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The anticharm-charm asymmetry A (c,c ) in the inclusive decay of tagged B and B mesons is

calculated within the context of the Kobayashi-Maskawa (KM) model. It is shown that 3 (c,c) is

independent of the final-state interactions to a very good approximation. By using estimates of
branching ratios, of the differences of the masses of the eigenstates of the Bd and the B, , and of ma-

trix elements of the quark currents, we find
~

A (c,c )
~

(0.01. If instead of using those estimates of
the three sets of parameters we treat them as unknowns, we find that an upper limit on the magni-
tude of A (c,c) in the context of the model is of the order of 5%. A measurement of A (c,c ) leading
to a value significantly greater than 5% would be a clear indication that the KM model does not
provide a comp/etc description of CI' violation.

I. INTRODUCTION

The only unambiguous experimental evidence for CP
violation at the present time is that provided by the decay
and interference phenomena of the neutral K mesons. '

The possibility for gaining insight into the fundamental
origins of CP violation is thereby greatly limited. The 8
mesons appear to be the best candidates for experiments
that might provide additional information. Methods us-

ing the separation of a long-lived from a short-lived
species that have made possible the CP experiments with
the K K system are not applicable to the 8 8 system
because the lifetimes associated with the two eigenstates
of the 8 mass matrix are expected to be about equal. The
near equality is a consequence of the large energy release
and the concomitant great variety of modes in 8 decay,
which tend to equalize the total amount of phase space
available in the decay of the two eigenstates.

Methods suggested for measuring CP violation for neu-
tral mesons heavier than the K, such as the 8 mesons,
therefore have been based instead on determining an
asymmetry in the decay of 8 and 8 into one or another
specific mode. Because of the importance attached to
obtaining new information concerning CP violation there
have been exhaustive studies' of particular (exclusive) de-
cay modes of the 8, 8 system on the basis of the
Kobayashi-Maskawa (KM) model, to determine which
of them are most likely to exhibit 8 -8 asymmetries.

There are difticulties associated with calculating the
asymmetries for exclusive modes. They arise primarily
from the unknown final-state-interaction effects, that is,
the effects of the strong interactions among the hadrons
comprising the particular decay mode. The many
different decay modes associated with a given set of con-
served quantum numbers are mixed by strong final-state
interactions. Their unmixing to specify the amplitude of
an exclusive mode requires a knowledge of many eigen-
phases of the strong-interaction S matrix.

There are also experimental problems with exclusive
modes associated with picking a particular mode out of

the plethora of modes into which the 8's may decay.
This difficulty might be mitigated in experiments on in-
cIusiUe modes, those including all modes containing one
particle of a particular type. The selection criteria are
not then so severe and the data rate is much greater.

It is our purpose here to assess the possibility of testing
CP invariance by observation of the inclusiue asymmetry
between charmed particles and their antiparticles in 8,
8 decay. %e shall show that in the calculation of the
inclusive asymmetry on the basis of the KM model the
dependence on the final-state interactions is strongly
suppressed. Therefore the interpretation of inclusive
charm asymmetries is much more straightforward than
that of exclusive asymmetries. Because the simplicity of
the interpretation is a direct consequence of the KM
model, measurement of the inclusive asymmetry may also
provide an opportunity to test the model.

There are, of course, uncertainties in the calculation of
the inclusive asymmetries. They arise in connection with
the evaluation of the matrix element of the effective weak
interaction for each mode, the determination of relative
branching ratios of the various modes, and estimating the
relative production of B, mesons versus Bd mesons.
Again, some advantage is regained by consideration of
the inclusive modes because the inclusive asymmetry de-
pends on the sum of products of amplitudes over a corn-
plete set of states, which can be estimated with some
confidence.

We treat only the case of tagged neutral 8 mesons
since it is the simplest case. However the asymmetries
obtained from 8 8 pair production, i.e., by "leptonic
tagging" or by determining the like-charmed-particle
asymmetry,

[N(c, c ) N(c, c )]l[N(c,c )—+N(c, c )],

are expected to be of the same order as the tagged-beam
asymmetry.
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II. THE INCLUSIVE ASYMMETRY

The quantity to be measured in a determination of the
anticharm-charm asymmetry is taken to be

N(c) N—(c )+N(c ) N—(c)
N(c)+N(c )+N(c )+N(c)

where N(c) [N(c )] is the total number of decay events in
a tagged 8 beam for which a (single) charmed [an-
ticharmed] particle has been identified and N(c) [N(c }]
is the corresponding total number for a tagged 8 beam.
These numbers must be normalized to correspond to 8
and 80 beams of equal intensity. The use of this com-
bination of the more conventionally defined asymmetries
based on separate determinations of N(c} N(c—} and
N(c) N(c) —simplifies the calculation of the asymmetry
in terms of decay amplitudes.

