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Strong-interaction effects on the baryon semileptonic decay form factors
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One-gluon QCD corrections to transition amplitudes describing the baryon semileptonic decays
B'~B+1+v have been investigated. All six form factors describing the hadronic matrix element
of the weak current between states of the spin-parity —,

'+ baryon octet have been calculated in the

framework of the MIT bag model, including one-gluon vertex corrections to order a . The results
provide QCD corrections to the usual phenomenological Cabibbo analyses, including induced
second-class form factors. Extensive numerical results are presented and compared with the data,
with special attention given to the recent high-statistics results for A and X P decay. The QCD
vertex corrections are significant and in general improve the agreement with the data. An excep-
tion, however, is g, /f, for A g decay, where the QCD vertex corrections do not reconcile the naive

predictions with the experimental results. The implications of this and other results for weak-
interaction phenomenology are briefly discussed.

I. INTRODUCTION

The recent high-statistics measurement of polarized
X P decay' and the A P decay results from Fermilab,
together with previous CERN (Ref. 3) and BNL (Ref. 4}
data on the semileptonic decays of the baryon octet, con-
front the Cabibbo hypothesis at a level of precision
where corrections to the naive predictions become
significant. Corrections due to baryon mass differences
and other strong-interaction effects, such as induced
second-class form factors, have to be taken into account.
In the standard SU(3) X SU(2) X U(l) gauge theory of
strong, weak, and electromagnetic interactions, the weak
current J,. (q) certainly satisfies the Cabibbo hypothesis
and its matrix elements, taken between confined states of
quarks and gluons describing the baryons, give the ha-
dronic part of the baryon semileptonic decay amplitudes.
In this framework, some symmetry-breaking effects can
be taken into account by allowing for different baryon
and quark masses in the hadron wave functions.

The confinement problem has so far proven intractible,
being a nonperturbative QCD effect, and in practice some
QCD-inspired model must be used for the baryon wave
functions. In the context of the MIT bag model, we
have previously evaluated the hadronic matrix elements
of the quark weak current Jx(q) and have investigated
the QCD effects induced by one-gluon corrections to the
standard SU(2}XU(l} electroweak interaction vertex.
We considered only the particular process X ~n

+ e +-v, in view of the recent high-statistics experiment
on polarized X P decay. ' The corrections were found to
be small, as expected, but suKciently large to be interest-

ing in view of the precision of the new data. Here we ex-
tend our calculations to the semileptonic decays of the
entire —,

'+ octet of baryons. The QCD effects turn out to
be significant, although not large. Several quite interest-
ing features emerge when our results are compared with
the data, as well as with some previous calculations. In
particular, neither QCD vertex corrections nor mass
differences reconcile the SU(6} predictions for A P decay
with the data, indicating that color-magnetic effects in-
volving spectator quarks are important. Also, the
second-class induced electric dipole form factor g2 is
found to be small and not significant in comparison to the
precision of the present data. The induced magnetic di-
pole form factor f2 agrees well with the conserved-
vector-current hypothesis, as well as with the data. For
the strangeness-changing hyperon decays, flavor-
symmetry-breaking effects in the vector form factor f,
are somewhat larger than expected.

In the following we recall some definitions in Sec. II
and present the calculations, including numerical results
in Sec. III. A summary of our results, a comparison with
the experimental data, and comments on related work are
given in Sec. IV, along with a discussion of our main con-
clusions.

II. PRELIMINARIES

The matrix element of the charged weak current be-
tween spin- —,

'+ baryon states, following standard conven-
tions, can be expressed in terms of six (real) Lorentz-
scalar form factors:
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iver„,q "f,(q-') q; f, (q')
FBI

l
J~(q}l B }=&j- 1')Ji(q'} — —+f+ I' ~j+ M+M M+M '-' '+ Ps ~j. ~

Here
~
B; ),

~ B& },u;, u&, M, , and M& are initial and final

baryon states, spinors, and masses, while q=—p; —p&, p;
and pj being the initial and final four-mornenta. The
form factors f, and g, are the usual vector and axial-
vector form factors, f& and g& are the weak-magnetic di-

pole and weak-electric dipole form factors, while f, and

g3 are the induced scalar and pseudoscalar form factors.
If SU(3) flavor were exact, 6 parity, suitably generalized,
would require the second-class form factors f, and g2 to
vanish. However, in reality we expect these terms to be
present, along with deviations from the exact flavor-
symmetry predictions for the other form factors, to the
extent that flavor SU(3) is broken.

