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Bose-Einstein correlation is discussed for particles produced by rapidly expanding sources, when

kinematical effects hinder a direct relation between the observed correlations and the source dimen-

sions. Some of these effects are illustrated by considering Landau's hydrodynamical model wherein

each space-time point of the fluid with temperature T = T, =m is taken as an independent and

chaotic emitting center with a Planck spectral distribution. In particular, this model reproduces
surprisingly well the observed m-n. and K-K correlations at the CERN ISR.

I. INTRODUCTION II. T%0-POINT-SOURCE MODEL

The correlation between identical particles produced in
a reaction is closely related to the space-time structure of
the emitting source of these particles. This is the base of
the Hanbury-Brown and Twiss method, ' used in radio as-
tronomy to measure stellar dimensions, and also of the
Goldhaber-Goldhaber-Lee-Pais (GGLP) effect in nuclear
physics. Several authors have studied this phenom-
enon, but so far concrete applications have mostly
been restricted to static sources, the ones with factorized
time and space dependences or Seld-theoretical model
with a classical source. While these models clarify
several qualitative features of the phenomenon or even
are convenient approximations in some cases, it is ques-
tionable to straightforwardly apply their results and try
to extract from the data quantitative information on
more dynamical processes such as hadronic interactions.
In these reactions, the particle sources typically move at
relativistic velocities with respect to each other and im-
portant kinematical effects appear preventing us from es-
tablishing a well-known simple relation between the ob-
served correlations and the source dimensions.

In a previous paper, we gave a preliminary account of
our study of the identical-particle correlation, by using
Landau's hydrodynamic model as a prototype of such a
rapidly expanding particle source. Related discussions
have recently been made by some other authors by using
either the string-fragmentation model or a current-
ensemble method in the inside-outside cascade picture. '

In the present paper, we shall give a more intuitive pre-
sentation of several of the effects caused by the emission-
source motions, by considering a simple two-point-source
model (Sec. II) and then illustrating them by a more real-
istic hydrodynamical model (Sec. III). For comparison
with data, which will be achieved in Sec. IV, it is crucial
to consider the emission of quanta throughout the whole
phase transition, during which the energy density de-
creases from the initial value cp](T, ), calculated for the
plasma phase, down to et, ( T, }, computed for the hadron
gas. We will draw conclusions and propose some experi-
mental works in Sec. V.

By considering the simplest model of two pointlike
sources we i11ustrate some interesting features concerning
the sizes revealed by the correlation function when the
sources are in movement with respect to each other: (a)
the effective longitudinal distance decreases with increas-
ing transversal momentum (pT ); (b) the effective transver-
sal depth depends on the emission time difference; (c) the
correlation-function intercept can be smaller than 2 for
finite values of momentum difference.

Let us consider two pointlike sources with space-time
localizations given by x' "= ( t ', r') and x""=( t ",r" )

which independently emit quanta (pions) at random dur-
ing a finite time interval 5t. The correlation function can
be written as

W(p& p2)
C(p, ,p )= =1+(cos(bp"bx„)),

Wpi Wp2

where bp"=(Ez —E, , pz —p, ) and bx"=(t" t', r"—r');-
W(p„p2) is the probability for detecting two quanta in
coincidence and W(p;) is the single-particle probability.
For the sake of simplicity the average symbol (( )) in (1)
was introduced to represent integration over t' and t"
with appropriate source-velocity-dependent weight func-
tions and random phases, which in general results into a
complex expression.

In the static case, Eq. (1) establishes a direct connec-
tion between the two-identical-partic1e correlation func-
tion and the distance Ar as well as the relative direction
of the point sources. For moving sources, however, and
especially when the velocities are variable, the correspon-
dence is more delicate, as we discuss below.

