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Two methods are described, both based on the use of multipole moments in linearized gravity,
to read off gravitational radiation waveforms during numerical relativity simulations. In the first,
matching is made at a finite radius in the weak-field exterior of a strong-field source to an analytic
template developed via an infinitesimal gauge transformation from a general solution to the vacu-
um weak-field equations. The matching procedure allows the asymptotic waveforms to be separat-
ed from the confusing influences of the source's (e.g. , black hole, neutron star, collapsing stellar
core) stationary moments, the wave s near-zone field, and gauge dependencies in the metric. This
is achieved by computing the multipole-moment amplitudes of the gravitational field with a set of
surface integrals of the metric over one (or more) coordinate two-sphere(s). The two-surface(s)
need not be placed far out in the local wave zone, nor does the method require the existence of a
deep near zone (i.e., the source need not be slow motion). The procedure is demonstrated through
its application to two standard axisymmetric numerical relativity gauges (quasi-isotropic and radi-
al). The second matching approach uses a surface integral over components of the Riemann ten-
sor to eliminate gauge effects. The near-zone field is separated off as in the previous method. This
latter technique may be applicable to problems in any gauge.

I. INTRODUCTION

This is the first of several papers in which we will dis-
cuss the best strategy for reading off gravitational radia-
tion waveforms from numerical data available at finite
radii in spacelike, asymptotically flat numerical relativity
calculations employing the Arnowitt-Deser-Misner'
(ADM), or 3+ l, formalism. In this paper we give two
procedures for reading off waveforms based on compar-
ing numerical values for the metric with solutions to
vacuum linearized gravity. The first is a matching pro-
cedure which allows gauge and near-zone effects in the
metric to be identified and then separated from the
asymptotic radiation waveform. The second prescrip-
tion avoids gauge effects through use of the Riemann
tensor and then performs a similar separation of radia-
tion and near-zone field.

To make these terms precise, asymptotic radiation
refers to the part of the metric expansion in linearized
theory with the form It" /r (where It is the Ith-order
multipole moment and the superscript represents deriva-
tives with respect to retarded time) and near-zone field
refers to higher-order terms, such as II' "'/r, in the
vacuum wave solution that are nonradiative. Gauge
conditions which derive from global integrations (para-
bolic or elliptic) produce additional gauge terms in the
metric expansion which, although vanishing at infinity,
can be important at finite radii.

The first of our two matching techniques is applied to
two spatial gauges (quasi-isotropic and radial) currently

employed in numerical relativity calculations. The
second method, based on the use of the Riemann tensor,
is likely to be applicable in any gauge, though it provides
less total information.

Matching techniques based on linearized gravity will

only be effective for asymptotically flat spacetimes with
certain restri'ctions on their radiative properties. It is
sufficient to require that the objects radiating gravita-
tional waves (e.g. , black holes, neutron stars, collapsing
stellar cores) be isolated and not radiate away more than
a few percent of their rest energy in one characteristic
wave period. In this circumstance, approximately sta-
tionary mass and angular momentum moments will exist
and the emerging radiation will be sufficiently weak as to
have negligible nonlinear interaction with itself. Non-
linear coupling between the curved background and the
emerging wave (the tails) can be reduced in importance
by placing the wave extraction two-surface at a
sufficiently large value of r/M (say, —30). The cumula-
tive phase shifts due to the curved background are essen-
tially unobservable and negligible in practical numerical
calculations (cf. Thorne's discussion of the split of
spacetime around a source into a near zone, a local wave
zone, and a distant wave zone; numerica1 relativity cal-
culations deal with the near zone and local wave zone).
For isolated sources that radiate less than a few percent
of their mass in one period the most important effects
hindering the determination of the waveform are linear
ones: (I) global linear distortions of the metric com-
ponents (shearing of the extraction two-surface) due to
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dynamic gauge effects and (2) the contribution of the
wave's own (linear) nonradiative near-zone field at non-
negligible values of A, /r. Most sources of astrophysical
significance, e.g. , stellar core collapse, stellar collisions,
black-hole formation, collapse of a relativistic star clus-
ter, radiate weakly enough that matching to linearized
gravity provides a reasonable first approximation.

The approach we take is to utilize not only a full nu-
merical solution for the strong-field region but also to
make use of analytic techniques in the surrounding
weak-field region so as to (1) aid in interpreting the nu-
merical results and their accuracy, (2) make the numeri-
cal computation more efficient, and (3) allow imposition
of more accurate boundary conditions. We view this as
obligatory; no numerical relativity gauge proposed to
date provides metric components or "radiative" vari-
ables that are free of the above-mentioned global, time-
dependent gauge effects. In any case, the gravitational
radiation at a finite radius is affected by the wave's
near-zone field regardless of which gauge is chosen. One
might ask, why not take an extremely large radius for
the outer boundary where all such effects will be greatly
diminished? This can be done in one-dimensional (1D)
(spherical) calculations since the exterior gravitational
field contains only pure power-law dependencies and an
exponentially graded mesh can be employed. But in
higher dimensions the emitted gravitational waves set a
fixed length scale in the weak-field exterior region that
requires an upper limit on radial zone size (e.g. ,
Ar 5 A. /50) (Ref. 4) and therefore a cost-governed upper
limit on the outer boundary radius.

One alternative, in the context of spacelike numerical
calculations, would be to use a time-slicing condition
which forces the slices to tend asymptotically to outgo-
ing null surfaces (constant mean curvature slices), al-

lowing the radial coordinate to be compactified. Anoth-
er possibility is to abandon the spacelike approach alto-
gether and perform the evolution on characteristic, or
null, hypersurfaces. Unfortunately, the use of the form-
er gauge has not yet been attempted for radiating space-
times and the latter approaches are not as highly
developed for two or three spatial dimensions .as the
spacelike schemes.

Smarr gave several formulas, based on curvature or
connection derived quantities, thought to be useful in
deriving the energy loss due to radiation. Smarr and
York have also discussed a "radiation gauge" that they
argue cancels most of the pure-gauge distortion in the
metric that affects identifying radiation. Closer to the
spirit of our work is the analysis of Bardeen, who
looked at the extraction of actual waveforms from the
metric and examined the asymptotic dependence of
several gauges in a way similar to that done in this pa-
per. In addition, Schutz' has also recently given an ap-
proximate waveform extraction technique which com-
putes surface integrals over projected components of the
Riemann tensor. His method requires the existence of at
least a narrow weak-field near zone, and this may be
difficult to obtain in certain numerical applications, espe-
cially for sources that produce broadband bursts of radi-
ation.