Since the (timelike) momentum transfer is typically
small compared to the masses of the baryons participat-
ing in the decay [0&q &(M, —MI) «M, ,Mj], it is
convenient to anticipate the nonrelativistic limit and to
calculate in the Lorentz frame where p; = —pI ——q/2. It
is then straightforward to rewrite Eq. (1) in terms of the
rest-frame two-component spinors X, and Xj of the initial

and final baryons, and rotational covariants formed from
o and q, with coefficients that are scalar functions of q:
namely, Up, Uz, v~, ap, a&, and aT. Of these form factors

Up v~, a&, and aT are first class, while Uz and ap are
second class. We define these functions in terms of V) (q)
and Ax(q) where

(Bf I I). I
BI ~

I p, = —p =q/2 V'. ('q} A). (q}

One then has

In terms of the Lorentz-invariant form factors f; and g,
one readily finds, in this frame, the following linear rela-
tions:

uo f, +——( b Mj; /M/; )f, , (4a)

vi = —(AM&;/4M/M, )(f~+fi)+(I/M&;)fi, (4b)

uM ——(Mj;/4MjM;)(f, +f2),
ao ( EMf /4M''M, )'(g, —g, ) —( 1 /Mi; )g2

as =g, —(AM/; /Mj, )gi,
a'J ( g3 [g ] ( +~f /Mf )gQ'] ] /4Mi M';

(4c)

(4d)

(4e)

(4f)

III. FORM-FACTOR CALCULATIONS

A. Bare form factors

where b,M&,
——M; —M& and M&, =M;+M&. In Eqs. (4)

we have taken the nonrelativistic limit, neglecting all
terms explicitly of order q /M; and q /M&. In numeri-
cal calculations, described below, we shall evaluate V) (q)
and A~(q}, and hence the nonrelativistic form factors, u,

and a, , at q =0. Inverting Eqs. (4), we thereby determine
the relativistic form factors at q =0, corresponding to
q =q„=(AM&;) . We also note here that, although the
induced scalar and pseudoscalar terms f, and g, are
negligible in the /3-decay amplitude, their contributions
being proportional to the small electron mass, we must
retain all six form factors in the calculations in order to
invert Eqs. (4).

and

V (q) =X& [vo(q ) ]X, ,

V'(q)=X&[q'uv(q )+ie" q'o u„(q )]X, ,

A (q)=X&[o qao(q')]X, ,

A'(q)=Xj[o'as(q )+(q'q ——', q 5")o,ar(q )]X; .

(3a)

(3b)

(3c)

(3d)

We shall first outline the calculation of the form fac-
tors in the absence of any QCD corrections. The process
is schematically shown in Fig. 1. A more detailed discus-
sion, including the calculation of the vertex correction
which we describe below, has been presented in Ref. 8.

The bare form factors f ' and g,
' ' are found by

evaluating V', '(q) and AI '(q) using

2nfi(EI E; bM&, )[VI '(q) ———Ap'(q. )]=f d x e'~ "(B&~:QI(x)p)(1—ps)it);. (x):
~
B;) .