(a) Let us consider two collinear point sources moving
away from each other along the x axis. For simplicity,
let us consider

x'"=(t', 0,0, 0) and x""=(t",x",0,0),
where the second source is accelerated and so with an in-
creasing four-velocity u„=(uo, u„0,0},each source hav-
ing a lifetime 5t. If we want to measure the longitudinal

37 3237 1988 The American Physical Society



3238 Y. HAMA AND SANDRA S. PADULA 37

distance between the two sources, the most convenient
way, according to Eq. (1), is to place the detectors at
-90, i.e., plOx (see Fig. 1) and measure C(p, ,pz) as a
function of b,p~~Ox(b, E=0). Since x" is changing, we do
not have one distance but many of them. As is well
known, if we assume that the spectral distribution is iso-
tropic in the proper frame, in the laboratory frame it be-
comes concentrated in the forward direction as u

&
in-

creases. Hence, the larger the velocity u is, the smaller is
its contribution to ( }of Eq. (1) in the present case. This
effect has also been discussed in Ref. 9. The distance
Ax =x" that the correlation data reveal would then be
the one corresponding to a "typical" u, obtained with the
momentum spectrum as weight function. To be more
specific, let us consider, for example, the invariant distri-
bution given by

d7l u0E
E =u~ "exp( u "p—/T ) =uoE exp

dp T
(3)

for p—:pT (pL
——0). Hence, we have

where K„(E/T) is the modified Bessel function. We see
from Eq. (4) that ( uo) decreases for increasing pr

Ko(E/T)+K~(E/T) ~ && T
1 T

( uo ) = (cosha) =
2K, (E/T) 2 E '

(4)

(i.e., ET) and that uo~l as (T/E)~0. To see how this
affects the longitudinal distance between the two sources,
we assume that U=x/t, which gives hx=x"=rsinha,
where r=+t" —x" is the proper time and a is the ra-
pidity of the second source. Then, for fixed r,

( T/E )( 1+T/E )e

K, (E/T)
1/2E))T

r
mE

Equation (5) shows that (hx }~0as (T/E)~0. This
implies that the effective longitudinal size shown by the
correlation data decreases as pT (or E) increases, an effect
already shown in Ref. 8 and also discussed in Ref. 11.

(b) Let us now consider the measurement of the trans-
verse "distances" between the source points. For the
configuration given by Eq. (2) it is evident that such "dis-
tances" are identically zero, but in general x""may have
y" and z" components. To determine bz, it is natural to
put the detectors nearly parallel to the y axis (p~~Oy ) and
measure C(p, ,p2) as a function of bp, (hE =0}. To esti-
mate hy, one simply turns the counters by m/2 and re-
peats the procedure. One might think that it is possible
to evaluate hy by setting the detectors along the y axis
and measuring C(p„p2) as a function of bp (in the case
of extended source, it would be equivalent to probing the
source's depth). For nonsimultaneous emissions, i.e.,
ht =t" t'&0, th—e argument of the cosine in Eq. (1) be-
comes

hp "hx„=hEht —hp hy

AE hE=hp ht —by ~ Ap ht
bp =0 Apy

(6)

So, although the actual hy is zero for the two point
sources of Eq. (2), it appears as if hy = (b E/bp~ )ht-
= —v At. This effect evidently is a consequence of
different emission times, as has already been discussed a
long time ago by Kopilov and Podgoretsky' (see also
Ref. 13},and such a delay is a basic feature of any more
realistic model of expanding objects. More generally,
when dealing with extended sources, usually by&0 and is
variable. Furthermore, the experimentally measured
"depth" would have to be averaged over events, resulting
in

(&y,a )'= hE
At —Ay

Ap

V

x"(t"j

FIG. 1. A schematic representation of relatively moving two
point sources. A graphical definition of the vectors p and hp
are also shown.