These amplitudes are given as matrix elements between
the pure state

~

8 ) and
i
8 ) and final states

i f ) that
describe specific modes of decay. Therefore the calculat-
ed asymmetry is given by

XI[N(f) —N(f )+N(f )—N(f)]n, (f)
A(c, c)=

XI[N(f)+N(f )+N(f )+N(f)]n, (f)

where N( f) (N( f)} is the calculated total number of de-
cays into state

i f ) per tagged 8 (8 ) particle, n, (f ) is
the number of charmed and anticharmed particles in
mode f, and the sums are carried out over all modes f
(f ) that include a charmed (anticharmed) particle such as
a D (D), D' (D '), or D, (D, ). A single mode f may of
course include both a c quark and its antiquark c, but in
that case to be included in the sum f must have "open"
charm; that is, n, (f)=2 [n,(f))2 is excluded by energy
conservation) because an inclusive event is defined as one
for which either a single charmed or a single anticharmed
particle is identified. Note, however, that when such a
mode is self-conjugate, that is, f=f, it is counted doubly
in Eq. (1) so that we must substitute n, (effective) —= 1 for
open self-conjugate channels.

The calculation of N(f) and N(f) is straightforward
and yields

N(f)= (2+x )~(f ~8 )i —2xIm +(f iB )'(f iB ) +x +(f iB )
2

2(1+x ), (2a)

N(f)= (2+x'}
I

&f
I

8'& I' —2x Im &f I
8'&'&f

I

8'& +x' +&f IB'&
q

2(1+x ), (2b)

where

x =6m /I

Am is the mass difference and I the decay rate of the
eigenstates of the B,B mass matrix, (f ~

8 ) and
(f ~

8 ) are the decay amplitudes of the states
i
8 )

and
~

8 ), and p, q are the mixing coefficients describing
the eigenstates of the mass matrix:

effect of the final-state interactions, which appears as a
common phase factor in (f i

8 ) and (f 8 ), drops
out of the expressions for N( f ) and N(f ). In the follow-
ing,

~ f ) and
~ f ) = CP

i f ) denote such eigenstates of
the S matrix unless we specify otherwise.

The other reason for simplification is that in the KM
model the amplitudes (f ~

8 ),(f i
8 ) consist of a fac-

tor depending on the KM matrix elements multiplying
the matrix element of a CP-invariant and T-invariant
operator. All effects of CP (and I) violation on an ampli-

The distinct values of these parameters for the Bd and 8,
will be denoted by xd, x„pd,p„and qd, q, . In obtaining
Eqs. (2a) and (2b) use has been made of the assumption
that the relative difference between the decay rates of the
two eigenstates is very small.

The inclusive decay properties are obtained by sum-
ming N(f) and N(f) over states

~ f ). These sums take
on a particularly simple form for the KM model. The
simplification arises for two reasons. One is the direct re-
sult of summing over all states

~
f ) having the appropri-

ate total quantum numbers (energy, momentum, angular
momentum, charm, etc.}. From the form of Eqs. (2a) and
of (2b) it is clear that the sums are independent of the
choice of representation of the states

~ f ) within the set
corresponding to the given quantum numbers as long as
all states of the set are included. Since the total quantum
numbers are conserved by the strong interactions, the
states

i f ) may then be chosen to be the eigenstates of
the strong-interaction S matrix. With that choice the

b to Vertex W+ to Vertex
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V,b

V„*b

Qd

Qs

cd
cs

I+v
Qd

Qs

cd
cs

1+v
td
ts

V„d

V„,
V,d
V„

V„d

V„,
V,d
V„

Vr.

