
PHYSICAL REVIEW D VOLUME 37, NUMBER 11 1 JUNE 1988

Realistic pseudoscalar-vector chiral Lagrangian and its soliton excitations

P. Jain and R. Johnson*
Physics Department, Syracuse University, Syracuse, )Ver York 13244-1130

Ulf-G. Meissner
Center for Theoretical Physics, Laboratory for Hue!ear Science and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

N. W. Park and J. Schechter
Physics Department, Syracuse University, Syracuse, New York 13244-1130

(Received 13 November 1987)

A reasonable low-energy chiral Lagrangian of vectors and pseudoscalars involves three a priori
unknown coefficients for terms proportional to the Levi-Civita symbol e„&. We argue that these
cannot, from a theoretical standpoint, be reliably determined by consideration of electromagnetic
processes. Hence we use purely strong-interaction processes which enable us to determine two out
of three of these. We examine the nucleon as a soliton excitation in the model and find that adjust-
ment of the third parameter does not greatly change the, in most respects accurate, description of
the nucleon obtained in a previous treatment by Meissner, Kaiser, and Weise. The paper includes a
new and careful formulation of the addition of electromagnetism to the full Lagrangian.

I. INTRODUCTION

The Skyrme model' provides an appealing picture of
the nucleon as a solitonic excitation in a chiral-symmetric
Lagrangian of m meson fields. The recent point of view
about this model is that the underlying theory of QCD
should organize itself at low energies to give an effective
chiral Lagrangian constructed out of the fields associated
with the low-lying meson multiplets. There is little argu-
ment about which are the low-lying mesons; experiment
and the quark model combine to tell us that they
comprise the pseudoscalar and vector rnultiplets. One

may eventually want to include additional particles but it
seems very reasonable to proceed one step at a time.

What then is the chiral Lagrangian of pseudoscalars
and vectors to proceed with? Although interesting at-
tempts have been made to derive one from QCD, that
work still seems to be in a preliminary stage insofar as
finding the actual numerical values of the parameters is
concerned. At present it seems most reasonable to
determine the parameters in a general chiral-symmetric
Lagrangian from experiment. This is not easy for those
terms proportional to the Levi-Civita symbol e„&. We
remind the reader that these terms, on one hand, are cru-
cial in stabilizing the soliton (without a need for introduc-
ing the "Skyrme" term) and, on the other, naturally
occur when one talks about the Wess-Zumino terms and
vector-meson dominance for certain electromagnetic in-
teractions of the mesons. The subject of finding these
terms and investigating their effect on the solitons is by
now a fairly mature one. It is the topic of a very recent
comprehensive review (including an announcement of
the present paper) by one of us (U.-G.M. ) which should
be consulted for adequate references to the many interest-
ing articles in the field.

In the present paper we shall start from a general
chiral-symmetric Lagrangian of pseudoscalars and vec-
tors written down in Ref. 4 in which there are three un-
known constants c, ,cz, c [3see Eq. (2.13)] specifying the e
terms. We then apply constraints from strong-
interaction meson reactions to determine them. While it
is tempting to try to determine the e terms in the strong
Lagrangian by assuming some kind of vector-meson dom-
inance for electromagnetic meson reactions, that pro-
cedure is not reliable in the sense that, taking into ac-
count the non-Abelian anomaly, the low-energy elec-
tromagnetic processes can be correctly fit regardless of
the values of c&,cz, c3. The relevant strong processes are
the decays co~3m. , /~3', and P —+t.rp. With the stan-
dard model for co-P mixing they enable us to determine
the coefficient c2 in (2.13) of the chiral-invariant term
whose leading piece is cope as well as the linear combina-
tion of all three chiral invariants which leads to a contact
co3tr piece. This disentangling is made easy because the P
meson is heavy enough to decay into n.p while the co

meson cannot do so. We are left with one undetermined
parameter [c3 in (2.13)] in the strong Lagrangian.

In a similar model to that of Ref. 4, proposed by
Fujiwara et al. there appears to be even more arbitrari-
ness in the e terms. We show, however, that the two
models are identical (this had already been shown for the
non e terms ) when account is taken of charge-
conjugation invariance. We also give a new and perhaps
simpler way to introduce electromagnetic interactions
into the strong chiral Lagrangian.

Next we study the nucleon as a soliton excitation in
this model. The physics of the present model is actually
rather similar to that of the "complete model" reviewed
in Ref. 7. In that model it was observed that (keeping al-
ways the pion decay constant F„equal to its physical
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value) the properties of the nucleon would be significantly
improved over their values in the original Skyrme model.
The main problem that the "complete" model (and other
soliton models) have is that the nucleon mass is predicted
too high by several hundred MeV. The "complete" mod-
el has cop~ and co3m vertices roughly comparable to the
present ones, fixed by a plausible "gauging" approach.
The advantage of the present model is that it is chiral in-
variant without the addition of extra fields. It also con-
tains the undetermined constant c& which might be ad-
justed to try to lower the nucleon mass. We have studied
this possibility very carefully and find that there does not
seem to be any "magic" value of c& which brings the pre-
diction into perfect agreement with experiment. The fit is
about the same as the "complete" model. It appears that
the "fine details" of the e terms do not make a great deal
of difference in the prediction of the nucleon's parame-
ters. On the other hand, we may turn the situation
around and use the requirement of an adequate fit to the
soliton to find the allowed region for the coeScient c3.

Section II contains a brief review of the strong La-
grangian of Ref. 4 with some additional remarks. In Sec.
III we add electromagnetism in a new way, show why
electromagnetic processes cannot be used to determine
c i cz c3 and compare with the literature. Section IV
discusses the partial determination of c, , c2, c& from the
strong decays of the co and P mesons. A related Appen-
dix briefly discusses the co-P mixing angle. In Sec. V we
give the U(2))& U(2) reduction of the e terms, obtained by
dropping the third flavor. This is in preparation for dis-
cussing the classical soliton, whose equations are formu-
lated in Sec. VI. Section VII contains a detailed discus-
sion of the numerical results for the soliton properties
and comparison with the "complete" model. The
outlook is surveyed in Sec. VIII.

The vector-meson nonet matrix p„, which also transforms
nonlinearly, is related to auxiliary linearly transforming
"gauge fields" A„and A„"by

(2.3a)

(2.3b)

r= f(Z, +Z, )d x+I, . (2.5}

The first piece is a gauge-invariant kinetic term for the
vectors:

X i
————,'Tr[F„„(p)F„„(p)],

F&„(p ) =B~ —B~„—ig [p„,p„] .
(2.6)

[Note that we are using the "x4 ict" me——tric convention,
the vectors are normalized so that p=(1/W2)r p
+(1/&2)la+ . ) The second piece breaks the strong
gauge invariance; written in terms of the auxiliary fields it
is simply

X = —m Tr(A 3 +3 "3")+8Tr(A UA "U )

(2.7)

where mo and 8 are two constants. It is convenient to
express g, m 0, and 8 in terms of three "physical" quanti-
ties, g „,m z, and k:

where g is a gaugelike coupling constant. From the
above we see that A „and A „are related by

A =UA U+ —UB UP P g P (2.4}

There are three main pieces in the action

II. STRONG-INTERACTION LAGRANGIAN
OF PSEUDOSCALARS AND VECTORS

g „„mv(1+k) mv(1 —k)g=, mo=
k 8k 4k

8= (2.8)

2l
U =exp F„ (2.1)

A chiral-invariant Lagrangian constructed out of fields
belonging to the pseudoscalar and vector-meson nonets
can encode two crucial features of low-energy strong-
interaction physics: (i) the spontaneous breakdown of
chiral symmetry and (ii) the experimental fact that the
pseudoscalars and vectors are the lowest-lying multiplets
(S-wave bound states in the quark model). Many
different approaches can be used to construct such a La-
grangian. In this section we shall briefly review the La-
grangian presented in Ref. 4 and make some further re-
marks.