A significant advance made in the last five years was
to identify special dynamical, or radiative, variables for
numerical evolution (e.g., 71 and A, plus g and K

&
in

quasi-isotropic gauge and g and K+ plus g and K in
radial gauge, " i.e., special combinations of metric com-
ponents and extrinsic curvature components). These
variables yield the asymptotic waveforms directly as
r~ op and aid in reading off the radiation at large, but
finite, radii. Yet, as we show in this paper, this pro-
cedure, while a major advance, is only partly satisfacto-
ry. Basically, the dynamical metric variables are con-
trived so as to eliminate the mass monopole from their
asymptotic dependence. Even so, at any finite radius the
exterior dependence of these variables still involves a
mixture of the radiation, the near-zone field, and gauge
effects. Hence, they cannot be used blindly as a measure
of the asymptotic waveform without first accounting for
and removing these other effects.

The intention of the work described here is to develop
waveform extraction techniques to account for these
effects and allow one to read off the gravitational
waveforms in numerical relativity calculations. We use
linearized gravity to produce a general weak-field solu-
tion and then employ infinitesimal transformations to
particular gauges to construct matching templates. The
matching templates are expressed in terms of multipole
moments. Then numerical moments are derived as func-
tions of time by surface integrals at one or more large
but finite radii. By matching these amplitudes to the an-
alytic template, sufficient information is available to
determine the waveforms, stationary mass moment,
gauge terms, and near-zone field. Consistency of the
matching can be checked by comparing results obtained
at several different extraction radii. As part of this pro-
cedure, the asymptotic waveforms are separated from
the near-zone field by performing integrations over the
past timelike cylinder swept out by the matching two-
surface. This allows the matching to be accomplished
anywhere in the transition zone (i.e., for any value of
Air on the matching two-surface), provided the field is
sufficiently weak (e.g., Mlr Sa few percent). It is im-
portant to keep in mind that at this level of approxima-
tion errors in the waveform will be comparable in size to
finite difference truncation errors.

This work was influenced by the recent efforts of An-
derson and Hobill. ' Their approach to constructing a
matching template is ultimately more complete than
ours: they use Bondi null coordinates to construct a vac-
uum solution expansion that can contain both a curved
background and the nonlinearities of the wave coupling
to itself and the background. Our alternative use of
linearized gravity to provide a matching template is
motivated by (1) numerical experience which has indicat-
ed the above-mentioned linear gauge and near-zone
effects to be the dominant impediments, at r ~30M, to
reading off waveforms, and (2) the practical desire to see
how the complete procedure of matching the template to
data is to be accomplished. As we show, even the linear
analysis is somewhat involved, though rather simple to
implement. Experience gained with the method de-
scribed here should guide the development of more ela-
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borate matching schemes, which may, in some applica-
tions, allow the matching radius to be pushed in deeper
to r && 30M.

The outline of the paper is as follows. In Sec. II we
derive a useful form for the general solution to the vacu-
um equations of linearized gravity using tensor spherical
harmonics. Our solution is written in terms of the
Lorentz gauge (using a subgauge specialization due to
Thorne). This solution is of interest in its own right
(e.g. , to provide wave solutions for numerical tests). In
Sec. III we combine it with infinitesimal gauge transfor-
mations to form matching templates for use with two
gauges currently known to be suitable for numerical cal-
culations of axisymmetric collapse: quasi-isotropic gauge
and radial gauge. The reader interested in the gravita-
tional radiation extraction techniques per se can skip
Secs. II and III and turn to Secs. IV and V. Section IV
details how the matching templates are used to read off
radiation waveforms and to obtain other useful informa-
tion while Sec. V gives an alternate way of reading off
waveforms based on a surface integral of the Riemann
tensor. In Sec. VI we summarize the principal results
derived in this paper, discuss the expected realm of ap-
plicability of the extracted waveforms, and mention

briefly several issues to be dealt with in further detail in
a subsequent paper. An Appendix is given that contains
a number of computational details and notation used
throughout the paper.

II. LINEARIZED GRAVITY

We start by finding a general solution in linearized
theory in a suitable gauge for the vacuum, weak, exterior
gravitational field of an isolated source. In linearized
theory, the background metric is taken to be the Min-
kowskii metric g p and the true metric differs from g p

where indices on the perturbed metric are raised and
lowered with g p.

In the Lorentz gauge h
~ p

——0, the covariant form of
the linearized equations is

B,h, =Vkh k,

h.p=——a', h.p+r7k Vkh.p=o (4)

We use spherical orthonormal components unless explic-
itly noted otherwise. In addition, repeated latin down
indices are to be summed as though a 5; were present,
and vertical bar and V denote, respectively, four-
dimensional and spatial Hat-space covariant derivatives
along the spherical orthonormal basis

() (} 1 8 1 ()e—
dt

'
dr

' r ()8
' r sin8 B(t)

The linearized field equations (4) are scalar, vector, and
tensor wave equations for h«, h„, and h,". Solutions can
be written down in terms of pure-orbit tensor spherical
harmonics (eigenfunctions of the orbital angular
momentum operator L ) and solutions to the radial wave
equation (see the Appendix}. The most general such
solution is

by a perturbation h p.

g~p —g~p+ h ~pe

We use the notation that greek indices run from 0 to 3
and latin indices from 1 to 3. Geometrized units are
used (G =c =1) and the metric signature is
( —1, +1,+1,+1). An often more useful quantity is the
trace-reversed perturbation, ' or gravitational field, h p..

y5
h~p —h~p 2 g~p g hype

oo +1
y ja(,./)(r —~r)j, r™,

1=0m = —1

(6a)
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y/ —l, /m+
j
p(/) (r gr }j yl Im]+ y y jg)( +I) )(/ gr) j y/+ l, lm (6b)

1=1 m = —1 i=0m = —1

oo +1
[ j

g(l —2)(r &r) j T2 I 2,™+j p(I ——1)(/ &r) j T2 I —l, lm]

1=2m = —1

oo +1
[ j

g(/) (/ Er) j T2 I Im+ j(/+1)(/ ~r) j T2 I+ l, lm]

1=1m = —I

oo +1
+ g g [j(2((/+ )(r Er) j T. . '+ +—j~' '(r Er) j T.. /l—]. (6c)

Equation (6) is similar to Thorne's Eq. (8.4), but is given here in terms of pure-orbit harmonics rather than symmetric
trace-free (STF) harmonies. Here and throughout this paper we follow Burke' in using curly brackets to denote solu-
tions of the radial wave equation. These solutions are functionals of derivatives (indicated by superscripts in
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parentheses) of general functions of advanced (e= —1) or retarded (e=+ I) time and have orbital angular momentum
I'=I+2, 1+1,l (! represents the total angular momentum). Properties of these solutions are given in the Appendix, as
is the notation for tensor spherical harmonics.

