co —P —V =0.2

df~ J J

The appropriate boundary conditions for P are

(10)
2i co(n —1)A—„"= [(n —1)(n —2) —i (1 + 1)]A„",

+[q —2(n —1)(n —3)]A„"2

+[n(n —5)Q ]A„"3, (13)

and

PJ —+ —cg as r ~ao

Pj.~co as r„~—0() .

(1 la)

(1 lb)

The frequencies can be found by searching the complex
co plane in order to locate values of co for which both
boundary conditions are satisfied. In this search we are
helped a lot by the fact that we have already approxi-
mately located the appropriate co by the WKB method
and thus the numerical search is much less time consum-

Z( —) ~
+ y B(i)( )n

—1 (14)

where the coefficients B„"have been determined from the
recurrence relation

where i,j =1,2 (i&j), n =0, 1, . . . , Ao' ——1, and A„"=0
for n &0. The inward integration stops near the peak of
the potential and the value of P is compared with the
one found by outward integration of Eq. (10) starting at
r, = —18. Again, this integration begins from the
asymptotic expansion

[2icor4++2r+ 2Q r++(n —1)(r+ —r )r—+ ]nB„'+)

=[i(1+1)r+ quar+ +4Q
——(n —l)(n —2)(3r+ 2r )r+ —(n —1)(8icor++—4r+ —2Q )]B„"

+[21(l +1)r+ —q —(n —2)(n —3)(3r+ —r ) —(n —2)(12icor+ +2)]B„")

+[i(l +1)—(n —3)(n 4+8icor+ )]B—„"z+[(4—n)(2ico)]B„'~ 3, (15)
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where i j =1,2 (i&j), n =0, 1, . . . , 8&"——1, and 8„"=0
for n &0. The quasinormal mode frequency is the value
of co for which the two integrations inward and outward
give the same value for the function P at the matching
point.

The failure of this numerical method to determine
higher-order quasinormal modes has also been pointed
out by Chandrasekhar and Detweiler' as well as by
Detweiler' and Gunter. ' Recently Leaver' found a
much better method to determine the frequencies of the
Schwarzschild and Kerr black hole with high accuracy,
even for frequencies with very large imaginary part. Un-
fortunately it seems that this method does not apply to
the study of the quasinormal modes of the Reissner-
Nordstrom black hole. This makes the %KB method all
the more important.

For the numerical integration of Eq. (1) we used the
NAG library' routine D02EAF which applies Gear's in-
tegration method for the search for quasinormal mode
frequencies on the complex co plane, Powell's hybrid algo-
rithm for root search in nonlinear equations was used via
the NAG library routine CO5NCF (Refs. 18 and 19).

The only check that we have on our results is by com-
paring our n= 1 and Q=O with the corresponding results
of Leaver's method. The error seems to be usually l%%uo

and we believe that for Q~O also it will be of the same
order.

IV. CONCLUSIONS

Tables I and II contain the results of our two methods
plus earlier results by Gunter. ' What is apparent from a
first glance is that as the charge of the black hole in-
creases the real part of the frequency also increases; in
the extreme case (Q =M= 1) it is about 50% greater than
the corresponding frequency of the uncharged black hole.

The real part of the frequency seems to follow the same
pattern as for the uncharged black hole: as the overtone
number n increases, Re(co) decreases towards zero. For
the Schwarzschild case, Leaver' showed numerically
that the mode for n=8 has purely imaginary frequency.
Chandrasekhar showed that this mode, which is an
algebraically special perturbation for which an exact
solution of the perturbation equations exists, also exists
for the Reissner-Nordstrom case. Our results cannot es-
tablish its existence, but the decrease we see in Re(co) is
indicative.

The imaginary part of the frequency, which represents
the damping of the oscillations, changes much less than
the real part and shows a maximum for Q=0.7 or 0.8. In
general it increases as the order n of the mode increases
and that is the reason why for larger n both the numeri-
cal method and the approximate WKB method fail to
determine the higher modes.

A well-known property' ' ' ' of the quasinormal mode
frequencies of the Schwarzschild black hole, that the
complex frequencies are symmetrically distributed about
the imaginary axis, is also present in the Reissner-
Nordstrom case.

Comparing the approximate method we used with the
one by Ferrari and Mashhoon ' we find that for modes
we can calculate accurately numerically, our WKB
method gives errors roughly an order of magnitude small-
er than theirs. This is not surprising, as the approximate
potential they used in order to get semianalytic results
does not fit the true potential beyond lowest order in l.
See Schutz and Will and Iyer and Will for further dis-
cussion of this point.
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