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Using the eA'ective scalar field theory of the p-adic string, we show the equivalence of two pre-

viously derived sets of classical Feynman rules: one by the present authors, the other by Brekke
et al. We use this equivalence to demonstrate a symmetry of the p-adic tree amplitude A (p)
under p 1/p. We then present a scalar field theory with a continuous parameter g that reduces

to the two previously discussed examples as special cases.

String and superstring theories are very promising as
candidates for a unified theory which includes gravity
with the other elementary-particle forces. Strings are also
relevant to other areas of physics, e.g., cosmology and su-

perconductivity. It is becoming clear that some new tech-
nique is necessary to make real progress toward confront-
ing strings with empirical data.

In the last year, there have been several discussions of
I

the p-adic approach to string theory. '2 In particular, it
was shown in Ref. 1 how to find the open-string N-point
tree amplitude for a p-adic string where the world-sheet
coordinates are p-adic valued.

For a fixed prime number p, the amplitude is derivable
from Feynman rules which correspond to a scalar field
theory' with a nonlocal propagator and nonpolynomial in-
teraction. The Lagrangian of this field theory is
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This is written in Euclidean spacetime, although it can be
continued directly to Minkowski spacetime. The Feyn-
man rules which reproduce the S-matrix N-point tree am-
plitudes of Ref. 1 are obtained directly from Eq. (1) as
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with a 1 —
—,
' k in Euclidean spacetime.

Independently of Ref. 1, Brekke, Freund, Olson, and
Witten have recently presented a set of Feynman rules
which are similar to our Eq. (2), taken from Ref. 1, but
which differ in an interesting manner. The Feynman rules
of Ref. 3 are

In the present article we shall explain the equivalence of
the two sets of Feynman rules (and corresponding scalar
field theories) at the classical level and show that it im-
plies a symmetry of the p-adic tree amplitudes. We shall
then introduce a more general class of Feynman rules
characterized by a continuous parameter (g).

The equation of motion from the Lagrangian of Eq. (1)
1S

(1 —p'++ )P —p(I+&)v +p+P .

This has two candidate vacua: first, p 0 (the tachyonic
vacuum), and second, p

—1. This is easily seen by
rewriting Eq. (4) as

p'/'(I+y) -(1+y)"&,

so that we may perturb around p 0 or ri—=p+ I 0.
For the case of Eq. (3) the Lagrangian is
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This explains how the on-shell tree amplitudes are the
same. Since the relationship is

y+ higher order,

the redefinition is within the class once studied by Borch-
ers.

It is important to note that the two theories are classi-
cally equivalent not only in the perturbative sense of the
tree S matrix for the tachyonic vacuum but also nonper-
turbatively for the soliton solution in the X (or ri) vacu-
um. One may readily check that the classical soliton ener-

gy is the same.
Inspection of the two sets of Feynman rules shows that

IIi(1/p) -piIo(p),

v, (i/p)-p -'vo(p) .
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Now for a general tree diagram with v propagators and n;
vertices of type V' one therefore finds, for the m-point am-
plitude,

(1/p)-p A (p),
with

k v+ g n;(i —3) (m —3),
1~3

using the topological identities

g in; 2v+m,
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In reaching the new result [Eq.(11)l, we have used the
previously derived fact that the two sets of Feynman rules
give the saine A (p).

We may introduce a new parameter g which interpo-

The equation of motion from variation of Eq. (6) can be
written

' p
p-'i2 I+~ - I+~

p, p,
with two vacuum solutions y 0 and y —p. If we
define X 1+y/p then X is related to the g of the earlier
formulation by

lates between the two sets of Feynman rules as follows.
We define a propagator

11,-(I —p-')[(i —p ) -' —gl . (14)

This coincides with Eq. (2a) for g 0 and with Eq. (3a)
for g 1, and explains the subscript in those equations.
To define the vertex VP we need to introduce the com-
binatoric quantities CP t„,t) defined as the number of in-
equivalent m-point tree ainplitudes containing v propaga-
tors and n; vertices of type V' (i ~ 3). The requirement
that the tree amplitude A be independent of g then dic-
tates that VP is given by either of the (equivalent) expres-
sions

v;-ZCP, t.,t) [4(I -p-')l "Pv",
i~3
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as a generalization of Eq. (10) which implies Eq. (11).
The coefficients O'P, t„,t) can be evaluated explicitly in

simple cases. For simplest (and only even) prime number
p 2 it is sufficient to know that

CPv m —3,n3 m 2;nq O, i ~-4)

The Lagrangian for p 2 and general g is
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Note that the second term in Eq. (18) can be summed to
give

gc'p, t„,t) [(&—1)(1—p ')l "pv"' . (isb)
i~3

These expressions are readily derived by writing II~ in Eq.
(14) as a sum of IIo, or Il~, respectively, with a contact
term and equating the resultant tree amplitudes, after
rearranging the contact term from the propagator to the
vertex.

Under p into 1/p the propagator and vertex satisfy

—', [[1+y(1—()l —1 ——'y(l —()——'p (1 —g) l .
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The equation of motion obtained by taking the stationary value of Eq. (18) is
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By defining now
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one finds after some algebra that Eq. (20) can be rewrit-
ten

This could be derived also from the p 3 Lagrangian
using Eq. (15b) for Vp(p 3) and noting that5

o/2 1/2 (22) C Pv m —3 ni—,n3 ~m —2 —2ni;ni;n, ~o,i ~ s)

which agrees with Eq. (5) and Eq. (7) for special ( values,
and hence the classical theory for p-2 is independent of

Again we stress this holds both perturbatively (S-
matrix tree amplitudes) and nonperturbatively (classical
soliton).

For general p, the appropriate transformation law is ob-
tained from the equation

gJ &'»+(I g)~--q+ I+g(J I) -. (23)

This is a pth-order equation for ri and hence for p & 5 in-

volves solution of a quintic or higher-order equation; such
an equation is not in general soluble by radicals (Galois).

For p 3, the cubic equation can be solved explicitly
and one finds

with

3q/2 j/3 (24)

ri [(I+2g+y+e)' +(I+2g+y —e)' ]
2(1 —g)

(25a)

[2m —(n4+ 4)]!
(26)

2m 3 [m —(2n4+2)]! n4&

Introduction of the g parameter thus allows one to gen-
eralize the classical Feynman rules of Refs. 1 and 3. The
classical physics including the N-point tree amplitudes in
the tachyonic vacuum and the soliton solution in the shift-
ed vacuum (which has no particles perturbatively) are in-
variant under (.

Loop amplitudes for the fixed-p scalar field theory do
depend dramatically on g because the propagator II~ of
Eq. (14) is exponentially convergent for k2~ ee when

1 but goes to a constant for all (el when k ~ ~.
Thus, loop diagrams diverge for all (W l. We believe it is,
however, not meaningful to add loops for a fixed p. What
seems more likely is that one should form the infinite
product over p separately for the tree diagrams, the 1-loop
diagrams, and so on, to regain the corresponding string
amplitudes. If this is correct, then the parameter g may
be useful in studying the infinite-product properties of the
loop amplitudes.

' I/2

e- y'+2(1+2()y+ 1+3
(25b)
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sWe have checked that substitution of Eq. (26) into Eq. (15b)

leads to an equation of motion coinciding with Eqs. (24) and

(25), at least for several nontrivial terms as a power series in