If we consider the asymptotic one-dimensional hydro-
dynamical model, as in the following sections, and choose
to analyze, for example, the correlation of two quanta,
one emitted by a central fluid element and the other by an
element with rapidity a, then for fixed r, b, t =a(cosha
—1)&0. Hence, according to the discussion that fol-
lowed Eq. (4) and to Eq. (7), the transversal depth for
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small pz will be bigger than the actual one.
(c) So far, we have restricted ourselves to the study of

the correlation as a function of one component of hp,
taking the other components equal to 0. Clearly, such
configurations are highly improbable. This is a very im-
portant point when one tries to extract information on
the source structure from the data, because if, say, the
component of hp which is para11el to p is &0 and the
correlation is seen as a function of a normal component
of hp, for instance hp, first it wi11 not be =2 at the ori-
gin (hp„=O) but &2 and also bp„=O will not be the
point of maximum of C(p&,pz). Obviously, this implies
that a simple parametrization of the data by Eq. (1) or by
a Bessel function as usually done in the case of a continu-
ous source may lead to completely erroneous conclusions.
To show these effects, let us again consider the two-point
source of Eq. (2) and now set the detectors so as to have
pIIOy and bp=(hp„bp~, O), with bp &0 constant.
Then, hp "hx„=hEht —hp, hx, which gives hp "hx„g0
when Ex=0 and C(p„p2) &2 there. The maximum of
C(p„p2) is located at hp„=bEht/bx ~0.

III. HYDRODYNAMICAL MODEL

Let us now extend the discussion given in the preced-
ing section to a more realistic extended source that we
will describe by a variant of the Landau model' in which
we assume that the fluid is the quark-gluon plasma"
and the fireball mass is an event-dependent parameter.
While the latter assumption is not necessary if we confine
ourselves just to a theoretical study of the expansion
effect on the correlation, it turns out to be essential when
comparing the results with the existing data. '

Since the final results are not expected to be very sensi-
tive to the details of the expansion model, here we com-
pletely neglect the transverse expansion and use the
asymptotic form of the Khalatnikov solution namely,

(=in = —coln —,T=-2
0

are emitted at r=v;, when e=e (T, ) and then improve
the results in the next section, by considering the above
eff'ect, but for simplicity taking r= ( r) cr ~„where (~) is
a certain average value which will be computed later.
Evaporation from the hot plasma would certainly exist
but here we assume that the bulk of the produced parti-
cles comes from the transition region which develops
from inside to outside. The effects of resonance produc-
tion, final-state interactions, as well as of the partial
coherence of the source, ' if any, should be taken into
account, but here we simply consider a totally chaotic
source, which will be shown (Sec. IV) to be surprisingly
well fitted to reproduce the existent data.

So, let us initially assume that each point of the surface
w=~, in the plasma where T=T, =m is an independent
chaotic source with the momentum spectrum

Q pp 0 ppf(p) =
&

exp
(2m )

(10)

where

tc = (cosh&, slnhcx, 0,0 }

=four-velocity of the fluid,

=four-momentum of an emitted particle .

The amplitude for finding a particle at x and emitted at
x' is written

J(x,x') = fdp&f(p}exp[ ip„(x" —x'")]ex—p[i8( x')],

(12)

where 8(x') is a random phase. Following the notation
of Ref. 5, the probability of detecting two quanta of mo-
menta p ~

and p2 in an event is

~(pi p2}=I(0pi }I(op2}+ I I[pi —p2 —,'(pi+p2}] I

'

(13)
t+xa=-,'ln
t —x (9) where

where a is the rapidity of the plasma, c0 the sound veloci-

ty =1/V3 and E=Q(1—co)/irl, 21 is the initial thick-
ness of the fireball. This solution is valid when

I 4 I
»

I
&

I
~

Usually, one assumes that the final particles appear
when the local temperature reaches a certain critical
value T=T, =m, which defines a transition surface.
However, because of the statistic factor, which is large in
the quark-gluon plasma, its energy density e~ ( T, ) is too
high to assume that pions appear from such a surface.
We think it is more reasonable to let the fluid expand fur-
ther and assume that the final-particle emission occurs
during this interval of time when the energy density goes
down to the characteristic value for the hadronic gas
61, (T, ). Since the pressure remains constant during the
transition, the expansion in this stage is expected to be
inertial, a in Eq. (9) being unchanged. Here, we shall first
study the problem under the assumption that particles