The Lorentz gauge condition (3) relates the ten amplitudes by four conditions [similar to Thorne s Eq. (8.5)]:

{A,"+"), 2I +1

' 1/2
I

I j' ~
21 + 1

' 1/2

(n" +2)
) =0 (7a)

(1)
tlm I I —)+

21 1

(I+)) ! 1
(m' ) (+

1/2

' 1/2
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1/2

' 1/2
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g(I + () I
Im ) I —) 3(21+1)

' 1/2

[~(I+))
~

p (7b)

(7c)

(I +2) I (21 1 )

6(21 +1)(21+3)

1/2 ' 1/2

(1+1) I +2
(&lm i(+) e2—

1 +3
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Im 1 I + ) +~
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(7d)

As is well known, imposing the Lorentz gaugt'. . does not uniquely fix the form of the solution. Freedom exists to make
additional infinitesimal gauge transforrnations with generators g provided Og =0. If the choice
A( ——23( ——C( ——2)I ——RI ——0 is made, the transverse-traceless (TT) form of the solution for 1=2 described by
Teukolsky' is obtained.

We prefer a different gauge specialization for the solution. This was derived by Thorne in STF tensor notation; we
express the equivalent result here in terms of pure-orbit harmonics. This gauge has a somewhat simpler form which
makes it more convenient when dealing with higher I-mode expressions. It also allows for inclusion of the stationary
I =0 and I = 1 terms, which TT gauge does not, and it produces simpler infinitesimal gauge transformations to other
gauges that we will consider. Thorne makes what amounts to the requirement

n( =SI =a( =al =0. (8)

This can always be obtained from any solution of the form (6} through an infinitesimal gauge transformation

h
'
p
——h p+ V gp+VQ gpVrP, — (9)

with the generators
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These obviously maintain the Lorentz condition (3) and they in turn imply %'I ——0.
We are led by this gauge specialization to a single pair of independent amplitudes for each value of I ) 2 (only one

moment for I =0 and, after placing the center of coordinates at the center of mass, only one for I = 1). For I & 2 we
define a mass moment 2( with parity m. =( —1)' and a current moment 4( with parity n =( —1)'+' by

' 1/2
(I +1)(l +2)

21 (I —1) lm = —'&

' 1/2
2(1 + 1 )

Our normalization guarantees that the transverse-traceless part of the metric perturbation has the standard asymptot-
ic form

h;,
1=2m = —I

g( I) g( I)
TE2, lm ™T82, lm

r IJ r V (12)
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with the multipole moments JI and 41 giving the two polarization states of the radiation field, ' expressed in terms
of the TT pure-spin tensor harmonics TE2'™and T ' . In this Lorentz-Thorne (LT) gauge, the gravitational field
then has the form

4M " +' 21(I —1)
(I +I)(I +2)

' 1/2

t
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where nz
——xI/r and the stationary mass moment M (I =0) and angular momentum JJ (I =1) have been explicitly

split off. These moments M and Jl are admitted by Eqs. (3) and (4) but only exist for linearized gravity in the vacuum
exterior of a material body. In complete vacuum they vanish and the multipole expansion begins at 1=2.

By transforming back using (2), the metric perturbation becomes
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This is the complete solution to the linearized equations
for all l modes. ' This solution can now be used to con-
struct test waveforrns for any order t' and m or provide,
through infinitesimal gauge transformation, a template
for analytic-numerical matching.

In this paper we only detail how gravitational radia-
tion can be read off in two-dimensional applications us-
ing several common axisymmetric gauges. However, the
approach is likely to be applicable to three-dimensional
numerical calculations as well. ' In axisymmetry we
have the simplification m = 0 in all terms. In addition
equatorial plane symmetry is typically also assumed in
numerical calculations. This requires that all odd-I mass
moments and all even-l current moments vanish. The
most important terms to match are the low-order mo-
ments; hence, we only take the expansion to include the
first two mass moments, 1=0 (static) and 1=2, and the
first two current moments, I = I (stationary) and I =3
(Ref. 19). The dynamical I =2 and I =3 moments carry
partial information on the two polarization states + and
X, respectively, of the radiation.

It is important to comment on the choice of truncat-
ing the expansion with this number of moments. Even
vibrating neutron stars are to a great extent slow-motion

sources. For slow-motion sources, the terms in our radi-
ation field (12) are of order of magnitude

(h," ) „,I o), -(M/r)(R/I(, )

(h," ),„„,„, I ~„-(M/r)(R/X)'+',

where M is the source mass, R is its characteristic size,
and A, is the characteristic reduced wavelength. Thus, to
retain the same level of accuracy in the extraction of the
waveforms, we should read off the hexadecapole (I =4)
mass moment since it is equivalent in size to the octu-
pole (I =3) current moment. This can readily be done
using the general solution (14) and extending the extrac-
tion method described in subsequent sections of this pa-
per. In the present paper we are predominantly interest-
ed in detailing how analytic-numerical matching is
defined and numerically implemented, and so have
chosen to restrict the complexity of the discussion by
utilizing only one pair of time varying mass and current
moments as examples.

To write simple explicit forms for the metric com-
ponents in terms of trigonometric functions, or Legendre
polynomials, we introduce in this paper the following
sealed quadrupole and octupole moments:
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15
64vr

1/2

~l =Z, m =0&

' 1/2
105
64 1=3,m =0'

(15)

Taking J=(J.J)' we now give the complete form of
the metric perturbation in terms of these moments and
in orthonormal spherical-polar components:

emerged to simplify the three-metric: the quasi-isotropic
(QI) gauge ' "' ' (also called isothermal ) and the ra-
dial (RD) gauge. " Because these gauges involve global
elliptic or parabolic integration to determine the coordi-
nates, the asymptotic gravitational field contains non-
trivial time-dependent gauge effects. In this section we
will show how these gauge effects, as well as the near-
zone field, manifest themselves in the QI and RD gauges.