In this model the 0 nonet ((} transforms nonlinearly
under chiral U(3) &(U(3}. The matrix with a linear trans-
formation property is [note that in the usual isospin
notation $=(1/&2)r n.+ . . ]

2 2
g p.P.

2my
(2.9)

F2
"(1+k)Tr(B„JB„))

F2
(1—k)Tr(g B„g gB„g) . (2.10)

The identification of m z and g is straightforward from
(2.10). Since we have in mind later on restricting our at-
tention to the nonstrange particles, let us choose parame-
ters so as to fit the p(770) meson. Then

Using (2.8) and (2.9) as well as (2.3a) and (2.3b) we reex-
press (2.7) as

F2
X,= —

—,'mvTr(p~„) —i Tr[p„(B„g' +B„g g)]

where F„=132 MeV. It is convenient to define mv=(769+3) MeV, g „=8.65+0. 16,
k =2.20+0. 10 .

(2.11)

g= U'~ =exp F„ (2.2)
The statement k =2 is the Kawarabayashi-Suzuki-
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Riazuddin-Fayyazuddin (KSRF) formula. Evidently, it is

reasonably well satisfied by experiment, but not required
by the present model.

The third piece in X contains terms proportional to the
antisymmetric symbol e„&. Only in the last few years
have these terms been studied intensively. It is very con-
venient to use the notation of differential forms to write
such terms compactly. A left-handed nonet one-form

which we need is

a=(B„U)U 'dx„=dU U (2.12)

(See Ref. 8 for a more detailed discussion. ) Using this
language the action I 3 is [note that a misprint of a factor
of 2 in the last term of (3.6) in Ref. 4 has been corrected
here]

I 3=1 wz( U)+ fTr ic, ( AL a )+c2(d ALa AL —AL ad AI + Al a AI a)+ c3 2—iAI a+ —AL a AI a3 1
(2.13}

—iN,
I wz(U)= f Tr(a ),

240~'
(2. 14)

where the integral is over a five-dimensional manifold
whose boundary is ordinary Minkowski space.

It may be of some interest to show how (2.13) is ob-
tained. The first term I wz( U) mocks up the non-Abelian
axial anomaly with pseudoscalar fields. The c, , c2, and
c3 terms are merely chiral symmetric they can, as we will
see in Sec. III, be suitably gauged with external (e.g. , elec-
tromagnetic) gauge fields so as to make no contribution
to the non-Abelian anomaly. Their peculiar form can be
seen to arise as follows. Note that the ordinary Skyrme
model of pseudoscalars alone can be written completely
in terms of a. Let us enumerate the possible e terms
(four-forms) which may be constructed out of a as well as
AL. First we see that Tr(a )=Tr(aa }=—Tr(a a)=0.
Similarly Tr( AL ) =0. On the other hand, Tr( AL a )

gives the c, term which is both P and C invariant. A
term such as Tr( AL a ) is not included because it is odd
under parity. This may be checked by using the follow-

ing mnemonic for the parity operation:

P: —Al ~+ A~ ——U ' AL+ —a U,
g

where c, , c2, c3 are constants whose values remain to be
determined. I wz(U) is the Wess-Zumino-Witten term of
pseudoscalars:

and vectors based on a "hidden symmetry" was presented
by Fujiwara et al. That Lagrangian appears to contain
more arbitrariness in the e sector than the present one.
However, those authors did not take C invariance into
account. When that is done, their general model becomes
identical to ours.

We have not written the terms which break chiral sym-
metry nor the SU(3)-breaking terms. Furthermore, terms
involving glueball fields to mock up the U„(1) anomaly
[giving the ri'(960) a mass] and trace anomaly can be add-
ed. '

The e terms in (2.13) play an important role in decays
of vector mesons and as a stabilizing piece (which can re-
place the Skyrme term) in the nucleon-as-soliton picture.
One can try to estimate the values of c &, c2, and c3 by as-
suming vector-meson dominance in some form but that
procedure, as we shall discuss in Sec. III, is not very com-
pelling in the present approach. It seems safer to try to
determine c&, c2, and c3 directly from strong-interaction
physics. We shall explore this point of view in later sec-
tions, assuming that the Lagrangian (2.5) is an adequate
approximation at low energies. As a preliminary,
we would like to extract the two terms in (2.13)—the vector-vector-pseudoscalar and the vector-
(pseudoscalar) ones —which can be most readily related
to experimental processes. Using (2.1), (2.2), (2.3a), and
(2.12) we eventually find

r3 f [ g~~&Tr(dp—dpi')+ih Tr(pdgdgdg)]+

d~ —d, a~P= U 'a U, U~U

(measure)~ —(measure) .

(2.15)

where

(2.17)

Neither Tr( Al a ) nor Tr( AI a AI a ) goes into itself under

parity but the linear combination in the c3 term does.
Next consider terms with the derivative operator. Since
da=a, nothing new is obtained without dAL. The c2
term is the parity-invariant combination involving a, AL,
and d AL. This exhausts the possibilities although extra
derivatives can still be added in a more trivial way {not
involving the d operator). C invariance of the terms may
be checked with the mnemonic:

C: A I ~—A~, a~f3, U~U (2.16)

A little while after the Lagrangian (2.6) + (2.7) + (2.13)
was proposed, an interesting Lagrangian of pseudoscalars

4lc2
g VVtt F

4i 2c)—
F

2C2 C3

g
(2.18)

To avoid confusion we rewrite (2.17) explicitly with
~F234=+ ~:

I =e„,pf d x[—ig„~Tr(B~„B~Q)
—h Tr(p„B„QB QdQ)]+

In an earlier approach, an attempt to uniquely deter-
mine the e terms was made based on extending Sakurai's
idea. ' Sakurai postulated that the vector mesons should
be introduced by treating them as "external" gauge fields
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3 2

gvvy =F„gv—vy= =1 4~ h =FP =—0 1P 7T7T

16~
(2.19)

when the axial-vector mesons are retained. On the other
hand, when the axials are eliminated it is important to
note that the contact term is four times stronger, i.e.,

2

mg „I
(2.20)

as given by Eq. (3.4) of Ref. 4. Rewriting the coupling of
the m meson to the topological baryon current, i.e., the
co~3m contact term, as 11

(2.21)

we have

(rather than composite degrees of freedom) and gauging
the strong Lagrangian. The generalization suggested for
the e terms is to "gauge" the Wess-Zumino term I wz( U)
with the replacement

wZ( AL AR ) wZ( AL AR )

This procedure gives a good phenomenological picture
(as does Sakurai's original postulate} but suffers from the
fact that it breaks chiral symmetry unless additional
terms are introduced. For comparison, however, it pre-
dicts [see (5.7) and (7.2) of Ref. 8]

We specialize to electromagnetisrn by the replacement

hBL R ega, (3.3)

where Q= diag( —', , ——,', ——', ) and A is the photon field. Of
course, kinetic terms

,'Tr—[F„„(BL)F„„(BL)+F„(BR)F„,(B„)]

with

I wz( U) ~t wz( U BL»R ) (3.4)

where I wz(U, BL,BR ) is given by Eq. (4.18) of Ref. 8.
Thus we can mock up the non-Abelian anomaly just by
requiring all the other terms in the "gauged" I to be ex-
actly invariant under (3.1) and (3.2).