TABLE I. Flavor decay channels and associated KM matrix
elements of the B meson. (Entries for the B are obtained by re-
placing all quarks by their antiquarks and taking the conjugate
complex of the vertex matrix elements. )
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1&fy IB'&
I

=
I &fy 8'&

I
(6)

I

tude are determined by the phases of the KM matrix ele-
ments in the factor, which is the same for all Anal states
arising from a weak vertex having a given Aavor composi-
tion, denoted as the "flavor channel" ((}. Thus the sum
over final states may be divided into sums over all modes

f& associated with a given flavor channel P, each such
sum having a common CP-violating phase. For example,
f, represents any hadronic mode Dn, Dn~, etc. , of Bd
that can be formed from cdud (/=1 in Table I) by ha-
dronization. Except for one important class of states, the
self-conjugate states to be treated later, the

I f& ) may be
taken to be eigenstates of the S matrix because total
fiavor is conserved by the strong interactions.

The quark flavor channels P for 8 decay are illustrated
in Fig. 1 (where a "spectator" d or s quark for the Bd or
B„respectively, must be added to each of the indicated
three-flavor channels and included in the definition of P)
and Table I. Since the Viz for a given

I f&) depend only
on P, the factorization of decay amplitudes means that

(fq18 )=U~a(f~)e
(4)

(f, 18 ') = U,*.-(f, ).'

where U4, is the product of the V i, associated with chan-
nel ((} in Table I and 25(f& ) is the eigenphase of the S ma-
trix associated with the eigenstate

I
f&). The CP invari-

ance of the amplitudes a( f& ) implies that

a(f~)=a(f~)
if we adopt the phase convention CP

I
8 ) =

I
8 ).

Furthermore, since ae' and ae' are matrix elements
of a T-invariant operator, the reduced amplitudes a and a
are real quantities (under the assumption of spin 0 for the
8 meson). Finally we note that application of Eq. (5) to
Eq. (4) yields

c, u, t

, c, t (I'}

FIG. 1. The generic Aavor channels into which the 8 mesons
decay. The accompanying (spectator) d or s quarks (for the Bd
or B„respectively) are not sho~n. The contribution of the tt
pair is limited to their annihilation into gluons leading to
lower-mass hadrons (penguin diagrams).

uy)=~
p U~

(7b)

and

(p/q)( f&18') /( f&18 ') =) *(P)a(f~)/a(f~) (7c)

under the generally accepted assumption that
I p /q

I

—1 is negligible for the Bd and 8, .
If we denote by N& and N& the sums of N(f&) and

N(f&) over all final states associated with a given P and

P, N& is then found from Eq. (2a) to be

It is apparent that the interference terms in Eqs. (2a}
and (2b) occur only if there is a common final state for
the decay of 18 ) and 18 ). Since the flavor channels
available to 18 ) are the charge conjugates p to those
shown in Fig. 1 and Table I, interference arises only be-
tween those channels P for which there is another chan-
nel (t

' such that ((}
'—=P. For such a tI} we have

(q/p)(fp I
8 )/(f~18 ) =M/)a(f~)/a(f~), (7a)

where

N& ——
I (@18 )

I
[2+x +x

I
A(P)1 (

I
a/a

I )&—2x Imh(P)(a/a )&]/2(1+x ),
while Eqs. (2b), (6), and (7) give

N& 1($18 )
I

[2——+x +x
I A($)1 (

I
a/a

I
)&+2x ImA(P)(a/a )&]/2(1+x )

with

(a/a )y /8(fy)a(fy)la(fy)——,
fp

&1.-/.
I
'&,=yB(f, )

I a(f, }/a(f, )1',
fp

and

(8a)

(8b)

(9a)

(9b)

1&((}18'&
I
'=X

I &fp I
8'&

I

' .
fp

B(f&}is the branching ratio for the mode f& relative to all modes of the same P. These averages, Eqs. (9a) and (9b), are
independent of final-state interactions.

By replacing P by P' and again making use of Eq. (6b) we also find

and

N&
——1($18 )

I
[(2+x )

I
A(P)

I
(

I
a/a

I )&—2x Imk(P)(a/a )&+x ]/2(1+x )

N~= 1($18 )
I

f(2+x )
I
A($)

I
(

I
a/a

I
)&+2x Iml($)(a/a )&+x ]/2(1+x ) .

(10a)

(lob)
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Therefore if the inclusive asymmetry between channels P
and P is defined as

N~ —N-+N- —N~

N~+N~+N~+N~

we find that

2x Imk($)(a/a )~
A~~ ———

(1+x )[1+
I
A(p)

I
(

I
a Ia

I )4]

We have noted that interference between the hadronic
decay modes will occur only for those flavor channels
satisfying the condition p=—p'. For the Bd, it can be seen
from Table I that this condition is satisfied for /=1,
r()'=8, while for the 8, it is satisfied for /=2, P'=9.
Therefore their contributions to the inclusive asymmetry
are given by inserting Ad(1) and k, (2) into Eq. (11).