Here 1(;(x}and g&(x) are the initial and final quark fields
and the color index c is summed over. We shall assume
the MIT bag model for the baryon wave functions, with
the spin and flavor dependence given by SU(6), but shall
allow for fiavor-symmetry breaking by using the phenom-
enological bag-model values of the quark masses
(m„=m& ——5 MeV/c and m, =280 MeV/c ). Next, the
quark Selds are expanded in terms of the MIT bag eigen-

modes and the matrix element [Eq. (5)] is calculated as-
suming all quarks in the initial and final baryon states to
be in the ground state. It is then straightforward to ex-
pand the exponential in Eq. (5) in powers of q-x and iden-
tify the bare form factors U,

' ' and a,-' '. These are given
by space integrals over quark ground-state wave func-
tions multiplied by the appropriate SU(6) Clebsch-
Gordan coefficients. We have ignored slight differences



37 STRONG-INTERACTION EFFECTS ON THE BARYON. . . 3199

FIG. 1. B'~B+I +v in the absence of QCD corrections.
The solid lines represent the constituent quarks and the dashed
line is the 8'boson.

in bag radii encountered in fits of the baryon mass spec-
trum, adopting an average value, R=5.0 GeV '. We
have also circumvented the problematic issue of "boosted
bags" by evaluating U

' and a,' ' at q =0, taking both in-

itial and final baryons to be at rest in this frame. Finally,
using Eqs. (4) one obtains the bare form factors f,' ' and

g
' in the absence of any perturbative QCD corrections.

The numerical values of these bare form factors for the
various semileptonic decay processes are given in Table I.
These values agree with a similar calculation of Kohya-
ma, Oikawa, Tsushima, and Kubodera. ' We defer fur-
ther discussion of these results until the QCD corrections
have also been computed.

B. QCD corrections

As in the calculation of higher-order corrections to any
composite system one must take care not to double-count
effects which are already included in the bound-state
wave function. There is no systematic procedure for
treating the gluon exchanges between confined quarks,
shown in Fig. 2, which rigorously eliminates double
counting and we shall, therefore, necessarily be guided by
the conventional wisdom on the subject: One presumes
the problem of double-counting soft-gluon effects is
ameliorated by the fact that the energy of confined gluons
is bounded from below by a minimum zero-point energy,
providing for a de facto separation between the (hard)
gluons in the bag and the soft gluons responsible for the
formation of the bag. Soft-gluon effects are then conven-
tionally assumed to be implicitly included in the bag
wave functions.

FIG. 2. Gluon-exchange diagrams contributing to
B'~B+I+v. Quarks, gluons, and Wbosons are represented

by solid, wavy, and dashed lines, respectively.

Similarly, the phenomenologically determined bag-
model values of the quark masses already include the
contributions of quark self-energy diagrams, shown in
Fig. 3, inside the bag. We will follow the common prac-
tice, or so-called minimal prescription, and drop all
quark self-energy diagrams, except those which, together
with the gluon-exchange diagrams (Fig. 2) involving all
quarks in the bag, will produce zero radial color flux at
the bag surface. This eliminates well-known infrared
divergences which, in the Coulomb gauge, are associated
with the s-wave component of the bag Coulomb propaga-
tor Drl (Ref. 11). However, since we are using baryon
wave functions in which the quarks have well-defined en-
ergies, the intermediate quark states may be off mass
shell, since the W boson carries away energy in the P de-
cay. Consequently, only the on-mass-shell intermediate
quark states should be absorbed into wave-function and
mass renormalization.

TABLE I. Bare form factors evaluated at q-=AMi„with quark masses m„=m, l
——5 MeV/c- and

rn, =280 MeV/c-. For baryon masses the isospin-averaged values, M, =938.9 MeV/c-, M~ =1115.6
MeV/c-', Mz ——1193.1 MeV/c-, and M= = 1318.1 MeV/c- were used.

Process

n~p
X+ A

A~p
0

y0

1.000
—0.002

0.002
—1.015

1.208
0.986
0.697

—1.221

(0i

2.152
1.898

—1.898
1.636
1.005
2.713
1.918
0.346

0.0
0.064

—0.064
0.244

—0.008
—0.015
—0.010

0.164

(() i

gl

1.093
0.532

—0.532
0.232
0.868
1.189
0.840

—0.288

(() )gi

0.0
—0.093

0.093
—0.039
—0.038

0.067
0.047
0.024

—2.844
—2.240

2.240
—0.555
—1.878
—4.134
—2.923

0.937
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W g

FIG. 4. One-gluon vertex corrections. Quarks, gluons, and

W bosons are represented by solid, wavy, and dashed lines, re-

specti vely.