First consider the terms of Xz as given in (2.7). Since
there are no derivatives in (2.7), reference to (3.1) and
(3.2) shows that it may be made locally gauge invariant
by the simple replacement in (2.7):

F„,(B, ) =a„B„' ag—L ih [B—„',B„'»

must be included. It is necessary that the local variation
of what we get by "gauging" I in (2.5) with the fields
BL R reproduce the non-Abelian anomaly. Now this is
taken care of by gauging I wz( U) as pointed out by Wit-
ten:"

3m h

v'2 (2.22)
h

~L, R ~ ~L, R
—BL,R (3.5)

For the linear model (2.19) this leads to p= —1.9, and
p=8.3 for the nonlinear model (2.20). Insisting on the
KSRF relation in Eq. (2.20), we have p=8.7 as used in
Refs. 7 and 12.

III. ADDITION OF NONSTRONG GAUGE FIELDS

I
6AL, R [ AL, R ~+L, R ] +L,R (3.1)

where EL R
———EI „.For generality, rather than just the

photon, let us introduce a whole U(3)XU(3) multiplet
BL R of nonstrong gauge fields with a coupling constant
h. BL R transforms just like AL R'.

It is clearly of great practical importance to introduce
electromagnetic interactions. When doing so, gauge in-
variance must be respected. For the terms which result
from gauging X2 an approximate vector-meson domi-
nance will automatically arise. Hence it appears to be
reasonable to adopt the viewpoint (which we shall do
here) that there is no need to impose vector-meson domi-
nance as an explicit assumption. In particular, this
viewpoint will be taken for the terms corning from the
gauging of I 3.

Under an infinitesimal local U(3) XU(3) gauge transfor-
mation, the "strong" gauge fields of (2.3a) and (2.3b)
change by D "(U)=dU igALU+—ihUB„,

D' '(U)=dU —ihBLU+igUAR .
(3.6)

From these we may construct two left-handed one-forms:

a, =(D" 'U) U =a ig AL +i—h UBR U

a2 (D' 'U)U =igAL ——ihBL, — (3.7)

This prescription yields Eq. (12) of Ref. 6 when restricted
to electromagnetism. There it is noted that the model
predicts the pion charge radius to be &3k /m which is
actually slightly better [using k as given by (2.9)] than the
value &6/m with exact vector-meson dominance. For
k+2, the photon couples to the pion partially through
the p and partially directly. Of course, the difference be-
tween the two predictions for the pion charge radius is
rather small but it illustrates that there is no great loss in
not assuming exact vector-meson dominance.

Next let us turn to making the c, , c2, and c3 terms lo-
cally gauge invariant. This may be easily done by build-
ing up objects out of field-strength tensors such as
F( AL )=dAL ig AL, etc. , —and suitable covariant deriva-
tives of the field U. In addition to the two obvious
covariant derivatives dU ig At U—+ig UAR and dU
—ihBL U+ihUBR there are two "mixed" ones which we
choose to employ

I
[BL,R ~+L, R l

h L, R (3.2} where (2.4} was used in the last line. We may also con-
struct two related right-handed one-forms:
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pi ——U D'"U=U a, U, p2
——U D' 'U=U a2U . (3.8)

The objects just introduced have the following properties
under parity reversal and charge conjugation:

P: a, ~P2, a2~P„F( AI )~F( AR ), etc ; . (3.9a)

C: a, pz, a2 p, , F(AI ) —[F(AR)], etc.

(3.9b)

We now can list P, C, and locally gauge-invariant four-
forms:

Tr(aiazaia2) =Tr(PiP2PiP2)

Tr(a, a2 —a2a, ) =Tr(P,P2 —P2P, ),
Tr[F( AI )[ai,az] j =Tr

IF�

( AR )[Pi,P2]j,
Tr[F(BL)[ai,ap]+F(BR )[Pi,P2] j .

(3.10)

When the nonstrong gauge fields BL z are set to zero it is
easy to see that the first three terms in (3.10) give three
linearly independent combinations of the c&,c2,c3 terms
in (2.13) and the fourth gives zero. Thus a suitable
"gauging" of I 3 to introduce electromagnetism in har-
mony with the anomaly is to replace I 3 by

I wz( U, Bz,BR )+fTr
C) 3 C2

(aiap —alai)+ . IF(AL, )[ai,az]j+
g lg

C) C2 C3
Tr(aia2aiaz)

+di IF(BL, )[ai az]+F(BR )[pi p2]j (3.11)

where di is a new constant. Equation (3.11) reduces to
(2.13) when we keep only the strongly interacting fields.

There are three kinds of electromagnetic interactions
of 0 mesons, 1 mesons and photons arising from (3.11)
which can be related to present experiment. These are
the types ~ ~yy, y'm~2m, and p~m. y'. The first two
are predicted by famous low-energy theorems which fol-
low from the non-Abelian anomaly and hold by construc-
tion in (3.11). Specifically, m ~yy and ye~2m receive
their contribution from I wz(U, BL,BR). The remainder
of the terms in (3.11), which are all gauge invariant under
the full chiral group, make no contribution. This is to be
expected since historically' one predicted a vanishing
n ~yy amplitude (and related ones) when no anomaly
(i.e., exact local chiral-gauge invariance) was present. On
the other hand, there is no low-energy theorem for pro-
cesses of the type palmy. Suppose one fixes c, , c2, and

c3 from the strong interactions. Then, since the di term
contributes to penny, we can a.lways choose d, (which
clearly cannot be determined from the strong interac-
tions) to fit the experimental value of palmy. Thus,
strictly speaking, the electromagnetic processes will not
enable us to practically obtain information about
C),C2, C3.

It may be interesting to write the relevant pieces of the
d

&
term and to verify that it makes no contribution to

n ~yy and to ym~nm in the zero-energy limit. The d,
term expands out to

d, fTr — (QdA QAdg)+ (QdA[p, dg])

Si [QA(dg)']+F
(3.12)

For the amplitude for n(p)~y(. e, k)+y(e', k') the first
term of (3.12) contributes

16ed
&

3 v'2F pvaPk p, Gv~aP P

This is exactly canceled by the contribution from the
second term which gives m ~y+p or ~ ~y+cu to be
followed by p ~y or co ~y as extracted from (2.7)
"gauged" according to (3.5). The amplitude for
y(k, e)+a+(p)~a+(p'')+n (q') receives a direct contri-
bution from the third term of (3.12) and s, r, and u p-
meson pole contributions utilizing the second term of
(3.12):

8di
+I q p&p

2
m&

2+ 2 2+
m +(k+p) m +(k —q) m +(k —p')

This clearly vanishes as the four-momenta go to zero.
For finite momenta there are some corrections which
might in the future be used, together with the corre-
sponding pieces from the other parts of (3.11), for a more
accurate comparison with experiment.

