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Twisting, type-N vacuum gravitational Selds with symmetries
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The Einstein field equations for twisting, type-N fields in empty space possessing two noncom-

muting Killing vectors are reduced to a single second-order ordinary differential equation for a
complex function. Alternative forms of this basic equation are also presented; in particular, an

appropriate Legendre transform provides a partial linearization, leading to a single real, nonlinear,

third-order ordinary differential equation.

The problem of finding exact solutions of Einstein's
field equations in empty space, representing gravitational
radiation from a bounded source (i.e., with appropriate
asymptotic behavior), has great physical relevance. The
interest in such solutions is twofold: Not only could they
have direct physical significance, but they could also pro-
vide a means of checking different features of computer
codes used in numerical studies of gravitational radiation.
Gravitational fields of algebraically degenerate type N in

vacuum, ' which are relevant for the treatment of gravita-
tional radiation far from the sources, have been described
completely in the nontwisting case (the "twist" is the
imaginary art of one of the Newman-Penrose spin
coefficients, and represents a searchlightlike variation of
the propagation vectors). Unfortunately, type-N fields
with no twist are not suitable for representing realistic
spherical radiation. On the other hand, the field equa-
tions in the nonvanishing-twist case are quite involved, be-
ing third-order partial differential equations with addi-
tional differential constraints, and as a consequence we
have a single example of a solution of this type given by
Hauser. This solution, however, does not exhibit the
appropriate asymptotic features.

Hauser's solution possesses a Killing vector; it seems
then natural to look for a solution with the maximum pos-
sible symmetry as a means of simplifying the field equa-
tions. Collinson has shown that the maximum possible
number of independent Killing vectors in the twisting,
type-N vacuum case is two, in which case the correspond-
ing Lie algebra of isometrics has to be non-Abelian. '0

The Killing fields $1 and (2 can be taken in this case so
that they satisfy the relation

where the bracket is the Lie brackets for vector fields.
In this Rapid Communication, I show how the equa-

tions for twisting, type-W vacuum Gelds possessing two
Killing vectors can be considerably reduced, resulting in a
single, second-order ordinary differential equation for a
complex function. For convenience, the vacuum Einstein
equations for type-N fields will be formulated here as the
following system of matrix-valued differential forms

defined on spacetime

dq yn, rl+—tin, y'-0,
Rn g-0,
pR 0,
pyAR 0,

(3)

(5)

where tl is a Hermitian 2 x 2 matrix of one-forms, repre-
senting a null tetrad, and y is a complex, traceless 2x2
matrix of one-forms (spin connection); the wedge denotes
an exterior product, and d exterior differentiation. The
curvature R is defined as R dy —yAy, the dagger
denotes Hermitian conjugation, and p (j$). Equations
(2)-(5) are closed under exterior differentiation (i.e., all

integrability conditions are taken into account); Eq. (2)
expresses the fact that the torsion vanishes, while Eq. (3)
comprises the Ricci-fiat condition and the integrability
condition for Eq. (2). Equation (4) adds the condition [in
a particular SL(2,C) gauge] that the field be of type N,
while (5) is the integrability condition for Eq. (4). Fields
that satisfy (2)-(5) and possess two Killing fields $1 and

Q [which satisfy Eq. (I)] must also satisfy the equations'

z„g -x,g+ gx(, (6)

Eg, tl X2rl+ rlXj,

$(,X2
—$)P1 - IX1,X2]+X1,

where E denotes the Lie derivative, and X1 and xq are
sl(2, C)-valued functions [Eqs. (6)-(8) are the tetrad
equivalent of the Killing equations for the metric' ]. In
order to relate the present form of the equations with the
notation for the tetrad one-forms used previously by
Hauser, 7 s

tl can be written explicitly as

(7)

(8)

where k and m are real one-forms, while t is a complex
one-form, and bars will denote complex conjugation (the
notation for the tetrad is related to the Newman-Penrose
notation through k —l, m n, and t m). The prin-
cipal, repeated null eigenform corresponding to the type-
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N character of the space will be k in the gauge determined

by Eq. (4). The nonvanishing-twist condition can be ex-
pressed as

It is readily seen that

(2FD —2M —FM ) '
1 (i6)

dkAkx0 .

Following Hauser, part of the gauge freedom that remains
after Eq. (4) is imposed can be used in order to simplify
the form of y. In spacetime coordinates [u, ~,g, g] (where
u and cr are real, while g is complex), y can be brought to
the form

0 d(
Crdg 0 (9)

where @ is a complex function. By manipulating Eqs.
(2)-(8), it can be shown'3 that the Killing fields can be
expressed [within the gauge where Eq. (9) holds] in the
form

i i—, g2 ( +g. e . a e -a (io)
eg t)g' a( ag

(the auxiliary matrices X; are not needed in the following;
their explicit form is given in Ref. 13). The tetrad one-
forms k, m, t, and t can be determined according to
(2)-(8) with (10). They read

(primes will denote derivatives with respect to u). From
(16) we get 2FD —2M F—M u+ua, where the integra-
tion constant ua is real by (14), and can be made to vanish
by appropriately choosing the constant of integration in
(15); in the following, this choice will be assumed. Equa-
tions (11)-(14)reduce now to

M' —F (i7)
F' —2F 'D

D' (D —M)D 'F 'F

2FD —2M —FM v .