FIG. 3. Confined quark self-energy diagrams. Quarks,
gluons, and W bosons are represented by solid, wavy, and
dashed lines, respectively.

Moreover, it has been argued' that inside the bag the
transverse part of the gluon propagator dominates the
Coulomb part and explicit calculations support this argu-
ment by showing the Coulomb gluon contributions to the

I

gluon-exchange diagrams, the self-energy diagrams, and
the vertex corrections tend to cancel.

In the present calculation we sha11, therefore, consider
only the one-gluon vertex corrections to the form factors
due to transverse gluon exchange, shown in Fig. 4. Im-
plicitly we have assumed that all gluon-exchange dia-
grams (Fig. 2) and quark self-energy diagrains (Fig. 3)
have been absorbed into the baryon wave functions and
quark masses.

The one-gluon vertex correction (Fig. 4) to the bare
vertex (Fig. 1) is given to order a, =g, /4nby.

2@5(Ei E; —'hM~;—)[Vx"(q) —A~"(q)]=ig, fd x f d y fd ze'q'~D~t (z,x)(Bf ~,f f(z)& JA,;,.S F(z y)Z x(
I—Zs)

As above in Eq. (5) p; is the quark field operator for
Qavor i and color c while SF and D,b are, respectively,
the quark and transverse gluon propagators inside the
bag. Explicit expressions for these propagators are given
in our previous work. The factors A,;, are color-SU(3)
matrices. Summations over the color indices
(c,c', c"=1,2,3 and a, b =1,2, . . . , 8) and transverse in-
dices (j,k = 1,2,3) are understood in Eq. (6).

The calculation of the matrix element in Eq. (6)
proceeds as described above for the bare vertex. Using
rest-frame MIT bag ground-state wave functions for the
baryons, the exponential is expanded in powers of q y
and the rotationally invariant form factors U,

"' and a '',
evaluated at q =0, are identified. These calculations,
which involve energy denominators coming from the
quark and gluon propagators, quark-quark-gluon wave-
function overlaps, and an overall color factor of
Tr(A, 'A, ')= —',", were necessarily carried out numerically.
The number of eigenmodes required in the expansion of
the quark and gluon propagators was typically 7 or 8 to
ensure numerical accuracy, and thus entailed the evalua-
tion of a very large number of integrals over the various
intermediate states. Finally, the order-a, QCD correc-

tions to the form factors f,' '' and g
'' are found using

Eqs. (4). The numerical results are presented in Table II.
Of course, there are ultraviolet divergences expected in

these calculations, and we deal with this issue in the next

subsection. In fact, the summation over various inter-

mediate quark and gluon states, while large, was truncat-
ed in our numerical calculation, providing a large but

finite effective cutoff energy, A = 1 GeV.

C. Renormalization

As in the case of a free quark, " the one-gluon vertex
correction calculated for a quark confined inside a bag is

expected to be ultraviolet divergent, although this point
has never been rigorously demonstrated as it has been for
the one-gluon corrections to the quark self-energy inside
the MIT bag. "' To carry out the renormalization,
thereby removing the implicit cutoff dependence of the
calculations, we must first recognize that the bare form
factors f and g, already include some strong-
interaction contributions which are also QCD effects; i.e.,
effects due to the inAuence of the bag boundary. There-
fore, in the renormalization procedure, these should be
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TABLE II. One-gluon (unrenormalized) vertex corrections to the form factors at q-=AM&„using
the same mass parameters as for Table I.