Finally, let us compare with the hidden symmetry
model of Fujiwara et al. In that approach one writes

U =g g„and eventually makes the gauge choice

(L
——gR ——(. (Note that our definitions differ slightly from

those of Ref. 5.) Covariant derivatives are defined as

D(L =dgL, +&ggl.p ihBI gL, —

DkR dkR +igsRP ihBRCR
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from which we may construct the one-forms

&L 4.Dt. kL &R 4DR kR (3.13)

(These correspond to —aL and —a„ in the notation of
Ref. 5.) Notice that at and an't in (3.13) are chiral invari-
ants which transform nontrivially under the hidden-
symmetry group. This may be contrasted with our o.

&

and a2 in (3.7) which transform nontrivially in the left-
handed chiral space. Nevertheless, it is easy to verify
that once the gauge choice gt ——gz

——g is made to elimi-
nate the extraneous fields in the hidden-symmetry ap-
proach, (3.13) is simply related to (3.7) by

co co& + ettp&, P P&
—end& (4.2)

O. O55+O O3O (4.3)

It is clear that there is a rather large uncertainty in this
determination. One may look for confirmation of this
value by determining e "experimentally" from the formu-
la

where e is the cu-P mixing angle and the subscript p
denotes physical. The conventional determination of e is
based on the analysis of the SU(3) mass splitting in the
vector-meson nonet. As reviewed in the Appendix one
gets

&t, =0 &24 (3.14) (4.4)

Furthermore, one has F(p)=g F( At }g. Since the trace
of a string of matrices is invariant if each matrix is sub-
jected to a similarity transformation, each of our invari-
ants in (3.10) should be in one-to-one correspondence
with one of the invariants in (4.5) of Ref. 5. For example,
Tr(a, azaia2)=Tr(azatazaL). However, we have no
analogs of their terms X3 and X~. Using (3.9b) (or their
analogs) one may see that these terms are both odd under
C and hence must be discarded. (Actually, when the non-
strong gauge fields are set to zero X5 vanishes and X3 be-
comes a total divergence. ) Their term X6 should be
modified to look like the last of (3.10) to make it C invari-
ant.

IV. DETERMINATION OF PARAMETERS
FROM STRONG-INTERACTION EXPERIMENTS

where
/ p& f

and
f p„f are the final particle center-of-

mass momenta in the p and co decays [r(.cu~ir y)
=(0.853+0.077} MeV, I (P ir y) =(5.53%0.72
X 10 ) MeV. ] This yields

i
e

i
=0.053+0.005, (4.5)

in agreement with (4.3) but having a considerably smaller
uncertainty.

The analysis of this section uses the mpcu and co~ ver-
tices given in (2.17) and (2.18). Hence we can determine
only cz and the linear combination of c, , c2, and c, called
h. The co(p)~n+(q+)+ir (q )+n. (qo) rate is calcu-
lated from a contact diagram as well as three p-exchange
diagrams to be

x f dE+dE [(q ) (q+)

(4.6)
+ g vv@pew

1

(p —q')2+(m i I /2)—

where I is the p-meson width. Carrying out the numeri-
P

cal integration in (4.6) gives us following ellipse in the

gvvy=gvvyF "="F'p
r(~ 3ir)=8.78+0.32 MeV,

r„,(P 3ir) =0.63+0.08 MeV,

(4.1a)

(4. 1b) I (co~vr+sr mo)

In the previous section we have pointed out that the
relevant electromagnetic processes can be fit regardless of
the values of c, , c2, and c3—the parameters of the e
piece of the chiral-invariant Lagrangian. Hence the most
reliable way, from a theoretical point of view, to obtain
information about c&,c2, c3 is to restrict our attention to
strong-interaction processes. There are two relevant de-
cays which we will study: co~3rr and $~3ir. The relat-
ed processes of the form K*~Kn.m have not been fully
measured and would also involve us in details of SU(3)-
symmetry breaking which we wish to avoid. The present
experimental data are' '

r(((
1 „,(/~3' }

(4.1c)

Note that I „,($~3vr) includes both the P~rrp and
$~3ir pieces, added incoherently. The separate decay
co~pm. is, of course, not energetically allowed.

It is important to note that the decays $~3tr and
/~per violate the Okubo-Zweig-Iizuka (OZI) rule. This
rule holds by construction in our Lagrangian since every
term is a single trace in U(3)-flavor space (rather than a
product of traces). As usual, we will assume that these
decays go because the ar field—:(p»+p22)/&2 contains a
small admixture of the physical P:

=8.78 MeV

=(6.05h +4 olg vvy 9.29gvvyh ) MeV .

(4.7)

Evidently, any choice of gvv& and h satisfying (4.7) leads
to a fit for the co decay width. A diferent ellipse can be
constructed for the $(1020) decay into m+vr m . The P
case difters in a useful way from the cu case in that for the

the mp modes may be observed separately. The
cleanest model for I „,(/~3m), and the one which is

used in the analysis' of the experimental data, is to add
incoherently the widths into mp and 3m. This yields
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I „,(P~~+m m ) = I (P~n p)+ I (/~3m }, (4.8a) gvvy=+1. 9 h =+0.4 (4.1 1)

I
~

I 'gvvy
I
&

I

'
r(y

2m
(4.8b)

9m~ IeI h
&/~3m ) =

192m

x E+ E- q- ' q+ '—q+ q- '

(4.8c)

where

I

K
I

= I[1—(m —m„12™~]

X[1—(m +m ) /m&]j'

and the q
— are defined as for (4.6). Equations

(4.8a) —(4.8c) lead to the following ellipses in the gvv&-h
plane:

+n n ).=0.63 MeV

E
I

(74.5h +56.2g vvy) MeV

(4.9}

We see that solution (4.11} is, as expected, qualitatively
similar to those obtained —(2.19) and (2.20)—from
"gauging" the %'ess-Zumino term in reasonable ways.

The accuracy of the above determination is clearly a
crucial issue. It is possible that other contributions (e.g. ,
radially excited vector mesons' ) to these processes exist.
However, we are attempting here to fit the process com-
pletely within the frainework of the Lagrangian (2.5).
Considering other sources of error, the uncertainties in
the co,p, P masses and widths have been found not to play
an important role. For example, the e6ect of putting the

p meson width to zero in (4.6} is not important. The
main source of error appears to be the uncertainty in the
co-(' mixing angle e. In Table I we show the dependence
of the predicted gvv& and h as

I
e

I
is varied slightly

around its central value. From Table I we see that gvv&
suffers a small percentage change as

I
e

I
varies while h,

though clearly small, changes more. However, the rela-
tive g v~&-h sign is clearly positive in the present deter-
mination. This sign corresponds to the p pole and con-
tact term contribution to co~3m interfering destructively
with each other.