The other fiavor channels for which P'=P is satisfied
are the self-conjugate channels having p—:p. These are
/=3, 6 for the Bd and /=4, 7 for the 8, . A modification
of Eq. (11) is needed for these cases because the modes f3

and f6 of the Bd and the modes f4 and f7 of the 8, are
flavorless and may have the same total quantum num-
bers. Therefore they will in general be mixed by the
strong interactions so that the contributions to the asym-
metry of the pairs of flavor channels cannot be separated
as in Eq. (1 I).

A first step in the required modification is to identify
the eigenmodes associated with such a pair of channels as
CP eigenstates, since CP is conserved by the strong in-
teractions. To simplify the notation, we omit the P label
and denote these states by

I f+ ) with

CP
I f+ & =+

I f+ &

teractions can produce open charm modes only through
the intervention of gluon interactions, which may be
treated as a final-state interaction effect to the extent that
gluon production at the weak-interaction vertex can be
neglected. Therefore it is a good approximation to as-
sume that for these two cases the contributions to the
matrix elements directly into the open channels are negli-
gible:

&f+ I
Bd') y=6=0 &f+ I 8'&y=7=0 .

The states
I f+ ) may be written as

I f '+ & =cosP+
I f '~" &+»nP+

I f '+ ' &,

(14)

(15)

+a3(f'+')e 'sinP+],
i5)

(f+ I
8, ) = U4[a4(f'+')e 'cosP+

+a4(f '+' )e 'sinP+],

(16a)

(16b)

and (f+ I
8 d ) and ( f+ I 8, ) are obtained from Eqs.

(13b) and (13d) by replacing U3 and U4 in Eqs. (16a) and
(16b) with + U3 and + U4, respectively. Therefore

arid

&f+ IBd&/&f+ IBd& +U3/U3 (17a)

where
I fg' ) with j= 1,2 are the two independent eigen-

states of the 5 matrix required to form the open state
I f ). The eigenphases associated with these eigenstates

are 25, and p+ defines the unitary transformation to the
corresponding pairs of open and closed states. Therefore,
Eqs. (13a), (13c), and (14) lead to

ibl
(f+ I

Bd ) = U3[a3(f+')e 'cosP+

Then, in place of Eq. (4), we have (f IB,)I(f' IB, )=+U;IU, (17b)

&f+ IBd& +[U3a3(f+)+U6a6(f+)]e

Similarly we find

(f+
I
8, ) =[U4a4(f+)+U7a7(f+)]e

(f+
I
8, ) =+[U4a4(f+)+U7a7(f~)]e

(13b)

(13c)

(13d)

In order to obtain the contribution to the anticharm-
charm asymmetry from these amplitudes we must deter-
mine the linear combinations of the states

I f+ ) corre-
sponding to states

I f+ ) having only open charm, that
is, n, (f+)=2. Closed charm modes [n, (f)=0] such as
err, KK, and purely pionic modes must be excluded. But
the states

I f+ ) are not, in general, eigenstates of the S
matrix because the open and closed modes can be mixed
by the final-state interactions.

We note (see Table I) that for the B„(B,) channel 6 (7)
does not include charmed quarks. Therefore these in-

(f+ I Bd & = [Uia 3(f+ )+ U6a 6(f+ ) le

where, as before, a3(f+ ) and a6(f+ ) are real matrix ele-
ments of a CP-invariant (and T-invariant) operator.
From this CP invariance and Eq. (12) it follows that

A~~
——Add, ———[x I(1+x )]1m'.(p)F, (18)

where F is the relative difference between the average

to a very good approximation.
From these results it follows that the sums of N(f 0)

and N(f ) over all self-conjugate channels, which we
denote again by N& and Nd, with /=3 (4) for the Bd (8, ),
take the form of Eqs. (8a) and (8b) with a /a replaced by
+1 for the even or odd states, respectively. Thus
(

I
a/a

I )4,——1 for /=3, 4. On the other hand, (ala )&
is small in this case because for almost every even mode
there corresponds an odd mode and, on the average, it is
to be expected that the branching ratios for these modes
will be almost equal as a consequence of the many possi-
ble combinations of states. The only exceptions are the
pure DD and D,D, modes and the pure DDT and
D,D, m. modes. The former modes must be in CP-even
states and the latter in CP-odd states because the D and
presumably the D, have spin 0 and are assumed to satisfy
Bose statistics. Therefore their net contribution to
( a /a )& is also expected to be small.