Process f I |I ii)gi

n~p
2 "~A

A~p
0

y0

0.606
0.001

—0.001
—0.515

0.639
0.519
0.367

—0.636

—2.175
—0.945

0.945
0.270

—1 ~ 513
—1.980
—1.400

0.981

0.0
—0.032

0.032
0.024

—0.140
—0.136
—0.096

0.104

—0.002
—0.004

0.004
—0.015
—0.044
—0.053
—0.038

0.016

0.0
—0.069

0.069
—0.046
—0.101
—0.101
—0.071

0.048

—2.777
—2.054

2.054
—0.489
—1.682
—3.423
—2.421

0.784

and

f; (q') =f;""""(q') f; +F;—
g, (q') =g;"""'"(q') g;+G, . —

(7a)

(7b)

Here, the renorma1ization constants F, and 6, are deter-

treated in the same sense as the QCD vertex corrections
f,'" and g,"', which are explicitly of order a, . Adopting
this approach, we shall assume that soft-gluon contribu-
tions to f ' and g;

' can be formally handled as correc-
tions of the same order as the QCD vertex corrections.
That is, we identify the values of the form factors in the
free quark limit, given by their standard SU(6) values, "
and treat the deviations hf, ' ' and hg, ' ' of the bare form
factors from these values as formally being of the same
order as the explicit order-a, vertex corrections f,'" and

(1)

The renormalization then proceeds in the usual
manner. We choose the renormalization point to be the
SU(3)-symmetric limit of equal quark masses m and equal
baryon masses M. Moreover, we shall assume that this
limit is realized at m=5 MeV/c and M=939 MeV/c,
where the renormalization constants can be determined
from neutron-P-decay data. We define the values of the
unrenormalized form factors, f;""""=f '+f " and
g;""""=g '+g ", calculated at this SU(3) symmetry
point to be f; and g; and give their numerical values in
Table III. To lowest order in the QCD corrections, the
multiplicative renormalization constants can be expanded
leading to renormalized form factors f, and g; given by

mined for the entire octet from neutron-P-decay data us-

ing SU(6) Clebsch-Gordan coefficients. We use the fol-
lowing data' as input:

F, (n~p)=1,
F~(n ~p)=(Kp —K„)=3.706,

F3(n ~p) =0,
G, (n ~p) =1.254,

G~(n ~p)=0,
G, (n ~p)=0 .

(8a)

(8b)

(8d)

(8e)

(8

It is then straightforward to calculate all the other con-
stants F;(B;~B& ) and G;(B; ~B& ) in terms of F;(n p)
and G;(n ~p) and SU(6) Clebsch-Gordan coefficients.

Here it should be emphasized that in using full SU(6)
spin-Aavor symmetry, as opposed to the lesser restrictive
SU(3)-fiavor symmetry, we have implicitly fixed the F/D
ratio for both f& and gi to be =', . Also, in Eq. (8f), we

have ignored any strong-interaction contributions to g,
in the SU(6)-symmetry limit; specifically, Nambu-
Goldstone meson pole contributions. We shall discuss
both of these points further after giving our numerical re-
sults.

In Table IV the numerical values of the renormalized
form factors, Eqs. (7), for the various semileptonic decay
processes are presented. Since the recoil of the baryons,
q=p, —pf, was neglected in all calculations, these form
factors refer to a four-momentum transfer of
qi ——(M; Mf ) in each ea—se.

TABLE III. Unrenormalized form factors, including (unrenormalized} vertex corrections at the
flavor-SU(3)-symmetric point q-=0 with equal quark masses in=5 MeV/c- and equal baryon masses
M=939 MeV/c .

Process gi

A~p
0

yO

1.606
0.0
0.0

—1.606
1.967
1.606
1.135

—1.967

—0.023
0.775

—0.775
1.922

—0.803
—0.023
—0.016

1.579

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.091
0.534

—0.534
0.217
0.801
1.091
0.771

—0.267

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—5.621
—2.753

2.753
—1.124
—4.130
—5.621
—3.975

1.376
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TABLE IV. Renormalized form factors, including one-gluon vertex corrections, evaluated at

q =AMf;.