The QI spatial line element, expressed in terms of
spherical-polar coordinates, has the form

ds =A (dr +r d8 )+B r (sin8 dP+g d8), (18a)

h,„=——3@II' 'j iP

h, e=2e[I' 'j, sin8cos8,

h, ~
——— + —,

' e I
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j 3sin8( 5 cos 8—1),

h„, =™+ ( —,
'

[I' '
j z+ —', I

I' j 0)P2

hee= +-', II'"jzPz+-', [I'"jo(2—3 cos'8),

(16b)

(16c)

(16d)

(16e)

which stems from the three coordinate component con-
ditions

g,~
——0,

g„g ——0,

gee gyp (g—ey) =ger gey r

(18b)

(18c)

(18d)

The line element has been simplified to involve only
three independent functions: A, B, and g. A more natu-
ral set of variables ' is the combinations

+ —,
' II' 'jzP2 —

3
II' jo (16g)

h„e———2 I
I' '

j Dsin8 cos8,

h„&
————,

'
I
S' '

j zsin8(5 cos 8—1),

he&
——[S' 'jzsin 8cos8,

(16h)

(16i)

(16j)

1(2)
z) =—'(h gg

—he~ ) = sin 8,2
p

compared to its form in the TT gauge: '

(17a)

~here P2 is the Legendre polynomial. In this gauge the
radiative variable z) (discussed in Sec. III) is exceedingly
simple,

/=A B,
z)=ln(A/B),

(19a)

(19b)

ds = A dr +B r d8 +B r (sin8 dP+g d8),
(20a)

where P is the conformal factor and ri is a measure of
the anisotropy of the three space. Together, g and g
provide a pair of suitable dynamical variables. In con-
trast, the conformal factor P is found on successive time
slices by solution of the (elliptic) Hamiltonian constraint.

The RD gauge has a line element, when expressed in
terms of spherical-polar coordinates, of the form

I(2) I(1) I I(—1) I(—2)
+2E +3—+3p +3

T p 2
p 3 r4 r' sin 8,

(17b)

where the two coordinate component conditions (18b)
and (18c) have been applied as well as a new third condi-
tion:

ggg gpy
—(ge4, ) =r sin 8, (20b)

where negative superscripts indicate successive integrals
of I (Ref. 22).

III. MATCHING TEMPLATES FOR NUMERICAL
RELATIVITY GAUGES

To date no axisymmetric numerical simulations have
employed the harmonic gauge condition [full nonlinear
generalization of Lorentz gauge, Eq. (3)]. The primary
considerations in choosing gauge conditions for numeri-
cal applications have been (1) to produce good time
slices and (2) to have an algebraically simple three-
metric to simplify the form of the Einstein equations
that must be finite differenced; '" and harmonic gauge is
not good in these respects. Two time-slicing conditions,
maximal and polar, have been widely utilized in nu-
merical calculations and two spatial gauge choices have

in place of (18d). This line element similarly contains
three independent functions though the metric has been
simplified in a different way. Bardeen and Piran" identi-

fy the dynamical variable g somewhat differently than
was done in (19b),

g =8 —1. (21)

h p
——h'p'+V gp+Vg, (22)

As in QI gauge, the variables g and g are evolved, while
A is derived from the (now parabolic) Hamiltonian con-
straint.

The weak-field exterior solution given in Sec. II can
now be transformed to QI and RD gauges. We must
find the infinitesimal gauge transformations from the LT
gauge using
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that take us to the relevant numerical relativity gauge
indicated by (nr). The spatial generators can be quite
generally written in terms of (pure-orbit) vector spherical
harmonics:

I', I, m

(23)

A, 1', Im
bij Q ~3.I', I Tij

A., I', I

(24)

where the scaled vector harmonics Y ' (with tilde) are
defined by (A23). LT gauge is a special form in which
not all tensor harmonics appear at a given order l. In a
typical gauge, however, the metric may involve a super-
position of all harmonics:

Equations (28) lead to the following conditions on
several of the 4I &.

.

(29)

D('+33= —,', I "'I2

2Dp 4 12+D4+ 4 32=2tI j(1 .

(30)

(31)

where the raising and lowering operators D+ and D
are defined in the Appendix.

QI and RD gauges have two conditions in common,
(18b) and (18c), which in the weak-field limit become

(28)

where the scaled tensor harmonics are defined by (A24).
The scalings on the vector and tensor harmonics are in-

troduced so that components maintain simple forms in
terms of the amplitudes 41.I and A

&& I and trig-
onometric functions.

%e do not consider time-slicing conditions in this pa-
per and therefore do not obtain the time component of
the generator. Hence, computation of the source's total
angular momentum (which requires the time-slicing
influenced shift vector components P = go. ) will be con-
sidered elsewhere. The spatial part of transformation
(22) involves the Killing operator

A. Quasi-isotropic gauge

rl=-,'(hg —hg),

$ = 1+—,
'

( h I+ 2( h g ),

g=h s4, .QI

(32a)

(32b)

(32c)

We now complete the transformation to QI gauge.
Linearization of the natural variables defined in (18a),
(19a), and (19b) leads to

(I(.'g),j =V, g, +'()', g, . (25) In the weak-field limit, the QI gauge condition (18d)
reduces to the form

=4(PF ' +4(2F ' +4 P

+C „Y&'&0+4 Y3'3 (26)

Using (A25), one arrives, after some manipulation, at

In the Appendix we give the decomposition of (25) in
terms of the scaled harmonics mentioned above.

In order to transform the solution (16), we need to re-
tain all terms in (23) through l =3 subject to the con-
straints of axisymmetry (m =0) and equatorial plane
symmetry:

h Q' —h gg
——0. (33)

1 2 , (2)2D (+ 0'(0+ 4'(2+ 0'32= —,
' Il' Ior 3r

(34)

3D 4(2— 3()„——432 4II' 'I . ——7 (2)

T
(35)

Equation (33), along with (27a) and (27b), then leads to
the following two conditions:

(Kg)« ———2 ()„C (p+2 P2 ()„(4(2—432),

1«0)so= —„(+12 2+10+ 3@32)

(27a)

+» =+32=0 (36a)

Sitnultaneously solving (29), (30), (31), (34), and (35), we
find, after neglecting several radially divergent homo-
geneous terms, that

2
P2 ( 3(I1(2+ 7432),

3T

1 10
(+12+ @10+3 @32) 2 +32&

T 3T

(27b)

(27c)

I(11 b2(t)l~ l 1

10—4~12——3e 6E

(I133————(', e(S' 'I, —
,', c3(t)r, —

(36b)

(36c)