We note further in this case that
I

A, & I

= I in the ap-
proximation

I
p!q I

= 1 so that the contribution to the
asymmetry, Eq. (11),for /=3 or 4 is
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branching ratios for the CP-even and the CP-odd modes.
The inclusive asymmetry is obtained from the weighted

average of the contributions of Eq. (11) with tt =1 for the
Bdo and /=2 for the B,o and the contributions of Eq. (18)
with /=3 and /=4 for each of these cases. The weights
are given by the approximate branching ratios for each
term and the B, to Bd production ratio.

III. THE ASYMMETRY
IN TERMS OF KM PARAMETERS

A. (1)= sc(p —i')[1——(p+iri))I[1 —(p i')—],
A. (3)=[1—(p+iri)]/[I —(p ig—)],
A, '(2) =p i ri, —

(19a)

(19b)

(19c)

%"e make use of the parametrization of the KM matrix
suggested by Wolfenstein with Wolfenstein's A, replaced
by s& ——sinOC where 8& is the Cabibbo angle. This is used
to find expressions for the VJ shown in Table I. The
phase of q/p appearing in A, (tI)), given by Eq. (6b), may
also be expressed directly in terms of these parameters in
the approximation Ip/q I

=1. The resulting values of
A, (P) are as follows:

By inserting these expressions into Eq. (11)and Eq. (18)
we find

—2xd scg(1 —p —g )

1+xd (1—p) +g
(20a)

2x 'g (a/a &,

1+x,' I+(p'+g')(
I
a/a

I
'&,

(20b)

2xd g(1 p)
A33 —— F

1+xd (1—p) +ri
(20c)

—2x
$ s 2 $QscF

1+x,
(20d}

A(c, c)=p(Bdo) A d(c, c)+p(80) A'(C, C), (21a)

where terms of higher order in s&=0.05 have been
neglected.

The total inclusive anticharm-charm asymmetry for
B,B decay is then given by

2l S
A, '( 4 ) = (19d)

where P(Bd ) and P(B, ) are the relative probabilities of
producing Bd and B, and

12

A (c,c)=[(N&+N, )A&s+(N3+N3)A33] p n, (f~)(N~+N4),
tI5=1

(2 lb)

with n, (fd, )= 1 for /=1, 2,3,5,9, n, (f4)=2, and n, (fd, )=0 otherwise. Also

12
A'(c, c)=[(N2+N 2) A29+(N'4+N 4)A 44] g n, (f&)(N&+N &)

/=1
(21c)

with n, (fd, )=1 for /=1, 2,4,5,8, n, (f3)=2, and

n, (fd, ) =0 otherwise. Use has been made of the relation-
ships N&+Nd, N&+N& and ——p'=p for (p, p')d ——(1,8)

and (P, P'), =(2,9). The N& may be determined from the
branching ratios for the channels P except in the cases of
the self-conjugate channels /=3, 4. In those special cases
N& is to be determined from the branching ratio for open
charm modes.

IV. ESTIMATE OF THE ASYMMETRY

On the basis of phase-space considerations and esti-
mates of the magnitudes of the KM matrix elements the
expected orders of magnitude of the branching ratios re-
quired to evaluate Eq. (21) can be estimated. In order to
obtain the order of magnitude of A (c,c } we make use of
the estimated open channel branching ratios' for the
pure B',B ' states:

8(/=1) =B(/=1)=0.45,

8(/=2) =8(/=2) =0.40sc,

8(/=3)=8(/=3) =0.20sc,

B(/=4)=B(/=4)=0 20, .

where

8(ko)=
I

&0'o(open)
I
8'& I' & I &4(open)

I

8'& I'

and B(P )isothe corresponding expression with 8 re-
placed by B

The factors x/(1+x ) are a measure of the mixing
and, since strong mixing in the Bd, B d system has been
observed, "we take xd = I to maximize the mixing effect.
Conventional wisdom based on Hagelin's' estimate of
box-diagram contributions to Am, would suggest that'
x, =xds& =20, leading to very small mixing. Therefore
the contributions of B, to the asymmetry are of the order
of 10 ' of those associated with the Bd and may be
neglected. Thus we find
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A(c, c)= —P(B&)sc7)[0 4.(1—p —rl )(a/a )
~