As far as we know, this is the first time an attempt has
been made to determine the parameters of the minimal
pseudoscalar-vector chiral Lagrangian from strong-
interaction processes alone.

h /gvvy I

&0.43 (4.10)

Thus we have a unique "central" solution up to a com-
mon overall sign:

The ellipses (4.7) and (4.9) are illustrated in Fig. 1 for the
"central" choice

I
e

I
=0.053. It is seen that there are

four possible intersections. Two of them, however, may
be ruled out from the experimental result (4.1c) which
translates to the condition

V. U(2) REDUCTION

The formula (2.13) for the e terms in the action
[wherein Az should be replaced by the expression in
(2.3a)] is actually a fairly complicated one. A
simplification can be made, however, since we wish to
study the ordinary nonstrange baryons as soliton excita-
tions. We simply delete all reference to the strange-quark
index, decreasing the symmetry of 1 3 to chiral
U(2))&U(2). Then the vector-meson nonet is replaced by
the 2)(2 matrix

DETERMINATION OF gvvy AND h co 1~=
~Z

'+ ~2'~ ' (5.1)

with the usual isospin notation. Similarly the meson-
nonet field P is to be replaced by

2.0 3.0 4.0
Qvvg TABLE I. Predicted values of gvv4, and h for various values

of the co-P mixing angle
I
e

I
. (Note that gv„& and h may both

be multiplied by a minus sign. )

fVVP

FIG. 1. Determination of the parameters gvv4, and h from the
decays co~m+mmand /~~+sr 7r

. for the co /mixing angle-
I
e

I
=0.053. Both decays define an ellipse in the gvv&-h plane

with four intersections. Two intersections are ruled out by the
relative branching ratio I (/~pe)/I „,(/~3~). The two al-
lowed intersections give g«& and h up to an overall minus sign
(g vvy =+1.9, h =+0.4 for this ~alue of E ).

0.045
0.050
0.053
0.060
0.065
0.070
0.080

2.2
2.0
1.9
1.7
1.6
1 ~ 5

1.3

0.7
0.5
0.4
0.2
0.1

0.0
—0.15



37 REALISTIC PSEUDOSCALAR-VECTOR CHIRAL LAGRANGIAN. . . 3259

CC
11+v'2 v'2

(5.2) p =Ak+dkk'=0+ F
In this formula, "g" is a mathematical isosinglet pseudo-
scalar which does not have any ss component. It is not
expected to play as important a role as the ~, p, and co

fields in the study of the nucleon. This is based on one' s
intuition from nuclear physics wherein the m, p, and co

provide (together with a possible scalar, which may be ac-
commodated in the present formalism as discussed else-
where)' the main contribution to the nuclear force. '

For our present purpose it is convenient to explicitly
separate the g by setting

(5.4)
v =( d( d—gg"=g dg d—fg

wherein p=g dg+dgg . These objects enter our for-
mula for I 3 naturally since g ag=p and g At (
=p i (p—+u)/2g. Under parity p~+p and v~ —u.

This means that the expansion of p contains an odd num-
ber of pion fields and has negative G parity while v con-
tains an even number of pion fields and has positive G
parity. These properties make it very easy to accomplish
the U(2} reduction of I 3. An identity which we use is

Up +pu = —2dp . (5.5)
g= gexp, (=expv'ZF. ' v'ZF.

and to define the one-forms

(5.3)
Making the indicated substitutions and using (5.5), I 3 be-
comes, in the two-flavor limit, the integral of the four-
form:

l

v'2
C2 C3 C3 l C2 C3

tu Tr(a )+2czdtu Tr(pr p)+ cu Tr(dpi' p) — + cu Tr(dpu)
2g g 2 g 2g

C2—lC3 1
tu Tr[(r p) p]+ — dg Tr i c& ——

2 2F„
C3

2g

1—up +v'2iv pp

+leg 2d (T p)(r p')+
~

udu + 2cz+ —c3 iu(r p) + — r pu
1 3 . z 1

—2&c3 — —(r p} + u
i 3 1

v'2 4g'
(5.6)

It is interesting to compare the expansion of this formula
in terms of the pseudoscalars with (2.17) and (2.18). The
first term of (5.6) starts as totr and indeed its coeScient is
proportional to h. Similarly the second term of (5.6)
starts out as epact and its coefficient is proportional to
gvv&. The third, fourth, and fifth terms of (5.6) start out
as ~ p~, ~~, and cop m. , respectively. Hence these three
terms are not easily "measured" by observed meson reac-
tions. The remaining terms in (5.6) are all linearly pro-
portional to dg and also are difficult to "measure" in ob-
served meson reactions. These q terms will not contrib-
ute when we make the usual K=T+J=O static parity-
invariant hedgehog Ansatz for the nucleon because they
do not contain the field co„which is the only one with a
needed nonzero fourth component in the static limit.
The g terms may, however, make some contribution to
the "collective quantization" of the soliton, but that is
beyond the scope of this paper.

Note that the "minimal" model discussed in Ref. 12
corresponds to the present Lagrangian with c2 ——c3 ——0.
The complete model discussed in Ref. 7 is not a special
case of the present one since it not chiral symmetric
(without additional terms). However, it has e terms with
coefficients g~v& and h which are numerically similar to
the ones we find. To the extent that the leading terms in
the pseudoscalars determine the structure and behavior
of the soliton solutions, the present model will be similar

to the complete model. In the present case, however, we
also have the freedom to arbitrarily adjust c3. The natu-
ral question is whether this freedom can improve the pre-
dictions of the nucleon s properties. This will be investi-
gated in the following sections.

VI. SOLITON SOLUTIONS

U(r) =exp[i' rF(r)], . (6.1a)

g(r) =exp[is. rF(r)/2], (6.1b)

tu„(r ) =i tu(r)5„4, (6.lc)

G(r)
p (r)=~i rk &—&2gr

(6.1d)

where JM = 1,2,3,4 is a Lorentz index and a = 1,2,3 refers to
isospin. With the static Ansatz (6.1a) the baryon-number

The action (2.5) describes both mesons and solitons,
the latter being finite-energy configurations with nonvan-
ishing winding number B =f d r Bu(r) Here, we ar.e in-

terested in investigating the baryon number B=1 sector.
For that, let us specialize to the following hedgehog
Ansatze:



3260 JAIN, JOHNSON, MEISSNER, PARK, AND SCHECHTER 37

density reduces to F(0)=sr, F(~)=0. (6.3)

Bo(r)= — sin F .
1 F'

277 r

To ensure unit baryon number, we have to choose

(6.2)
In what follows, we will refer to the radial functions F(r),
G(r}, and ru(r) as the pion profile, the p-meson profile,
and the e-meson profile, respectively. The static-soliton
energy, to be identified with the Skyrmion or hedgehog
mass MH, is obtained with the help of (5.6) and reads

MH E[F——, G, cu]= —f d rX(F, G, cu),

F2
E[F,G, co]=4nfd. r (r F' +2sin F}+—,'mQ r (1 cosF—)+F„(G—I+cosF)z

o 4

l, z G (G —2)+ 2
2G'+

24g r ,'r (m ~——+co' ) y, coF—'siniF

I (yz+ y3 )coF'[ 1 +2( G —1 )cosF +cos F]+2yzG'co sinF +y&coF'G (G —2 ) I

=E„+E +E z+Ep+E„+Ewz+Ewz ~
(6.4)

3h
2v'2

4lc2 g very

v'2g v'2g '

lv 2ci

g

(6.5)

We have added in (6.4) the canonical pion mass term

where we have assumed, for simplicity, the KSFR rela-
tion m =m„=m =2F~ . The constants y;, i=1,2,3,
are defined by

F// 2F ——[4(G —1)sinF +sin2F]
1

2

G"= +m (G —1+cosF)G(G —l)(G —2)
2

71
+m sinF+ sin FF' r2

2(ye+ yq)+ ci)'[ I +2(G —1 }cosF+cos F]
F2~2

2y3
[co'G(G —2)+2G'co(G —1+cosF)], (6.6a)

F2r2

X„=—,'m +„Tr(U+ U —2) . +2g yicu'sinF —2yig F'co(G —1+cosF), (6.6b)

The mp interaction energy E embodies the p-meson
mass term, and the e terms (loosely designated in the
literature as Wess-Zumino terms) have been split into two
parts: the first coming from the co„8" interaction" and
the second giving the cpm. correlations. To arrive at
(6.4), we have performed two partial integrations, since
possible surface terms do not contribute due to the
asymptotic behavior of the meson profiles given in the
end of this section. Functional minimization of (6.4)
leads to the coupled equations of motion for the meson
profiles. They read

Vl
+m co+ F'sin F

2

6/ F/
+2yz sinF+y~ G(G —2)

r 2 2

'Y2+ T3+ F'[1+2(G —l)cosF+cos F] .
2

(6.6c)

The pertinent boundary conditions to ensure finite-energy
solutions are
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G(0) =2, G( ~ )=0,
co'(0)=0, ro( ~ )=0 .