I(hp, p ) = f dx dh x exp(ix bp+ibxp )

X fdx'I(x, hx, x'),
(14)

hx hxJ' x—,x' J x+,x" =5(x' —x")
2

'
2

'

X I(x,bx, x'),
and the average is taken over the random phases 8(x')
and I9(x"). %'e also have

2
W(p, ) =— f dx' f exp(ip, x )J(x,x')dx

=I(0,p, ) . (15)

Thus, by inserting Eqs. (10}—(12) into (14) and then
I(hp, p ) so obtained into Eqs. (13) and (15), we can easily
calculate the correlation coefficient C(p, ,pz) defined by
Eq. (1), giving
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4[2;(R bpT )]
C(p»p2 ) = 1+

T,R ApT
exp —2 '

E2 p2

2T,'
2AE —Ap
+(EbE —PLbpL )'

T,'

E2 p2
+

2T2

AE —hpL
~-2 .

C

1/2 '

E2 2

—(b E bp—L )~,
C

+4(EbE —PL bpL )L L
C

3/4

1
exp .

C

hE —ApLE pL +— + (Eb E PL b,p—L )

' 1/2

hE —ApL+ E pL + —
4

(Eb.E—PL bPL—)

' 1/2
hE —ApL

2 2'2
E—

4

—(Eb E —pL bpL )

1/4

X. E —p
2 2'2 2EKE —pL bpL

2T.

(bE b. )—
+(EbE pLbpL ) r, +—

' 1/2E2 2 2

+(bE bpL )r, (Eb—E pLbpL)—

where

p =
—,'(p, +P2 ) =(E,PL,P,P, ),

bp =p& pz (b,E,bpL—, bp»——, b,p, ), (17)

(gp2+ b 2.)ll2

We fix the critical temperature T, =m and ~, shall be
determined by imposing the condition T= T, on the plas-
ma. To do so, we need the initial temperature To, which
depends on the mass M of the fireball and its initial size.
It has been shown that the hypothesis of large-mass
Lorentz-contracted fireball formation around one or both
of the incident particles provides a nice framework to ac-
count for several of the experimentally observed quanti-
ties. ' ' In Ref. 18 it has been shown that, if such a fire-
ball is made of quarks and gluons, a very reasonable
choice of the initial radius R =R „„„leads to the experi-
mentally observed mean charged multiplicity (X,„)(M)
as we11 as to the pseudorapidity distribution do /dg(M),
which have recently been measured in large-mass

I

diffractive dissociation at the pp collider. ' In contrast, if
such a fireball is made of pions, a too large radius R be-
comes necessary to 6tting the data. It would also be pos-
sible to impose some other initial conditions wherein non-
constant space-time distributions of temperature and ve-
locity are speci6ed, ' ' but in this case we would not
have a de6nite principle for such an assignment and,
moreover, a simple version in which T and u are specified
on a hyperbola ~=const gives exactly the same asymptot-
ic Khalatnikov's solution. As far as the practical results
are concerned, we can go backward in time and start
from a constant temperature T=TO and u=0 at t=0.
Then, following Ref. 18,

To

' 1/4

&M =b&M
4mmR (g+ —', g )

=0.118&M,

(18)

where g and g are the statistical weights of gluons and
quarks, respectively, and the numerical value of b in the
last equality has been fixed (in GeV'~ ), by using the fit
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(N, h }= 1.8&M (which means R =0 7.6 fm if Nf ——2 as is

taken throughout this section). Then, from Eq. (8) we
have

To Sm

T, 31T m
L

(R M ) =3.88M . (19)

We shall now illustrate the kinematical effects dis-
cussed in Sec. II, by using Eq. (16) above. I.et us first
consider two equal energy quanta emitted symmetrically
with respect to some transverse direction and plot
C(p„p2) as a function of bp =