Process

n~p
X+—+A

X ~A
~n

A~@
~0

yo

1.0
—0.001

0.001
—0.924

1.10S
0.899
0.636

—1.115

3.706
2.483

—2.483
1.925
2.528
4.462
3.154

—0.162

0.0
0.032

—0.032
0.268

—0.148
—0.151
—0.106

0.268

1.254
0.608

—0.608
0.249
0.944
1.299
0.918

—0.312

0.0
—0.162

0.162
—0.085
—0.139
—0.034
—0.024

0.072

0.0
—1.541

1.541
0.080
0.570

—1.936
—1.369

0.345

IV. DISCUSSION

All values of the renormalized form factors in Table IV
have been calculated for each process at the relevant
value of O'=AMf';. To compare with the experimental
data, as well as with other calculations, we shall assume
the usual, empirical dipole form for the q dependence of
the vector and axial-vector form factors:

f, (q )=f, (0)(1—q /M~)

g, (q ) =g, (0)(1—q /M„)

(9a)

(9b)

Fitting the data one finds Mv ——0.84 GeV/c and

M~ =1.08 GeV/c for AS=0 transitions. The conven-
tion of rescaling by the vector-meson mass ratio,
mz, /m~, then gives M„'=0.98 GeV/c and M„'=1.25

GeV/c for AS=1 processes. We shall neglect the (un-
known) q dependence of the other form factors since it is
unimportant at the current level of experimental pre-
cision.

The most precisely measured quantity in hyperon P de-
cay is the ratio g, (0)/f, (0). In Table V we have listed
the experimental values of this ratio and our results, both
neglecting any QCD effects (bare) and including the one-
gluon vertex corrections (renormalized). We also present
the corresponding results of Ushio and Konashi' who in-
cluded one-gluon-exchange effects (Fig. 2) but neglected
the transverse gluon propagator in calculating the vertex
correction. For comparison, we also list the results for
the MIT bag model of Lie-Svendsen and Hggaasen, who
have considered recoil effects, but not QCD corrections.

There are a number of other calculations' ' which
use various other quark-confinement models and/or in-
put parameters but do not include the order-a, . QCD
corrections; for the most part, these are all in agreement
with the bare calculations listed in Table V. We have
also chosen not to make comparisons with those quark-
confinement models which augment the quark degrees of
freedom in the MIT bag model with pseudoscalar meson
fields, usually to implement PCAC (partial conservation

TABLE V. g~( 0) f/, ( )0, except for X~A where g&(0) is given since f, (0) vanishes. The experimental values assume f2/f, is
given by CVC and g2 ——0.

Process Bare QCD

Ushio and
Konashi

Lie-Svendsen
and Hgfgaasen

Static Recoil

Present
calculation

Bare QCD Experiment

n~p
X ~A
X ~n

yo

(gl /f1 )A-p

(g I /f I )x—

1.09
—0.53
—0.24

0.72

1.20

0.24

—3.00

1.12
—0.56
—0.31

0.73

1.23

0.22

—2.35

1.09
—0.52
—0.24

0.74

1.21

0.25

—3.08

1.09
—0.52
—0.24

0.73

1.21

0.25

—3.04

1.09
—0.53
—0.24

0.74

1.22

0.24

—3.06

1.25
—0.60
—0.29

0.88

1.46

0.29

—3.08

1.254+0.001'
0.589+0.016

—0.34 +0.05'
—0.29 +0.07

0.327+0.020'
071 +0 03
0.70 +0.03'
0.73 +0.03'
1.25 +0.15
0.30 +0.04
0.25 +0.05'

—2.21 +0.21~

'Particle Data Group (Ref. 16).
bCERN WA2 result for

~ g, /f,
~

from branching-ratio measurement (Ref. 3).
'CERN WA2 result from form factor analysis (Ref. 3).
Fermilab E715 result from electron asymmetry (Hsueh et al. , Ref. 1).

'Fermilab E715 result for
~ g, /f, ~

from neutron spectrum (Winston, Ref. 1).
'BNL result (Ref. 4).
~Average value for data quoted above.
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of axial-vector current) in some form. Through the in-
clusion of pion (ES=O) or kaon (b,S=1) poles (long-
distance effects which are neglected in this calculation),
more realistic values for g3 are presumably obtained, at
least in the ES=O case. However, spurious meson poles
are simultaneously introduced in the axial-vector (g, )

and pseudotensor (g2) form factors as well. ' Although
such artifacts of these extended bag models can be sub-
tracted away by hand, they pose a serious inconsistency
in principle when QCD corrections are included and we
shall not consider them here.