(6.7a)

(6.7b}
5.0

MESON PROFILES

Of particular interest is the large-distance behavior of
the pion profile F (r};it falls off exponentially:

—m r
F(r) ——e (1+m r) as r~ ~ .

r
(6.8) 2.0

The vector-meson profiles G (r) and ro(r) fall off exponen-
tially with exp( —2m r) and exp( —3m r), respectively.
Although the numerical evaluation of (6.6) is straightfor-
ward, we perform the following checks. First, for

y2 y——3 0——, and y& ——(1.5X5.8545/2n )=0.4449 we have
to recover the results of the minimal model presented in
Ref. 12. Second, since the Wess-Zumino term is linear in
ro(r) and ro'(r), the virial theorem

C9
~1

1.0

o.o
-O. )

E

I i t i l l (

Ewz = —2E (6.9)

has to be satisfied, with Ewz=E wz +Ev(z and E„as
given by (6.4). As a measure of the numerical accuracy,
let us introduce

Ewz+2EbV=—
2E

(6.10)

For a solution to be accepted, we require EV(10
Furthermore, the solutions have to satisfy the generalized
version of Rafelski's viria1 theorem in the presence of
vector mesons, E —E —E"„'"=E +3E +3E
[where E =E"„'"+E„canbe read off from (6.4)]. In the
following section, we will present numerical solutions to
the equations of motion (6.6). Before doing that, let us
define two observables which will be of interest in what
follows. The hedgehog radius rH measures the extension
of baryonic charge of the soliton

gq —— bF4m
(6.12)

rH ——4m r Bo r r= —— r F'sin Fdr 611
0 0

and the axial-vector coupling constant g„can be read off
from the pion tail (6.8) via

I t l i l l l l l i I

0.5 ).0 f.5
r[fm]

FIG. 2. Meson profiles for the central choice of h = —0.4,

g«& ———1.9, and y3 ——0 (dashed lines). The solid lines give the
result for the "minimal" model with gzz&

——0, h = —0.4. Notice
the different scale for the co meson. The standard parameters
g=4. 1248, F = 132 MeV, and m = 139 MeV are used.

tion of Ref. 7, referring to models with y,&0, yz
—y3=0

as "minimal models. " These profiles are rather similar to
the ones of the minimal model of Ref. 12 and the com-
plete model of Ref. 7. In Table II, we compare the static
hedgehog mass MH, the baryon charge radius rH, and the
axial-vector coupling constant gz for these three cases.
It appears that this set of parameters gives a soliton with
reasonable properties very similar to the complete model.
The differences in MH, rH, and g„stem, on one hand,
from the different terms in the apso correlations and from
the fact that the cu-coupling constant used here,

VII. NUMERICAL RESULTS AND DISCUSSION
3m h

g = — — =8.37v'2 (7.1)

We will now present numerical solutions to the set of
coupled equations (6.6) subject to the boundary condi-
tions (6.3) and (6.7}. From Sec. IV we expect the parame-
ter gv&4, to be around +1.9 and the parameter h to be
around +0.4. Reference to Table I shows that g~v& and h

obey the empirical correlation ~gvv&
—h

~

=1.5. From
Eq. (4.5) we see that the range

~

0.2
~

&
~

h
~

&
~

0.6
~

is
reasonable. Remember that c3 is an undetermined pa-
rameter. Note from (5.6} that all the contributing terms
are proportional to co, so changing the sign of co(r) corre-
sponds to reversing the signs of all of c, , c2, and c3.

For orientation, let us discuss in some detail cases with
c3 0 ( y3 =0). In Fig. 2, we show the meson profiles for
the central choice of parameters, h = —0.4 and

gzz& ———1.9, in comparison with the "minimal model"
(h = —0.4,gzv&

——0). In what follows, we adopt the nota-

is somewhat smaller than the one used in Ref. 7 (there,
g =8.78).

In Table III, we compare in detail the different contri-

m„(MeV)
rH (fm)

Minimal
model

1474
0.50
0.88

Complete
model

1465
0.48
0.99

Ir = —0.4
gvvy = —1.9

1422
0.42
0.79

TABLE II. Static hedgehog properties. The Skyrmion mass

MH, the baryon charge radius rH, and the axial-vector coupling
constant g& are given for the minimal' and the complete mod-

el, as well as for the Lagrangian (6.4) with h = —0.4,
fvvy= —1.9, and y3

——0.
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TABLE III. Various contributions to the static soliton ener-

gy as defined in (6.4). The first column gives the results (in
MeV) of the minimal and the complete model of Ref. 7, the last
column exhibits the results of the Lagrangian used here with
h = —0.4, g«& ———1.9, and y3 ——0. In all three cases, the input
parameters are F =132 MeV, g=4. 1248, m =m =770 MeV,
and m =138 MeV.

E
E ol

E
Ep
E
Ewz

Minimal
model

751
39
49

369
—257

513

Complete
model

733
43
33

370
—256

512

h = —0.4
gvvy= —1 9

645
32

160
350

—234
468

butions to the static energy as defined in (6.4) of our mod-
el with h = —0.4, gvv&

———1.9 with the ones of Refs. 7
and 12. The present model is again seen to be similar to
the complete model. Of course, the model considered
here exhibits some pertinent differences from the com-
plete model. First, in our approach the Goldberger-
Treiman relation holds exactly, whereas in the complete
model it is violated by 15% due to the lack of chiral sym-
metry in the Wess-Zumino term. Second, in the complete
model the Wess-Zurnino energy is completely dominated
by the co„B"term, whereas in our model there is an intri-
cate cancellation between positive and negative contribu-
tions of the same order of magnitude from the y, and y2
terms. Nonetheless, the net contribution of the Wess-
Zumino term to the static energy is approximately 500
MeV for the model considered here as well as the com-
plete model. We will come back to this point later on.

In Table IV, static properties are given for a range of
the co-P mixing angle

[
e . We can read off the following

trend from this table. For larger values of
~
gi, v& [

(and
corresponding [gvv& —h

[
=1.5) both the mass and the

radius of the soliton tend to decrease. Allowing for a
variation of gvv& of the order of 10%, we see that the
mass and the radius change by 10%%uo or less in the whole
range of the mixing angle [e ~. Notice that since g„
measures the extension of the pion source, a decrease in
rH induces a decrease in g„. Using gvv4, on the smaller

side gives a too heavy soliton, with an increased radius
and reasonable g~.