~ p2 —p, ~

. We show in

Fig. 2, curves with Apz ——0 and SpT ——0 at two different
values of M. In the Ape ——0 case (b,p =bpr), the correla-
tion coefficient does not show any M dependence because
the transverse dimensions remain constant in the present
version and independent of the energy. On the other
hand, in the bpT —0 case (hp—=bpL ), a strong M depen-
dence of C(p, ,p2) does appear. This effect can easily be
understood if we notice that according to Eqs. (8) and (9)
the surface T= T, from which the hadrons emerge is a
hyperbola which moves upward as the mass M increases
(see Fig. 3) and curves with constant velocities are
straight lines starting from the origin of the coordinate
frame 0, namely, x =vt, which means as discussed before
that the correlation in hpL decreases (apparent size in-

creases) with M.
Let us now study the pr dependence of the correlation.

We show in Fig. 4 two families of curves corresponding
to two different arrangements of counters, each curve

t
'

t
'

I
'

I

2.0—

computed with a 6xed average transverse momentum pT
of the two quanta. Their average direction has been set
to be n/2 with respect to the longitudinal axis and the
curves in Fig. 4(a) represent the longitudinal-momentum
correlation whereas those in Fig. 4(b) correspond to the
one with hp~~p (source-depth measurement). In both the
cases, one clearly sees that as pT increases the width of
C(p ~,p2 ) increases as well, mimicking a diminution of

2.0

1.8

I
I

I
)

I
}

I
t

I

GeY
(3j

X

FIG. 3. Graphical representation of the transition surface
T= T, (or ~=~, ) for two different values of the firebal mass M.
The straight line indicates the curve v=const.
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FIG. 2. Correlation parameter given by Eq. (16), as a func-
tion of hp=

~ p, —p2 ~, when p& and p2 are symmetrical with
respect to some transverse direction. The coordinate axes have
been chosen as in Fig. 1, with Ox parallel to the expansion direc-
tion, hpL =hp„. The curves labeled average correspond to the
mean values taken over the azimuthal angle with respect to p.

1.2

1.0
0 0.1 Og 0.3 0.4 0.5 09

h, p, (GeV)
FIG. 4. pT dependence of the correlation coeScient (a) as a

function of ApL at M=40 GeV and (b) as a function of ApT at
M=540 GeV.
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FIG. 5. Fireball mass dependence of the correlation

coefficient as a function of hp .
FIG. 7. Correlation coefficient with be&0 and pl

—=p„&0,
as a function of ApL = Ap, .

the effective source size, in agreement with our previous
discussion in Sec. II.

It is also interesting to see the fireball-mass dependence
of the correlation coeScient as a function of hp as
displayed in Fig. 5 (the axes have been chosen as in Fig.
I, where the fireball expands along the x axis}. For all

these curves the transverse dimensions of the source are
the same, difference occurring only in the longitudinal ex-
pansion. As discussed in Sec. II [Eqs. (3) and (4) and
below], once the average energy of the identical particles
is fixed, the average velocity of the effective source ( u ) is
also defined. Now, by looking at Fig. 3 one notes that for
the same velocity of the fluid the time ht becomes larger
as M increases, yielding due to Eq. (6} larger apparent
depth for the source or narrower curve for C(p„p2).

Let us now examine some more probable cases of hp
dependence of the correlation, in which more than one
component of b,p are &0. Figure 6 displays some exam-

ples where the correlation has been computed at an aver-

age direction of n/2 with respect to the symmetry axis
and with bp~&0. In each case, C(p&,pz) is plotted as a
function of bp', where hp'=(bp —bp )' . The main

2.0—

1.8 =

I
(

t

1 (

M=40 GeV
p=0
p, =0.4 GeV

~ 1.6

CL

14

1.2

1.0
0 0.1 0.2 0.3 0.4 0.5 0.6

h, p'(Gevj
FIG. 6. Correlation coefficient with Apy&0, as a function of

p'= ~ ~p.'+ ~p,'~'".