(Eg)„ij —( —,'D 0 4,2+D4+@32)si—n—8 cos8,

(&g) „4(
—— D(+@„sin8—

,'D 43(3 sin8 (5 co—s —8—1),

15
(I(:g)s~ 433 sin 8 cos8, ——

(27d)

(27e)

(27f)

where b2(t) and c3(t), which result as homogeneous
solutions to the differential equations for the 4I I, are
time-dependent pure-gauge functions. Although the
pure-gauge term involving c3(t) is radially divergent, we

retain it and discuss its significance in the next section.
Now that we have the generating vector field of the

gauge transformation, the changes (27) in the metric
components become
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(Kg)„„=—2(I")],+~ ', (4I, 1),
r

(Kg)ss ———2E +e (4P~ —1),
r2 r'

(Kg)~~ 2e——
~ +e

(37a}

(37b)

(37c)

for the asymptotic structure of the three-metric variables
in QI gauge. Compare q (40a} in this gauge with its
forms in LT gauge (17a), TT gauge (17b), and (jumping
ahead) RD gauge (49a) and note how the near-zone field
is altered and the gauge terms are introduced. The
gauge term bz(t) appearing in the quadrupole part of the
expansion ' ' falls

off

a r in QI gauge.

(Kg)„()———2(I' ']0 sin8 cos8,

(Kg)„& —
—,
' ——[S' )

Jz sin8 (5cos 8—1),

g(2) g(1)
(Kg)s& —— 2E — —2 —c3 sin 8 cos8

r 2 r 3

(37d)

(37e)

(37f}

B.Radial gauge

We can now proceed in similar fashion to find the
transformation of the LT gauge solution (16) into RD
gauge. In the weak-field limit, the RD gauge metric
variables become

h QI g To 0,M+ g TO 2, 20+ g T2 0,20
ij 00 0 ij 02, 2 ij 20, 2 ij

T2 2,00+ g T2 2, 20
22, 0 ij 22, 2 ij

T2 2, 30+ g T2 4, 30
22, 3 ij 24, 3 ij (38)

Employing Eq. (22), we apply (37) and transform the
metric (16), which yields the following set of pure-orbit
terms, as in (24}, for the metric in QI gauge through
1=3:

r)= —,'(h~~ —hee),

A = 1+ &hrr&

g=h()~.

(41a)

(41b)

(41c)

Note that Bardeen and Piran" define g with a sign
difference compared to Eqs. (17a) and (32a). The unique-
ly defining condition for RD gauge (20b) becomes, when
linearized,

with amplitudes given as
h~e +h~~ ——0.RD RD (42)

2M 1 I' '

~000 = +r 9 r

I(') b2—2E' —E'

r2 r
(39a) Equation (42) leads to conditions on the generator func-

tions (26):

2 I(2)
~02, 2

=—
9 r

b,—e —9—+4t..
r 2 r 3 r 2

4 I(2) I(1)
A202 +26 2 +~ 29 r r r

(39b)

(39c)

4)0= —M

—,
' @)a+ 2@3z= E(I"'!()~—

(43)

(44}

By solving (44) simultaneously with (29), (30}, and (31),
we arrive at

1~22 0 ~202 T~ 222~

A242 ——0,

(39d)

(39e)
I(&)

e
5 r

——+ —fI 2 ~ I(t Fr')—
r2 r2 0 r'

~22, 3
= —~24, 3

g(3) g(2) g(l)
+5e

2 +5
3 +c3r r r

~22, i =0.

(39f}

(39g)

2 bq(~)
+3 (45a)

I'" I 3 ~ I(t er'}-+4— dp
5 r r r o r'

Using Eqs. (38) and (39) for the QI metric perturbation
and the definitions (32) for the (linearized} natural vari-
ables, we find

b,'(r)
r2

(45b)

I(2)
+sin 0

12 r
——E ———+e

r 4 r 3r

I(2) I(1) byg=sin 0 +2@ +e
r r 2 r 2

M b2 I((=1+ —e +
2r 4r 2r

(40a)

(40b}

while the current octupole parts are identical to those in
QI gauge: Eqs. (36a) and (36c). The integral terms that
appear in (45a) and (45b) are related to the outward par-
abolic integration that defines the shift vector in RD
gauge. " In the linearized case, the integrations are for-
mal only and cannot be extended into the strong-field re-
gion. Hence the integrals in (45a) and (45b) will be un-
known and can be subsumed into the homogeneous solu-
tion term bz(t)/r (Ref 29):.

g(3)
/=sin 8 cos8

g(2) $ (&)

+5P 2 +5 3 +c32 r 3
(40c)

It

bq(r, t)—:b~(t)+3f, dr',
0 r

(46}
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T2 2,00+ A T2 2, 20
22, 0 ij 22, 2 ij

+ A24 2Tij
' + A22 3Tij ' + A24 3Tij

with amplitudes given as

(47)

though now, in contrast to the QI gauge case, this gauge
term is a function of radius as well as time. The gen-
erating vector field is now used to produce the metric in

RD gauge. Analogous to (38) we expand the RD metric
in terms of pure-orbit harmonics through I =3:

RD A T0000+ A T02 20+ A T20 20
ij 00, 0 ij 02, 2 ij 20, 2 ij

comparing (16j) with (40c) and (49c), the near-zone field
is altered by the transformation, and a gauge term is in-
troduced. It is impossible to determine simply from the
different formal rates of fall off of the mass quadrupole
gauge terms b2 which gauge provides the minimum dis-
tortion in the radiative variable g at any given radius.
The matching given in the next section sidesteps these
gauge effects to get directly to the asymptotic
waveforms.