Comparing the results in Table V, all of which have
been extrapolated to q =0 as described above, it is clear
that there is good agreement among all the calculations
when QCD effects are neglected, thus providing a check
on the numerical computations. And Lie-Svendsen and
Hr(gaasen's results show that we can safely neglect recoil
effects.

Turning next to one-gluon QCD effects, we give in

Table V the QCD-corrected results for g, (0)/f t(0) of the
present calculation and those of the Ushio and Konashi.
Recall that in the present calculation the one-gluon-
exchange effects (Fig. 2) were assumed to be implicitly
contained in the quark wave function and the one-gluon
vertex correction was calculated using the transverse
gluon propagator, which gives the dominant part. Ushio
and Konashi, on the other hand, included one-gluon-
exchange effects but neglected the transverse part of the
gluon propagator in calculating their QCD corrections.
Observe from Table V that, with the exception of A P de-
cay, the QCD corrections in both calculations improve
the agreement with the data. In the case of A P decay,
however, there is a substantial disagreement with the
data when the QCD effects we have calculated are includ-
ed. This is particularly puzzling since the QCD correc-
tions significantly improve the agreement with the data
for the process most similar to A P decay, namely, X f3

decay. The mass differences are relatively small and in
both A and X 13 decays a strange quark decays to an up
quark. But the spectator quarks, while both light, are in
quite different spin-isospin states in the A and X hype-
rons. Therefore, comparing our calculations with Ushio
and Konashi's and with the data we conclude that there
must be important effects associated with the spectator
qua rks.

Process

TABLE VI. gp/g, (0).

Lie-Svendsen
and Hdgaasen

Static Recoil

Present
calculation

Bare QCD

l1 ~P
X A

0
—0.15
—0.05

0.04
0.10
0.0

0
—0.15
—0.16
—0.06

0.0
—0.10

0
—0.18
—0.18
—0.04

0.06
—0.09

0
—0.27
—0.37
—0.15
—0.03
—0.24

To emphasize this point we give in the bottom row of
Table V the ratio

lgt(0)/f)(0)lA p

[g, (0)/f, (0)]z
(10)

(gt/ft)~ p

(gt/ft), —

F+D /3 1+@
F—D 1 —3e

= —3 —12'+ . (11)

a quantity which one would expect to be insensitive to
systematic errors. Note that except for the QCD-
corrected results of Ushio and Konashi, all the calculated
values of this ratio are quite close to the naive SU(6) pre-
diction of —3, which is in substantial convict with the
data. Thus we have unequivocal evidence for SU(6)-
symmetry breaking beyond that which can be accommo-
dated by quark/hadron mass splittings, recoil correc-
tions, or QCD vertex corrections. Indeed, the agreement
between the results of Ushio and Konashi and the experi-
mental value for this ratio suggests that SU(6)-breaking
perturbative corrections to the initial and 6nal baryon
wave functions, of the sort induced by gluon exchange
(Fig. 2), are quite essential.

It is worth emphasizing the sensitivity of the ratio (10)
to SU(6)-symmetry-breaking effects. Taking the expres-
sion for this ratio as a function of the F/D ratio and ex-
panding in powers of the deviation of F/D from its SU(6)
value, e:F/D ——'„w—e have

TABLE VII. filf~(0), except for 2 A where f~ is given since f, (0) vanishes.

Process CVC

Lie-Svendsen
and Hgfgaasen

Static Recoil

Present
calculation

Bare QCD Experiment

tl —+P
X A

n

3.71
—2.34
—2.03

1.79
3.71

—0.12

2.17
—1.94
—1.85

0.90
2.86

—0.30

1.88
—1.79
—1.80

0.74
2.59

—0.36

2.15
—1.90
—1.85

0.89
2.84

—0.31

3.71
—2.48
—2.39

2.44
5.12
0.16

3.71 (input)
—3.51+3.51'
—1.82+0.61"
—1.71+0.27"

2.43+ 1.49"

—0.44+0.46'

"CERN WA2 (Ref. 3).
"Fermilab E715 (Ref. 1).
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Thus, first-order deviations from SU(6) symmetry are
amplified by an order of magnitude making this ratio,
which is quite well measured, extremely sensitive to the
value of F/D.