—0.3(1—p)F ]/[(1 —p) +g ],
where we have made use of

(N& +N& ) gn, (f&)(N&+N&)=[B(go)+B(go)] gn, (f&)[B($)+B(P)],

(22)

which follows from Eqs. (2a) and (2b) in our approxima-
tion Ip/q I

=1.
The fraction F representing the relative difference be-

tween the CP-even and CP-odd modes is expected to be
very small. Therefore, in order to obtain an estimate we
take F=O. We also choose p=+ —,', g=+ —,', values that
are consistent with available data on CP violation and
meson decay rates. '

Finally, it is necessary to determine (a/a), . From
their definitions (4), a(f, ) and a(f, ) are given by

' a(f i)= &fi 1&r„(1+vs)c& r„(1+vs)~ I Ba &

(23a)

and

e ' a(f, )=(f,
I
uy„(1+1's+rIyq(1+Ps)c IB a~

(23b)

where b, c,d, u are spinor field operators for quarks of the

I

I

indicated flavors and
I f, ) is an eigenstate of the S ma-

trix for modes belonging to the fiavor channel P=1.
Since

(a/a ) =Xf Af'~f/&f I ~f I

where

A(f)=a(f)e' ' '

and

7(f)=a(f)e'stf',

we may replace the set of eigenstates in the sum by any
complete set of states having the same flavor character.
We choose the free-quark spinor states confined to a bag
of dimensions no smaller than mb

' as the complete set.
The matrix elements (23a) and (23b) are easily calculated
in this case by standard methods. After summing over
the quark spins and the directions of the three indepen-
dent momenta we find

—((El, +ms+Eq —mq) —[(E„—m„)—(E,—m, )] )

(Es+m~+E~ rng+E„rn—„—E, +r—n, )
(24)

Eb -2 mb
1/2

E, —m, Ez —m& =E„—m„& mb

so that

0.40&
I
(a/a ),

I
&1 . (25)

Among these values of the parameters the choice in
Eq. (22) of the positive sign for p leads to the largest mag-
nitude of the asymmetry (assuming pure Bz production):

0.004&
I

A(c, c)
I

&0.01 . (26a)

The suggested' choice of the minus sign for p would lead
to

0.0008 &
I

A (c,c)
I

&0.002 . (26b)

the minus sign resulting from the anticommutation of the
e- and u-quark operators that are interchanged in going
from /=1 to P'=8.

Since the expectation values of the magnitude of the
momenta for the plane waves confined to the bag are ex-
pected to be of order mb or smaller we arrive at the esti-
mates

V. CONCLUSIONS

We have found that the calculation of the inclusive
anticharm-charm asymmetry in the decay of tagged B
and B mesons based on the KM model leads to a result
that is independent of final-state interactions to a very
good approximation. However, on the basis of current
estimates of branching ratios for the various modes and
other parameters, such as x, =b,m, /I „ the maximum
magnitude of the asymmetry to be expected is found to be
at most of the order of 1%%A.

'

It should be kept in mind that some of these estimates
may be in error by significant factors because our choices
of the values of p, g, x„Fand the branching ratios are not
firmly established. Furthermore, our assumption that

I p/q I

—1 is negligible is also based on an unconfirmed
theoretical estimate and even then the neglected contri-
butions would be of the same order as those given by Eq.
(26b). Therefore a value of

I
A(c, c)

I
smaller than the

lower limit given above would be perfectly consistent
with the KM model, as would a value somewhat larger
than the upper limit given by Eq. (26a). However, we can
obtain an absolute upper limit on the magnitude permit-
ted by the KM model by returning to Eq. (21) and insert-
ing only the most general restrictions on the parameters.
Since from the Wolfenstein representation of the KM
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matrix it can be seen that both N2/N, and N3/N4 are of
the order sc and since the other factors appearing in Eq.
(21) are of order of magnitude 1 or less, we conclude that,
on the basis of the KM model,

i
A (c,c )

i
5sc =0.05 .

Thus observation of an inclusive anticharm-charm asym-
metry in tagged 8, 8 decay much larger than 5%
would raise a serious question about the KM model as a
complete description of CP violation.
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