IV. READING OFF GRAVITATIONAL WAVES

2M
Aooo= 2 A22, o=

4
Ap2 2

———E +4——
r r r

A2o, z= (~ II

A 22, 2 7 A20, 2+ 7 A02, 2~

A 24, 2 7 A 20, 2 + 7
A 02, 2 ~

(48a)

(48b)

(48c)

(48d)

(48e)

By numerically sampling all of the multipole moment
amplitudes we obtain sufficient information to solve for
the component parts of the matching templates for QI
and RD gauges. The amplitudes can be computed via
surface integrals using (A5) and (A24):

A~, , =(dU, ) 'J dQh, , T,, ''. (50)

We now separately detail the rnatchings for the two
gauges.

while the current octupole amplitudes are identical to
those in QI gauge and are already given by (39f) and
(39g). The three spatial metric variables in RD gauge
then have the asymptotic forms

A. Matching to quasi-isotropic gauge

Expression (50) for the amplitudes A zt t can be evalu-
ated for the QI metric in terms of the natural variables
(19):

() I() I b2
g= —sin 8 +2@ ——+-

r r r r

M I'" I b2
A =1+ +P2 2e +8——2

r r r r

g(3) g(2) g(1)
(=sin 8 cos8 +5m, +5, +c,

r r r

(49a)

(49b)

(49c)

Apop= d0 sinO —1,
0

m/2 4
Ao2 q

——5 d8 sin8 P2 (P —1),
0

n/2
A2o, 2

=
3

dO sin0 g,
m. /2

A22, 3 p
d8»n 8 cos8 g,

n. /2 2
Azo z+ —, A&2 z

———, d8 sin8 (5 cos 8—1) g

(5 la)

(51b)

(51c)

(51d)

As pointed out by Bardeen and Piran, " the mass quad-
rupole gauge term in RD gauge formally falls like r
one power faster than its analogue in QI gauge. The
current octupole moment appears in the variable g with
the same form as it has in QI gauge (40c).

C. Discussion

Equations (39) and (40) for QI gauge and (48) and (49)
for RD gauge represent our matching templates. It can
be seen that the practical effect of identifying "dynami-
cal" metric variables [such as the two definitions of g in
(19b) and (21)] was to eliminate the appearance of the
mass monopole term. However, as is evident in (40a)
and (49a) as well as expressions (40c) and (49c) for g, the
asymptotic structure of these variables at any finite ra-
dius contains, in addition to the radiation terms
I' '(t —cr) lr and S' '(t er) lr, the near-zone fie—ld
[terms with lower derivatives of I(t Er) and S(t Er)]- —
and gauge terms b2 and c3. It has been stated that the
current moment part g of the linear solution is gauge in-
variant. This is true of the leading (waveform) part of
the solution [as in our Eq. (12)], but, as we see from

= A24 2=0. (51e)

These amplitudes can easily be obtained as numerical
time series at a set of extraction radii during a sirnula-
tion. Note that the last equation (Sle) can be used as a
consistency check and a measure of the accuracy to
which a given level of numerical resolution in the angu-
lar direction maintains orthonormality of the Legendre
polynomials.

Assume for now that there is one extraction radius
r =ro. By combining (39b) and (39c) and evaluating at
rp, we get an equation for just the quadrupole moment
I(t —ro),

I' '(t ro)+ I—'"(t ro)+ —I(t —ro—)
rp rp

=3ro(A 20, 2+ —A02, 2) =Q(t;ro) (52)

separated from other effects [i.e., the combination of am-
plitudes yielding Q(t;ro) is free of pure-gauge terms].
We have set @=+ 1 for outgoing radiation since such a
boundary condition will be imposed on the outer bound-
ary. , At a fixed radius ro, Eq. (52) can be interpreted as
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largely ignored. Nonetheless, we will describe in a sub-
sequent paper the evaluation of the initial values for the
moments.

We have made two immediate tests of these ideas. We
first performed a simple test of the separation of radia-
tion from near-zone field by calculating numerical evolu-
tions of the (1D) radial wave equation (A6) for 1=2.
This equation was split into first-order form and in-
tegrated with a fully second-order accurate finite
difference scheme. ' An outgoing radiation boundary
condition was applied at the outer boundary, and the
inner zones were forced to oscillate to produce outgoing
radiation with a prescribed waveform. The outer bound-
ary sat well out in the wave zone, while we evaluated
(52) at several radii near or within the transition region
with the approximate locations A/r = ,4.0, 2.0, 1.0, 0.5,
0.25. The amplitude rP sampled at large values of A, /r
(deep in the near zone) differed significantly from the
asymptotic (constant) amplitude of rP, closely following
the expected scaling [1+3(A,/r) +9(A, /r) ]', yet the
integration of (52) using the simulation time step, fol-
lowed by differentiation to obtain rI' ', picks off the
asymptotic value quite accurately at all our chosen
values of A, /r

The second test involved numerical modeling with a
full 2D general relativistic finite difference code the
quadrupole small amplitude oscillations of relativistic
neutron-star models. Equilibrium relativistic stars con-
structed from tabulated or polytropic equations of state
were modeled on a spherical-polar mesh. The equilibri-
um Quid configuration was slightly deformed by a quad-
rupole displacement vector. The Hamiltonian constraint
was then solved to provide consistent initial data and the
configuration was time evolved. The oscillations of the
star immediately drive a radiation front out into the vac-
uum region surrounding the star. Once the front has left
the edge of the mesh (where an outgoing radiation
boundary condition is employed), a steady quadrupole
radiation field sets up outside the star.

In a first test of the extraction technique, we examined
the ability to read off the pure-gauge coefficient b2(t).
Taking the extraction two-surface to lie fairly deep in
the local wave zone, Q (t;rp ) in (52) directly gave a mea-
sure of I'~'(t rp). Th—en using this in (53), and again ig-
noring the smaller (in this case) I"'(t rp) term, —we ob-
tained values of b2 as a function of time. The contribu-
tion of the pure-gauge piece can then be seen by compar-
ing in Fig. 1 the "raw" waveform g/sin 8 [cf. Eq. (40a)]
with the gauge-corrected waveform g/sin 8—bz(t)/r .
The "wave" present early on is entirely due to the gauge
effect.

We now turn our attention to the current octupole
wave. By examining (39f) and (39g), it is clear that there
is no way to algebraically eliminate the appearance of
the pure-gauge term c~(t). This term arises as a slight
irregularity in the metric due to the gauge choice (18b).
There are two ways of proceeding. As Bardeen and
Piran" have pointed out, this term arises from the para-
bolic radial integration for the azimuthal component of
the shift vector P~. The radial integration can be per-
formed either outward or inward. Bardeen and Piran

an ordinary differential equation (ODE) in time for the
quadrupole moment. If this ODE is solved for I (t rp—),
I"'(t —rp), and I' '(t —rp) (we discuss this below), then
using (39c) we obtain the mass quadrupole gauge func-
tion

&p(r)= 41'p A2p 2 1'p I (r l'p) 2I (r Pp).
2 (2) (53)

In the weak-field region, 62 should be independent of ra-
dius, and so by using a set of extraction two-surfaces
with different radii we obtain an important check on the
reliability of the matching. Combining (53) with (39a)
we find the mass monopole moment

M= —,'rp(4Appp+ App 2) 6I (r rp).(2) (54)

This is a quasilocal mass indicator with first-order
corrections for the effects of the global gauge shear and
the shearing effects of the gravitational waves crossing
the extraction two-surface. ' Subject to solving (52), this
completes the matching for the mass moments I =0 and
1 =2.