One can understand the physical significance of the
one-gluon-exchange diagrams (Fig. 2) by recalling that
the QCD tensor force, a color magnetic effect, is well
known to be quite important for the hadron mass spec-
trum; specifically, the P states of charmonium and the
X -A mass splitting. Thus, it is not so surprising that in
the strangeness-changing processes A~p +e +v,, and
X ~n+e +v,, , although quite similar, the different
spin states of the light spectator quarks in the two pro-
cesses is very significant. We can conclude that any
quark confinement model based on only a central poten-
tial and taking the spin-Aavor part of the wave function
from SU(6) is most certainly going to predict the ratio
(10) to be close to —3, the SU(6) value. It is imperative
to take into account the configuration mixing in the
spin-Aavor part of the wave function induced by the one-
gluon-exchange diagrams of Fig. 2.

In Table VI we present results for g~/g, (0), where g2 is

the induced second-class electric dipole form factor. Our
calculation indicates the QCD effects are significant while
Lie-Svendsen and Hgfgaasen find recoil effects are less im-

portant. However, the main point is that neither calcula-
tion finds very large induced second-class effects for any
of the hyperon /3 decays. The recent high-precision X
)33-decay experiment' suggests the presence of such a
second-class term, finding

g2/g, (0)= —6.7+4. 8 . (12)

While the experimental uncertainty is quite large, at least
the sign agrees with the calculations. We also point out
that the magnitudes of gz/g, (0), particularly for the pro-
cesses A ~p and X ~n, are not large enough to
significantly influence the comparison of g, /f, with the
experimentally measured ratio g~ /gz, which differs from

g, /f, by terms of order (b,Mf, /Mf, )(g~ /f, ). The
second-class form factor g2 is too small to significantly
affect our above discussion of the values of g, (0)/f, (0)
and our conclusion that the effects of the spectator
quarks are important.

Table VII gives our results for f2/f t(0) and compares
them with the data as well as the calculations of Lie-
Svendsen and Hgfgaasen and the conserved-vector-
current (CVC) predictions. It is clear that both recoil
and QCD corrections are important. Unfortunately, the
experimental data are not very precise, but the general
agreement is good.

Table VIII gives the ratio of f, (0) to the naive predic-
tions f, of the conserved-vector-current hypothesis.

TABLE VIII. f, (0)/f, " except for X A where f, (0) is

given since f, vanishes.

Process

Lie-Svendsen
and Hdgaasen

Static Recoil

Present
calculation

Bare QCD

)1 ~p
X ~A

A p
y()

1.000

0.896
0.929
0.956
0.920

1.000

0.887
0.924
0,953
0.913

1.000
0.002
0.883
0.923
0.954
0.914

1.000
0.001
0.804
0.844

0.870
0.834

Again, as a check on the numerical computations, we
note that our calculations agree with Lie-Svendsen and
Helgaasen when QCD effects are ignored. The principal
observation here, however, is that the deviations of f, (0)
from the CVC values are substantial for the AS=1 pro-
cesses in both calculations. In fact, QCD corrections ex-
acerbate the disagreement, while the recoil corrections
make little difference. This is contrary to expectations
based on the Ademollo-Gatto theorem, ' which states
that the flavor-symmetry-breaking effects in f ~

are
second order, although it is not so clear precisely how
large this means. This could have significant implications
for the determination of the Cabibbo angle, as well as
other Kobayashi-Maskawa matrix elements. Certainly,
the issue should be explored further, systematically in-
cluding QCD corrections in all the experimental informa-
tion used; specifically, meson semileptonic decay data.
Incidentally, the ratio (10) is not significantly affected
since for the A and X P decays the corrections to f, are
nearly in the same ratio.

We conclude that the hadronic P-decay data, taken to-
gether, are now sufficiently precise to challenge the stan-
dard model at the level of the order-a, . corrections and
more ambitious calculations are warranted.
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