feature of these curves is the fact that C(p, ,p2) & 2 at the
origin hp'=0, which is quite natural since here Ap'=0
does not imply hp=0. As we have already discussed in
the previous section (and here we emphasize it again)
data are never obtained with, say, hp =0, but within a
certain limit, so the experimentally measured correlation

coefficient is always smaller than 2, coen if the source is to
tally chaotic Also, . the maximum of C(p„pz) is not
necessarily at Ap'=0. Although this is the case for the
curves in Fig. 6, this feature can more clearly be seen
when one looks at Fig. 7, where we show C(p„pz) as a
function of b,p„when Ap +0 and the average direction
of the two quanta are not at right angles with respect to
the expansion axis (pt &0).

IV. COMPARISON WITH DATA

In the previous section, we have shown several
kinematical effects that the source expansion causes on
the correlation by considering a hydrodynamical model
where the source is a quark-gluon plasma which is as-
sumed to be formed during a hadronic collision and
which emits the observed pions as it cools by expansion
and reaches the critical temperature T, =m . As has
been mentioned there, due to the large statistical factor in
the quark-gluon plasma, its critical energy density e (T, )

is much higher than the characteristic hadronic energy
density eI, ( T, ). Then, in order to compare the results
with the data, ' a more realistic model is needed, whereby
the fluid expands further undergoing a phase transition.
Particle emission occurs during this time interval in
which the energy density decreases from ep( T, ) down to
ej, (T, ).

In estimating the correlation coefficient with the phase
transition taken into account, we assume following Gyu-
lassy and Matsui that an isentropic path is followed
during such a transition. Then, because our fluid is one
dimensional (with the transverse expansion neglected)
and is expected to undergo an inertial expansion during
this stage as argued in Sec. III, the fluid velocity remains
U =x /t=const and
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$7=ST'tp =$s7 I, (rp (7 ( rp ) r (20)

$h =, Ig.G(z. )+gEG(zE) )T,
1 3

2m2

where g = 3, gx ——4, z; =m;/T„and

(22)

4K2 ( nz ) +nzK t ( nz )
G(z)=z

n=1 n

So, with the use of Eqs. (18) and (19) (the numerical value
of b now has to be changed to 0.099 because our hadronic
gas contains kaons as well as pions), we get

$& (4n /45)g
'Th = Sc C

$a g G(z„)+gx G(zx )
(24)

where G(z„=1)=7.476, G(zK -3.5) =2.156, and r, is
given by Eq. (19).

At a given instant of time in the interval ~~ & ~ & ~h, we
have

$ =f$~+ ( I f }$&, 0 (f (—1; (25)

i.e., the total entropy density of the Quid is a sum of a
plasma portion and a hadronic portion, so that s=s at

p and s =sh at ~=~h It immediately follows that

7 h 7

7h 7 7
(26)

which is the fraction of the mixture that is still in the
plasma phase. We think this portion of the entropy,
namely,

(27)

(in terms of density) should properly be considered as the
particle-emission source during the transition.

So, a more exact calculation of C(p, ,p2) would
amount to including the factor given in Eq. (27) into Eq.
(12) or (14) of the previous section, where the integration
has been simplified by 6(r—r, ) assumed there. However,

where s and ~ are, respectively, the entropy density and
the (proper) time when the transition begins and $h and

~h are the same quantities at the end of the transition.
We assume the entropy density s as being the one of a
(massless) noninteracting quark-qluon plasma

2"
P P 45

(21)

with the effective number of freedom g =2 &( 8

+7X(2X3X2XNf }/8, Ny being the number of quark
flavors, and sh that of the usual pion+ kaon ideal gas,
namely,

as will be discussed below, this is not the whole story. In
order to get quantities comparable with the data, ' more
integrations or averaging processes are required. In the
present paper we instead preferred to simplify the prob-
lem and estimate C(p, ,p2 ) by considering "typical"
values of all these integration variables and computing it
there. Thus, instead of performing a detailed ~ integra-
tion in Eq. (14) (see details in Ref. 8) with an additional
factor f given by Eq. (26), we have computed the average
time

1 —1
2

h h
ln —1 +1

C C

(28)

with s taken as the weight function and then replaced ~,
by (r in Eq. (16). In Table I, we show the numerical es-
timates for r~/r, and (r) /r, when Nf ——2 or 3 and the
hadron gas is made of pions and kaons.