Before considering the I =3 current octupole, we dis-
cuss the solution of the ODE (52). At a finite radius one
cannot instantaneously determine the radiation field.
But by integrating (52) over the past timelike cylinder
swept out by the extraction two-surface, we can deter-
mine the quadrupole moment I(t —rp) and from it its
first two derivatives, subject to the initial values
Ip=I(tp rp) and Ip I'—"(tp r——p) To—get .a better un-

derstanding of how the radiation is being separated from
the near-zone field it is useful to consider the general
solution of (52) constructed via the Laplace transform
[we do not suggest the use of this expression numerical-
ly; it is better to split (52) into first-order form in time
and to integrate with the simulation time step]:

+I0 e r' cosset

1 ~ 1+—I+—I e
—rf singlet, (55)

where we have taken the initial slice to coincide with
t =0. We find a damping time ~ and frequency co for the
transients

~=(-,')' '
p

', (56)

defined at the chosen extraction radius. We see that,
with the choice @=+1(outgoing waves) made in writing
(52), the Green's function has a decaying exponential
behavior. Correspondingly, the influence of the ini-
tial values I0 and I0 dies out in a time of order the light
travel time across the extraction radius. Thus, errors in
determining the initial values will act as transients. In
collapse problems the free fall time scale tff from r0 is re-
lated to the light crossing time t0 =r0 by

rp( rp /M )
' . Thus, tff is at least several e-folding

times so the initial values for the integration can be

I(t rp)= —J—Q(t';rp) e r" ' ' since(t t') dt'—
N 0
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The reasoning behind this suggestion was to use the in-
variance of the Riemann tensor under gauge changes in
the weak-field limit to allow an unambiguous evaluation
of h+ and h ~ in any numerically useful gauge. The
problem that arises in this scheme is that the integration
for h+ or h~ is unique only up to terms such as
ao+a, (t r), w—here ao and a, are constants which nat-
urally arise in integrating (63). These give a misleading
appearance to the waveform. As Teukolsky has dis-
cussed (in Sec. III of Ref. 15), these are pure-gauge
terms. We can see this more clearly if we just focus on
the mass quadrupole moment contribution to (64). We
know from (14) that the mass quadrupole part of the
gravitational field is uniquely determined by the moment
I(t r) (and—its derivatives). Yet, if we examine the
form of g (or h + ) in TT gauge (17b), we see that it de-
pends on I' "(t r) and I' '—(t r) as we—ll. These in-
tegrals of I involve arbitrary integration constants that
give I' ', and hence g, an additional dependence like
I' '=ao+a, (t r) T—hus. residual arbitrariness exists
in h+. Based on this and the discussion in Sec. IVA,
we see it is the moment I(t r) a—nd its derivative
I' '(t r) that —should be calculated to give the asymp-
totic radiation.

Utilizing the matching ideas in Sec. IV it is possible to
find an attractive modification of this scheme that
preserves the use of the gauge invariance of the Riemann
tensor. To do this, we reexpress Teukolsky's TT solu-
tion in our notation

s ~I(2)~ T20, 20 (6 ~I(2)~ T22, 20
&J 15 0 2 V

s (I(2)) T2 4, 20 (66)

Taking two time derivatives and integrating over the
two-surface we find

(67a)

(67b)

and

(I )
= (d202) f dQ h T (67c)

for the radial wave solutions.
By directly using (67b) and substituting (63) to put the

result in terms of the Riemann tensor, we obtain an
equation which can be integrated for the second time
derivative of I,

I' '(t ro)+ I—' '(t ro)+ I—' '(t r—o)= —,'r—
o f d8 sin8[P2 R,„,„,'R, &, t) (—', —cos8 —1)—R—«« ,'sin8 cos—8 —R,„,&],

rp rp

(68)

in a manner analogous to equations we have already dis-
cussed in Sec. IVA. Here however, because (68) de-
pends on computing the Riemann tensor, the result is
gauge invariant (to linear order). Hence this formula
should be useful in numerical calculations irrespective of
the gauge employed. As we see from (55), the integra-
tion constants, which we should be able to determine
from initial data, interestingly contribute effects to the
waveform which exponentially decay away, in contrast
with the integration constants of (63).

VI. DISCUSSION

We have shown that the direct use of radiative metric
variables at a finite radius to determine emitted gravita-
tional waveforms in numerical relativity calculations is
biased by both time-dependent gauge and near-zone
effects. In certain calculations these effects may be virtu-
ally negligible; in other calculations these effects will
have to be determined and removed to properly extract
the asymptotic waveforms. Even in circumstances
where gauge and near-zone effects are expected to be
negligible it is important (and relatively simple) to
demonstrate the fact.

Stark and Piran have analyzed the sensitivity of
waveforms sampled directly from the radiative variable
in RD gauge to changes in the observation radius. Their

waveforms resulted from the collapse of a rotating rela-
tivistic polytrope to form a black hole. They report rela-
tively reproducible waveforms (particularly in the late
time ring-down phase) for five difFerent observation radii.
In terms of the late time wavelength (A, -20M) these ra-
dii range from -2.5A, to -0.7A, . The critical number
which determines the importance of near-zone effects is
the ratio of the reduced wavelength to observation ra-
dius, Air. Even the smallest observation radius of Stark
and Piran, r-4.4X, is still fairly far out into the local
wave zone. At this distance, the near-zone effects on the
waveform amplitude were only -9%. It would be use-
ful to also have an analysis of the size of the gauge effect
in the Stark-Piran calculations. The gauge effect may be
responsible for the larger discrepancies between their
sampled waveforms evident at earlier times, prior to the
ring-down phase.

The collapse of a star to a black hole is an extreme
case, producing the smallest possible dimensionless
wavelength (A, lM -2.8). Other collapse scenarios in
which an object hydrodynamically turns around, or
bounces, will emit radiation with dimensionless wave-
lengths that typically are much larger: roughly

' 3/2

(69)
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where R is the characteristic radius of the object at
bounce. For a collapsing stellar core reaching its first
bounce, this radius might be R —15M, giving a reduced
dimensionless wavelength of A, -60M. To evaluate the
waveforms in this case, without accounting for gauge
and near-zone effects, the observation radius may need
to exceed 300M.