In Fig. 3 we show the dependence of our results for the
uncorrelated situation with fixed h equal to its central
value —0.4 and various values of gvv& (not necessarily
the determined one). Only a drastic reduction in gi, v&
gives an appreciable change of the soliton properties. In
any case, we also observed that lowering the mass to less
than 1200 MeV by lowering gvv& inevitably leads to a
small radius (rH -0.3 fm) and a small g„( &0.50).

Before discussing our results for y3~0 it may be of in-
terest to remark on the case when the co3~ contact term h
is set to zero and gvv4, is taken from ~ ~2y computed
with vector-meson dominance (VMD). Assuming that
m. ~2y is also described by the anomaly, this yields

3m
gVVII

4 2 2 z 44m. g
(7.2)

Essentially this is the ancient Gell-Mann —Sharp-Wagner
model. ' Using (2.11), (7.2) gives gvv&

——1.2. We find

MH =1574 MeV, rH=0. 5 frn and g„=1.02, i.e., results
similar to the model with the choice of gvv& ———1.7 and
h = —0.2. (For other models incorporating exact VMD,
see, e.g. , Refs. 22 —24.)

Now let us see if the nucleon properties can be im-
proved by choosing a nonzero value for y3 (or c3). It is
convenient to introduce

=0.1212
C2 2g C2

(7.3)

SKYRMION MASS (MH) Qfld RADIUS (fH) f0f h = 0.4 ™gyyg=0 ..., ) 9

to measure the relative strength of the y3 terms with
respect to the y2 terms. Before giving specific results, we
can already read off some trends from the relative sign of
a. For lr position, the repulsive terms in (6.4) proportion-
al to (y2+y3)coF'[1+2(G —1)cosF +cos F] will become
even stronger, leading to an increase of the soliton size
and its mass. Inversely, for ~ & 0, the repulsion due to the
Wess-Zumino term will be weakened and lead to a de-
crease in the soliton mass and its radius.

Let us concentrate first on the central choice of param-

TABLE IV. Bulk properties of the soliton for @3=0. The
Skyrmion mass MH, the baryon charge radius rH, and the axial-
vector coupling constant g„are given as a function of the mix-
ing angle

[
e [, i.e., the parameters h and gvv&. The standard in-

put F =132 MeV, m„=138 MeV, g=4.1248, and
m =m, =770 MeV is used throughout.

15-

1.4

13

1.2

—05

—03

—0.2

(h ~gvvy)

( —0.7,—2.2)
( —0.5,—2.0)
( —0.4, —1.9)
( —0.2, —1.7)
( —0.1,—1.6)

(0.0,—1.5)
(+ 0.15,—1.3)

m„(r.eV)

1.225
1.348
1.422
1.581
1.660
1.788
1.824

rH (fm)

0.35
0.39
0.42
0.50
0.53
0.57
0.61

0.54
0.69
0.79
1.03
1.15
1.29
1.44

I

0.2 0.4 0.6
I

0.8 1.0 C

C 9vvy

FIG. 3. Skyrmion mass (MH) and the baryon charge radius
(rH ) for h = —0.4 and 0) g vv& ) —1.9. Notice that only a dras-
tic change of g«& as compared to its value determined in Sec.
IV gives considerable changes in the bulk properties of the soli-
ton.
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STATIC PROPERTIES VERSUS K' Ih= 0.4igvvy =-1.9)

[Gev]

1.5-
ga

- 1.0

1.3

H

.- 0.5

- 0.3

—0.5

eters, h = —0.4 and gvv&
———1.9. In Fig. 4 we show the

static properties as a function of ~, for —1&~&1~ For
K= 1, we have MH = 1475 MeV, rH ——0.48, and g~ =0.94,
almost identical to the complete model. On the other
hand, for ~ ~ —1, the mass tends to fall, whereas the ra-
dius rH levels off at around rH-0. 25 fm, with g~ being
unacceptably small. So a lowering of the soliton mass
can only be obtained at the expense of the other static
properties (see also discussion below). In Fig. 5 we give
the soliton mass as a function of gzv& (with correlated h )

and ~ for 1.3 &gvv& &2.2 and —1 &~ &0. The plot shows
a smooth decrease of M& with increasing gvv& and de-

creasing ~. We have monitored an even wider range in

parameter space, with the following results: For the larg-
est values of the mixing angle

~

e
~

in Table I, the soliton
is very heavy ( —1.8 GeV), extended (rH -0.6 fm), and g„
is close to its empirical value. It appears that vector-
meson propagator e6'ects are frozen out and the physics
is very similar to the "VMD-inspired modified Skyrme
model" discussed in Refs. 25 —27. Around the central
choice of parameters, the soliton mass is generally of the
order of 1.4 GeV, rH -0.5 fm, and g„~ 1.0, similar to the
complete model of Ref. 7 (for 0&~& 1). For

~

e
~

on the
small end of its allowed values, the soliton mass is ap-
proximately 1.2 GeV, with a too small radius and g„.
Only for ~ ~ 4, can we come back to a reasonable radius

(rH &0.4 fm and g„&0.8), with the mass increasing
beyond 1350 MeV. It therefore appears that there is no
magic set of parameters leading to a realistically low

mass, a reasonable rH and gz at the same time. This is a
common problem in all soliton models.

Additional static properties of the nucleon, such as its
mass, the 6-N splitting, and the electromagnetic charge
radii, may be calculated in a standard way using the
collective-coordinate quantization. For our present pur-
pose, considering the similarity of this model s predic-
tions to those of the "complete" model, it seems sufficient
to give estimates of these quantities.

To calculate the N and 5 rotational energies and hence
the 5-N mass splitting, it is sufficient to find the moment

SKYRMION MASS MH as a FUNCTION of 9yy(t) and 73/72

M„
[GeV

1.9

1.7

-/.0
09
.8

1.5

1-3 1.5 1.7
gvvg

1.9 21

FIG. 5. Three-dimensional plot of the static soliton energy as
a function of g„~& (and therefore h ) and « =y, /yz, with
—1&v&0. The soliton mass varies smoothly in both direc-
tions, indicating that there is no set of "magic" values for c&, c&,

and c3 leading to a reasonably low mass, a reasonable baryon
charge radius, and the axial-vector coupling constant g&.

of inertia. This is proportional to the Skyrmion radius.
As has been shown in Refs. 3, 22, and 23, the moment of
inertia is dominated by its pionic part, and can thus be
simply estimated as

F„r sin F+Ssin — dr .
4%. 2~2. 2.4F
3 0 2

(7.4)

For gvvy
———1.9, h = —0.4, and c3 ——0, we find A, =0.55

fm. As ~ increases, A, also increases. For ~=+1, we

have I, =0.73 fm. For comparison, in the complete
model, A,„=0.69 fm and A,„,=0.68 fm. The dependence
of A,„on g vv&, h, and ~ agrees with our observations con-
cerning the classical mass, the baryon charge radius and

g„. For the "low mass parameters" g vv&
———2.2,

h = —0.7, A. is less than 0.5 fm, i.e., considerably too
small for all values of ~. On the other hand, for

gvv&
———1.3 and h =+0.15, A, is somewhat too large, it

lies between 1.1 and 1.5 fm as x varies from —1 to + 1.
In general, for ~ positive and increasing, A. increases
weakly. For ~ negative, we observe a sharp drop in the
approximate moment of inertia as a approaches —1 (or
smaller) for all values of g~~& and h. The physical N
splitting is given by A. =0.99 fm. Assuming k=k, we

find this value for gvv&
———1.7, h = —0.2, and ~=1, to-

gether with MH ——1671 MeV, r~ =0.54 fm, and g„=1.16.
Now, the electromagnetic charge radii can be approxi-

mated to within 10% by the VMD formula

- 0.2
- 0. 1

Z 2
rc rH+

m
(7.5)