Now, as stressed at the end of Sec. III, we should not
forget that the kinematical situations chosen there are
highly ideal. Because of the low statistics, the available
correlation data have been obtained by considering pairs
of identical particles in much wider kinematical domains.
For instance, in Ref. 15, data were obtained for pp col-
lisions at &$ =53 GeV, by detecting all m+ mesons with
pr)0. 1 GeV and in the rapidity range of jy ~

51.0.
Then, the correlation of such pions is determined by tak-
ing all the pairs into account and as a function of qL,
with qT &0. 15 GeV or as a function of qT, with qL &0. 15
GeV. Here, qL (and qr} are the usual Kopilov's vari-
ables, namely, the components of hp which are parallel
(and orthogonal) to p=(p, +p2)/2.

Thus, in order to make comparisons with experimental
data, we should average our result given by Eq. (16) over
several of the kinematical variables. However, inclusion
of all this averaging procedures makes the computation
much more complex, so for the sake of simplicity we de-
cided to invert it and estimate C(pt, p2) by adopting
some "typical" (i.e., average) values of all the variables
but one, namely, qT or qL, as function of which the data
are given. The only averaging which has explicitly been
carried out is the one over the azimuthal angle with
respect to the "typical" momentum p taken from data.

We present the results of this evaluation in Figs. 8 and
9, together with the data of Ref. 15. As can be seen the
agreement is quite good and especially in Fig. 8(a) one
sees that, although our source is completely chaotic, qT
dependence of (C(pt,pz)) for sr+a+ is much better
reproduced by our curves than by the empirical fit

TABLE I. Numerical estimates of R, r, (at M=40 GeV), rhlr„and (r) jr„under the assumption
of pion + kaon gas at the final state.

R
(fm)

0.95
0.88

10.32
13.24

(r &/r,

2.94
3.41

v, (at M=40 GeV)
(fm)

1.83
1.70
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presented there. Observe that we have not adjusted any
parameter by fitting the data, but all the numerical pa-
rameters have been predetermined either by the experi-
mental conditions described in Ref. 15 or by theoretical
considerations (as T, =m and g ). It is interesting to
notice that no appreciable difference in (C(p„p2)) is in-

troduced by changing the number of quark flavors. This
is, in our opinion, due mostly to the fact that the data are
the average over several pion-momentum directions, so
that mainly those pairs which are relatively insensible to
the collective motions give contributions to the data. We
think that in analyzing data if one enhances the longitu-
dinal (bpL ) correlation, one can better discriminate
among several possibilities.

I I I I I 08 I I I I I

0 01 02 03 04 05 06 0 01 02 03 04 05 06
y(GeV) q (GeV)

FIG. 8. Average ~+n.+ correlation coefficient, computed as
explained in the text, is compared with the experimental data
(Ref. 15). The solid curves are our estimates with N& ——3

(g~ =47.5), the dotted-dashed lines with Nf ——2 (g~ =37),
whereas the dashed lines are the empirical fits given in Ref. 1S.
In accordance with the experimental conditions, we have taken
(M ) =37.5 GeV, (pr ) =0.38 GeV, (0)=1.01 rad, and in (a)

(qL, ) =0.075 GeV and in (b) (qr ) =0.1 GeV.

We have studied in the present paper several kinemati-
cal effects which a rapid expansion of the source may
cause on the correlation between two identical particles
emitted in a high-energy hadronic collision. This has
been schematized by a simple two-point-source model in
Sec. II and then extended to a continuous chaotic source
in Sec. III, by using the scaling solution of the hydro-
dynamical equations as such a source.