In a subsequent paper we will subject these radiation
extraction methods to a set of numerical tests. We will
also detail another method for reading off gravitational
waves which, like the Riemann-tensor-based method,
should be applicable in arbitrary spatial gauges. These
methods will have to be carefully tested to judge which
is most suitable for numerical use. Since the method
given in this paper in Sec. III, using a matching tem-
plate, allows one to obtain a complete breakdown of the
metric variables, it should be simple to use the matching
to further improve the outgoing radiation boundary con-
dition to take into account the gauge and near-zone field
effects.
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APPENDIX

In expressing the general weak-field solution in Sec. II
and subsequent transformations from it, we use pure-
orbit vector spherical harmonics Y' ' and pure-orbit
tensor spherical harmonics T '' . The properties of
these harmonics are summarized in Thorne and further
material can be found in Edmonds, Mathews, and
Zerilli. Components can be derived using the formulas
found in Edmonds or looked up in Mathews. The order
of the representation group is A, , while I', I, and m are,
respectively, the orbital, total, and azimuthal angular
momentum quantum numbers. The vector and tensor
pure-orbit harmonics are eigenfunctions of the orbital
angular momentum operator

Using these harmonics, the four-dimensional wave
equation (4) becomes a radial wave equation for a solu-
tion PI, (r, t) of orbital angular momentum I':

d—,P (r, t)+ —B„[rg (r, t)]1

——I'(I'+ 1 )P( (r, t )=0. (A6}
2

We use a powerful notational device due to Burke'" to
express these solutions without requiring harmonic
decomposition in time and use of spherical Bessel func-
tions. Solutions to (A6) are written in a functional form

y, (r, r) =
I
P"'(r —«) j, , (A7)

{7' '(t —«) jo
—— 9'(t Er—). — (AS)

Solutions of higher angular momentum are generated
through successive applications of a raising operator

D, += a„I')r. — (A9)

using the identity

D('!&"'(& «}j I = &—!&""'(&—«) j I +i— (A 10)

For example, we then have as the next three solutions

t
9"'(x)j,=—P "(x)+e—V(x),

T 2
(Al 1)

I ~"(x)j,=—~"(x)+3.—9' "(x)+3—V(x),
T 2

(A12)

I9' '(x)j3= —9' '(x)+6@—T '(x)
T 2

+15—9' (x)+15@—P(x),
1 i) 1

4 (A13)

where the curly bracket indicates a sum of terms involv-
ing powers of r along with derivatives of the function 7,
which depends only on advanced or retarded time. In
(A7), k is the highest derivative of 7 with respect to
x =t —er that appears, I' is the orbital angular momen-
turn of the solution, and e is +1 for outgoing and —1

for ingoing solutions. The zero angular momentum solu-
tion is

2= —r 2p~+ B,r 2 (A 1)
where x =t —er. The corresponding angular momentum
lowering operator,

Hence, D, , = 8„+(I'+1)lr, (A14)

L YI', I~ I'(I'+1)Y' '™I'(I'+ 1)TA I ™ (A2)

(A3)
when operating on radial solutions, yields lower-order
solutions:

and

f Yc~™Y,
' d Q =5cc 5II 5m' (A4)

Like the scalar spherical harmonics Y', they satisfy
orthonormality relations:

DI
—[&"'(x)j, = —~[&""'(x)ji (A15)

Burke's functionals can be simply related to the more
standard basis functions. Following Thorne we similar-
ly denote spherical Hankel functions with the somewhat
unusual notation

J T,„c'™TJ"„' d0=5cg 5cc 5(I 5 (A5) h «' (x }=j I'(x ) + ' ey i'(» ) (A16)
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h, l. (x ) = ( i—e )' + '
I e ""

j I . (A17)

where jt (x) and yl (x) are the spherical Bessel functions
of the first and second kind. In the Burke notation, the
Hankel functions can be written as

Yl 'll =c ~ Yl 'Im—CI'I 7 (A23a)

with

ingly we introduce a simple scaling for the vector har-
monics:

It is also possible to express the Burke functional of an
arbitrary function V(x) in terms of Hankel functions. If
we take the Fourier transform of 9'(x) and take the an-
gular momentum I' bracket of that, we get

IV(x)jl =
&&2 f dao f(to) e '"' [e""'jl. (A18)

(2n. )'i

4a
Cl —1,1 CI, I —1 I

4rrl (I + 1)
Cll=l

' 1/2

1/2 (A23b)

We can take the inverse Fourier transform to solve for
f(to) and plug back into (A18). Using (A17) we obtain

I V(x)jl.—— ( ie—)'+' f dto e ' 'h, l (tor)
277 00

and similarly for the tensor harmonics:

TX I', lm d T2, I', Im
A, l', I

with
' 1/2

(A24a}

x' x e' ".
(A19)

dOI, I =
12m

2I +1
' 1/2 (A24b)

[P jl=( —e)DI tD,+ 2 D,+Dp [Pjp. (A20)

There are additional connections between the Burke
functionals and the Bessel and Hankel functions. Fol-
lowing (A10}, the Rodrigues formula has an analogue:

d21 —2, l
4m (2I —1)

(I —1)I

2trl (I + 1)
d2I

I —1

' 1/2

' 1/2 (A24c)
There is also an algebraic recursion formula for the
Burke brackets: 2l, l

6tr(2l —1)(2I +3)
I II +1)(21+ 1}

1/2

A final useful relation is

(A21) 2nl (I +1)
21+1,l

4~(21 +3)
(I +1)(I+2)

1/2 (A24d)

(A22}

The usual normalization of the pure-orbit harmonics
(A4) and (A5} is somewhat inconvenient when a simple
result is desired for the components in terms of trig-
onometric functions or Legendre polynomials. Accord-

In performing infinitesimal gauge transformations it is
useful to have expressions for the action of the Killing
operator [Eq. (25}] on a general term: a radial function
multiplied by a vector harmonic. Using expressions in
Mathews or Edmonds, one can derive

[I( (@fr!—1,™)] 2 D — @T2 I —2,™+ + D+ @T2 I ™+2D+ @Tp I ™I —1 — 2(1 1

2I —1
' ' " 3(2I —1)

(A25a)

[I( ( @yl, lm
) ] D —@T2 I —l, lm

2I +1
2(I +2) D+4T2 I+1,lm

2I+1 I ij (A25b)

[I( (g pl+i, lm)] D — (yT2 l, lm 2 D+ @T2 I+2,™&D — @Tp I ™
1+1 Ig 2I +3 I+1 IJ 3 + J (A25c)
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