(i9)

(20)

2N co

N —N N —
UCO

(2i)

Finally, it is easy to check that Eqs. (17)-(20) can be
used to explicitly solve for D and F as functions of M, M,
M', and M', the remaining function M is forced to satisfy
a single, second-order ordinary differential equation. In-
troducing co 2M for convenience, the resulting equation
1S

k —(g+ ()du —Dd( —Dd(,
m ((+g) 'der+ ( —a+FD —M)((+g) dg

+ ( —cr+ FD —M) (g+ g) dg,

t (I -D„)du —cr((+ g) 'd(+M(g+ g) k —
~ ra'ar'(g+ g)du —

~ d,dg ——,
' hdg,

m (g+g) 'do+ g [u —ar(ar') '-2o](g+() dgwhere F, D, and M are complex functions of the variable u

only, and a subscript denotes differentiation with respect
to the corresponding variable. The field and symmetry
equations (2)-(8) reduce now to the following final equa-
tions for F, D, and M:

+ —,
'

[u —ar(ar') ' —2cr](g+g) 2d&,

t —,
' rara'ra'Z 'du —a(g+ g) 'dg+ —,

' ar(g+ g) 'dg,

dk Ak g
ar'ar'6 'E '(ark —coh )du Ad/Ad/,

Mu F
F„-2FD
D„ 1 —D 'M,
2M —2M —2FD+ 2FD+ FM —FM 0 .

—2(g+g3 '( ')
(i2)

The curvature two-form R has the expression
13

0 0
ekAr 0

(i4)

The problem of finding twisting, type-N fields with two
Killing vectors reduces to one of finding solutions of Eq.
(21) with nonvanishing twist. For completeness,
tetrad and other relevant quantities are given below in
terms of ar, ar, co', and ar '(6= ar —ruad' —uar '):

Equations (11)-(14)can be used to derive a third-order
ordinary differential equation for one of the complex func-
tions (e.g., F). Equation (14) is then seen to be a (compa-
tible) second-order differential constraint on that particu-
lar function. Similar sets, consisting of a complex, third-
order equation coupled to a real, second-order equation
for the same complex function have been considered previ-
ously 3 ' in the following, however, an alternative ap-
proach which leads to a single second-order equation will

be used.
I define a coordinate change u u u (u) for the in-

dependent variable u by means of the following inde6nite
integral:

with

e -32(&+g) '(ar') '(raw+ 2cra)

No explicit exact, closed-form solutions of Eq. (21) of a
nontrivial nature (i.e., with nonvanishing twist) are known

at present. It is possible, however, to add the following re-
marks, which may help in the search for solutions: In the
first place, the main equation (21) can be transformed
into one not explicitly involving the independent variable,
by defining z u 'co and taking lnu as the new indepen-
dent variable. By denoting by a dot the derivative with

respect to the latter, the resulting equation reads

u(u) - F(u)F(u)du . (is)
+.+ 2(z+z) (z+z

zz+zz+z
(22)
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Secondly, one notices that when to 2f (f being a real
function; this case gives zero twist), Eq. (21) can be
linearized by means of the Legendre transform

h=f—vf—', x=f', v- —h„,
which brings (21) over into the equation

h„+ —,'x 'h +4x (1 —2x)h 0.

(23)

Guided by this linearization, one can proceed in the fol-
lowing way: By expressing to and to' in terms of their real
and imaginary parts, according to to 2f+2ig,
to' 2x+2iy (f, g, x, and y real), Legendre-transformed
variables h and x are defined as in (23); Eq. (21) is then
equivalent to the following set of equations, linear in g and

gx+yhxx -o,
Ag+Bh+Lh„+Qh, „0,
ag+ bh+ lh„+ qh 0,

(24)

(25)

(26)

where the coefficients A, B, L, Q, a, b, l, and q are real
functions of x, y, and y„. By applying the compatibility
conditions for the system (24)-(26), it is found that the
problem reduces to a single, real, ordinary differential

equation of the third order for the real function y(x):
P(x,y,y„y,„,y, ) 0 . (27)

Once Eq. (27) is solved, h is given by a quadrature, and g
is given in finite terms. Unfortunately, (27) is a compli-
cated equation with polynomial nonlinearities; its length
prevents its reproduction here in full. Details of the
derivation of Eq. (27) and of its properties will be pub-
lished elsewhere. Further work is being done in searching
for closed-form solutions of Eqs. (21) and (22).
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