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Eigenmodes for fluctuations about the classical solutions in the generalized Liouville equation
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We investigate the eigenmodes for fluctuations about the instantonlike solutions of the general-
ized Liouville equation. We find that the scalar equation gives positive-definite eigenvalues whereas
zero modes can be formed in one sector for the spinor case.

During the last 10 years, the ordinary, purely bosonic,
Liouville theory! was reconsidered in the study of soli-
tons and instantons,> and in the reformulations of the
dual string model,> where the Liouville modes appear
naturally for D =26 dimensions. Recently, it has been
suggested® that two-dimensional gravitational dynamics
should be governed by a Liouville-type dynamics, and an
N =1 supersymmetric extension of the Liouville theory
has also been investigated.” Two of us (G.K.A. and
C.D.)% generalized the Liouville theory by adding a fer-
mionic self-interaction term, and changing the sign of the
bosonic potential. This model, although not supersym-
metric, still maintains conformal symmetry,’ possesses in-
stantontype solutions for both the scalar and the spinor
fields. In recent work,? it has been shown that the two-
dimensional theory of gravity with dynamical metric and
torsion, which was proposed in the context of strings, can
be reduced to the model considered in Ref. 6.

Here, we consider the class of two-dimensional
con6formal-invariant theories described by the Lagrang-
ian
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where the scalar field ¢ is dimensionless, the fermion field
¥ has a scalar dimension %, the positive constants 3,8 are
also dimensionless and the quantity p? with the dimen-
sion of the square of mass is also taken positive. This La-
grangian (1) gives the following equations of motion:
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One can find the following instantonlike solutions® of
Egs. (2) as a result of the conformal symmetry:
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For g =0, the solution for the scalar field is in the same
form as the instanton solutions in the ordinary Liouville
theory’ and one can also show that solutions (3) are the
solutions of the supersymmetric Liouville theory'® with
A = —1 and with an anticommuting constant spinor.

In this work, we study the quantum fluctuations about
instantonlike classical solutions (3), and also investigate
for which range of the coupling constants, g and B, the
generalized Atiyah-Singer zero modes for the fermion
equation appear.

One can find that the equations for quantum fluctua-
tions are, for u >0,
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where A is given in Eq. (4a). Here we are studying the
eigenmodes on the unit sphere.

This equation can be solved for g /B? in terms of A.
Two solutions exist for g /8%
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g/B=%, A=-1, (6a)
and
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where A is a free parameter. For 4 = —%, the fluctua-

tions about the classical solutions are not stable.
For the latter solution we get
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For A =1, we get g /B*=0. This is the case without the
fermion-fermion interaction whose solutions were given
in the ordinary Liouville theory.® From Eq. (6b) we see
that A should be greater than 1, to get positive g /B’
values.

Equation (7a), on the sphere, is written as'!
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The series is stopped as a polynomial of degree N and
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We see that for 4 >1,0<A2for N >0

Starting with the scalar Liouville theory D’Hoker
et al.'? found a similar result, that A? is positive definite
upon fluctuations about the static solution, contrary to
the claims of Barbasov et al.!

If we take W =(}), Eq. (7b) is reduced to the form
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The equation for v is the same equation with m replaced
by (—m). This equation has solutions
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The eigenvalues are given by
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For A =2, we get the free case for the fermion, which is
the same as the vacuum. The equation for the scalar, in
particular, is stable for this value of A, with positive-
definite eigenvalues. For A4 =4 we get the first zero
modes for the fermion equation, with normalizable eigen-
functions
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over the sphere. Thus, the topological signature of a true
instanton is seen in the fermion equation when g /8*= -
Note that to get 4 =4 we have to set the ratio of the two
coupling constants to this definite value, which fixes a
definite sector. For 4 >4 we find that normalizable solu-
tions exist for A less than zero. This is clearly seen if one
writes Eq. (7b) as
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where z=re’®. If A+ A —2=N, these equations have
solutions
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For N <0, these solutions are not normalizable with the
measure du=dzdz/1+Z7z. If A >4, we can take N >0
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for A <0. Such solutions are not found among the fluc-
tuation modes of the models studied before.!!"!*

In this work, we found that the fluctuations around the
instanton solutions (3) of the model (1) are stable. Al-
though, we have a free parameter A4, which can be inter-
preted as the instanton number in this model, to get the
standard results one has to fix this constant 4 to 4 which
fixes the ratio of the coupling constants in the theory.
For this value of the ratio of the coupling constants we
get the generalized Atiyah-Singer mode, our D operator
has a nonderivative diagonal part in it, in the fermion
equation. The scalar equation has only positive-definite
eigenmodes, similar to the static solution case.'> One can

also investigate similar solutions in the bosonic string
models, such as the model with torsion on the string
world sheet,? since the Lagrangian of both models look
like different versions of a single unifying model.
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