We have shown that, for expanding sources, what one
actually measures in correlation experiments are the
source dimensions characterized by some typical collec-
tive four-velocity up ( ( uo ), which is pT dependent, as in

Eq. (4). In particular, as estimated in Eq. (5) and exhibit-
ed in Fig. 4(a), the longitudinal dimension decreases as pT
increases.

The qL dependence of the correlation coeScient does
not directly show the source depth but a combined effect
of the depth and the emission time interval, both in the
velocity range mentioned above. Furthermore, the
effective transversal depth for small pT is bigger than the
actual one, due to the difference in emission times, and
also decreases for increasing pT, as shown in Fig. 4(b).

Experimentally, all the components of p are generally
nonzero. Thus, e.g., qT&0 if one is plotting C(p„p~) as
a function of qL. It follows that the experimental
C(p&,p2) is always smaller than 2 at the origin (qt ——0)
without implying necessarily that the source be coherent
In this paper, we have taken a completely chaotic source
which has shown to be enough to reproducing the data.

The correlation is shown to be strongly dependent on
the mass M of the fireball. By varying the incident ener-

gy &s, one may experimentally study its average mass
((M)) dependence. In Figs. 10 and 11 we show some
predictions for such an energy dependence of m+n+ (or
n m)correlat. ion at the pp collider energies, by assum-
ing exactly the same kinematical restrictions imposed in
Ref. 15. As is seen, the correlation curve becomes nar-
rower as s increases and also the peak "shrinks" as a
consequence of this effect combined with the fact that

0415 &I.

CL

I I I I I I I I I

g i(0.50GeV

2.0—
(q,)~ 0.075GeV

1.8 ~
\

I
\

CL

M 37.5GeV

1.4

I
'

t
'

I
'

l

q0 I I
'- I l. .~~ ' I I I I

0 'O.5" t ~.O

q,(Gev)

FIG. 9. Average KK correlation coefficient, computed as ex-
plained in the text, is compared with the experimental data
(Ref. 15). The symbols are the same as those employed in Fig.
8. Following the experimental conditions, we have taken
(M) =40 GeV, (pz. ) =0.44 GeV, (())=0.85, and (qL ) =0.15
GeV.

1.0
0 0.1 0.2 0.3 0.4 0.5 0.6

q, (Gev)
FIG. 10. Energy dependence of the average m+n. + correla-

tion coefficient as a function of qT, computed under the assump-
tion of the same kinematical restrictions as in Ref. 15.
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FIG. 11. The same as in Fig. 10, but as a function of qL.

qL &0 (Fig. 10} or qr&0 (Fig. 11}. The narrowing is a
striking feature to be looked for and is related to the
growing of r, (and hence, of ( rz ) ) proportionally to
&(M) or to s'r, according to the asymptotic one-
dimensional Landau model. On the other hand, the fire-
ball mass is an event-dependent parameter since, as it is
well known, there is a large inelasticity fluctuation in ha-
dronic collisions. Being so, it is also desirable to see how
( C(p, ,p2 ) ) varies with M at fixed energy &s.

In comparing with the data, we have assumed forma-

tion of quark-gluon plasma which undergoes a (first-
order) transition as it freezes down to a critical tempera-
ture. The agreement with data is quite good suggesting
that the physical idea behind our model is reasonable.

The averaging over several kinematical variables
washes out many of the interesting features of two-
particle correlation. This is especially well illustrated by
Figs. 2 and 6. Although it may be an arduous task to get
statistically reliable data, it is worthwhile to narrow
down the kinematical windows, for it will certainly give
much richer information on the space-time structure of
the hadronic collisions.

In short, we conclude that in high-energy hadronic in-
terferometry, we cannot get any useful information either
about the nature of the source or about its dimension
without taking the longitudinal expansion eft'ects into ac-
count. (After completion of this work we became aware
of similar work by Makhlin and Sinyukov. )
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