—10 0 +10
~= v, ~v,

FIG. 4. Static baryon properties as a function of a(y3) for

gz« ———1.9 and h = —0.4. For a positive, the static properties
are only mildly varying with ~, whereas for ~ approaching —1,
the mass, the baryon charge radius, and gz decrease consider-
ably.

which for rH=0. 5 fm implies r, =0.8 fm (Ref. 12). Of
course, there are modifications to this estimate for each
particular channel (isoscalar, isovector, charge, magnet-
ic), but it is safe to conclude that rH -0.4—0.6 fm leads to
reasonable electromagnetic charge radii, i.e., the overall
picture of the soliton emerging from our Lagrangian will
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VIII. SUMMARY AND OUTLOOK

It is generally felt that a suitable chiral Lagrangian of
vectors and pseudoscalars should provide a realistic test-
ing ground for the notion that the nucleon is a soliton ex-
citation. In the past, the e terms [Eq. (2.13)] of such a
Lagrangian were determined by a kind of heuristic
"gauging" principle or by a similar extrapolation of
vector-meson dominance and consideration of meson
electromagnetic amplitudes. Detailed discussions and
references are given in Ref. 3.

Here, after a careful discussion of the addition of elec-
tromagnetism to the chiral Lagrangian (2.6) + (2.7)
+ (2.13), we have concluded that the most reliable pro-

cedure for determining the coefficients ci,c2, c3 in (2.13)
is to use strong-interaction processes exclusively. In this
way we found gvv& [related to cz by (2.18) and (2.19)] to
have the central value

I gvvyl =1 9. (8.1)

Here the sign is undetermined and the accuracy is about
15%. The quantity h [related to a linear combination of
c, , cz, and c3 by (2.18) and (2.19)] which measures the
strength of the co+ "contact" term has the central value:

ih i
=0.4. (8.2)

The sign of the central determination of h is the same as
that of gvv&. h has a fairly large percentage uncertainty
but our treatment gives the empirical correlation

I gvvy (8.3)

The remaining coefficient a [related to c3/c2 by (7.3)] is
difficult to determine from mesonic processes. An initial
hope was that variation of this parameter could solve the
main characteristic difticulty of the soliton models —the

lead to a satisfactory description of the nucleon elec-
tromagnetic properties, and a too high mass for the nu-
cleon and the b, (1233). These findings give us confidence
to state that the results of the complete model in Ref. 7
should hold for any realistic mpco Lagrangian. This is
certainly a very important point, since it means that the
seeming uncertainties in constructing the anomalous ac-
tion lead to a rather unique description in the soliton sec-
tor. Of course, this does not mean that the e terms in the
action play no role in the baryon sector, indeed the "WZ
action" is vital for the soliton stability (not necessarily
through the ai„8"coupling}.

Our findings concerning the dependence of the soliton
properties on ~, i.e., c3, allow us to give a suitable range
for c3. For the central range of h and gvv&, we conclude
that it= 1 (i.e., c3=8.3) gives the best description of the
nucleon as a solitonic excitation. More conservatively, if
we vary h and gvv& around their centra1 values, we find a
fair description of the nucleon properties for 0~~& 1.5,
i.e., 0(c3

~ 12.

too large nucleon mass (other predictions of the nucleon
properties are quite reasonable). However, we found here
that variation of the ~ did not allow us to significantly
lower the nucleon mass without disturbing the good pre-
dictions of the soliton approach. The overall "best fit" is
similar to that of the "complete" model. From a con-
sideration of the nucleon properties we found a central
value:

x=1.0 . (8.4}
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APPENDIX

Here we review the SU(3) analysis leading to the
determination of the aiP mixing angle e in (4.3).

The matrix of squared masses for the neutral non-
strange vector mesons is conventionally written (in a
basis pl 1 p22 p33} as

(M2); = A, 5,"+b,b (A1)

However, since varying ~ has a relatively small effect,
(8.4) should be interpreted as an indication of the signs
and order of magnitude of ~. Of course, one would like
to have further experimental constraints to eventually pin
down the parameter c3.

Two additional problems can be straightforwardly
treated in the present framework. %e have argued that
the g does not contribute to the classical soliton, but it
might give a contribution when one quantizes the spin-
ning modes. The effect should be investigated, although
from one's knowledge of nuclear physics we do not ex-
pect it to be sizable. Second, one should also investigate
the properties of the strange baryons in the present mod-
el. A detailed analysis of this feature might pave the way
to an eventual understanding of the foundation of the
subject.

Finally, we remark that a number of proposals are
present in the literature for modification of the chiral
model and its treatment with the implied intent of lower-
ing the nucleon mass. Including the axial-vector
mesons is a natural suggestion, but then why not in-
clude all the other p-wave qq bound states in a similar en-
ergy range? A consistently truncated chiral Lagrangian
with all the p-wave states appears extremely complicated.
Soft-pion corrections' are another possibility, but it is
not clear how they will affect all static properties. Of
course, more sophisticated quantization schemes may
always be entertained. The explicit introduction of
quarks ' with a "Cheshire Cat" or other philosophy is
an interesting possibility but there are some very serious
problems to be straightened out.
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A) ——A~, b) ——bz (A2)

It is convenient to go to the p, to—:(p»+phiz)/&2,

Here the A; correspond to the OZI-rule-conserving piece
and the b,-b to a factorizable OZI-rule-violating piece.
In the isospin limit

1 1 0
Q= — —1 1 0

1

&2
0 0 &2

which yields the symmetric matrix

(A3)

I'll:p33 basis by the transformation M =Q M Q with

M' =—1
2

A, + Aq A, —Aq+2b(b, —b~) &2b3(b, —b~)

A t+ Aq+4b 2&2 bb3

etc. 2A3+2b3

(A4)

where b = (b, +bz )/2. We shall consider the isospin lim-

it (A2). From (A4) we read off that

~

b
~

=—,'(m —m )' =(71+16)MeV,

where the error primarily results from the uncertainty in
the p mass. The unknown quantity A3 may be related to
the K' mass as A3 ——m, —m/2. [This follows from

an OZI-rule-conserving mass Lagrangian of the
form —X=AtTr(p )+(A3 —At)Tr(ppS), with

S=diag(0, 0, 1).] Knowing A 3 we read off from (A4) that

I b31 = —(trty+mz —2m&, )' =(116+37) MeV .
1

2

(A6)

Note that we have assigned a rather sizable uncertainty
to

~
b3

~

owing to the uncertainty in the p mass as well as
to the choice of either the K * or E+* masses. Finally,
from (A4) we get the to-P mixing angle as defined in (4.2):

2&2 bb3

m& —m„2 2
(A7)

This leads, using (A5) and (A6) to the result (4.3). An in-

dependent theoretical check of the quantity 2&2 bb3 (the
coefficient of —

toast) in the Lagrangian) may be made by
comparing it to an effective determinantal term which
gives OZI-rule violation for the pseudoscalars. That pro-
cedure [see Eq. (5.8) of Ref. 35] yields 2&2bb3=(122
MeV) in rough agreement with (153+40 MeV) obtained
by use of (A5) and (A6).
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