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Critical dimensions for chiral bosons
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We give the Lagrangian formulation of a Bose model in 1+1 dimensions which describes a free
chiral Lie-algebra-valued current. This model is a non-Abelian generalization of the chiral scalar
model of Siegel. Both the Abelian and non-Abelian actions have a gauge invariance, which becomes
anomalous when the models are quantized. The condition that this anomaly be canceled coincides
with the string no-ghost condition.

Chiral bosons are one of the basic building blocks of
string models. In this paper we shall argue that there are
"critical dimensions" for which chiral bosons can be con-
sistently quantized, which coincide with the critical di-
mensions of strings.

A classical covariant model describing a chiral scalar
in 1+ 1 dimensions has been found by Siegel. ' The action
1S

where g (x) is a matrix field in some real, orthogonal rep-
resentation of a compact, semisimple group G. More-
over, N is a three-dimensional manifold, whose boundary
is spacetime. The action therefore consists of the Wess-
Zumino-Witten (WZW) action, with an additional cou-
pling to the field A, (x). To see that this model indeed
describes only one (chiral) current, consider the I,
equation of motion,

—,'tr(g 't) g) =0 .

(la) Since the group 6 is compact, this implies

(lb) (6)

[light-cone coordinates are defined by x*
=(1/&2)(x kx'); we use a Minkowski metric, with
ri+ =ri += —1, e+ = —e += —1] where (b(x) is a
real scalar field, and A." (x) is a real symmetric tensor
field. Varying A, and P yields the classical equations of
motion

Hence, only a single field A, is needed to set an entire
Lie-algebra-valued current to vanish. The remaining
current which the model describes is 8+gg

As in the Abelian case, the action (4) does not provide
dynamics for the field A, , as it is a gauge degree of free-
dom. The gauge transformations under which the action
is invariant are

(2a)

(2b)

5g=( t) g, (7a)

(7b)

5A. = —2t)+ g —A, t) (3b)

where P(x) is an infinitesiinal vector. Thus, classically
this model describes one chiral scalar, with correspond-
ing current t)+P.

It is natural to ask whether there exists a non-Abelian
generalization of this model, which describes a free chiral
Lie-algebra-valued current. In fact, there is. The action
is given by

1

J d'x tr[t) gg 'tl gg '+ —,'A, (g 't) g)']

respectively. The first equation implies t) /=0; and so
the second equation is automatica}ly satisfied. Since k
drops out of the field equations, it must be a gauge degree
of freedom. Indeed, the action (1) has the ("Siegel") in-
variance'

(3a)

These are an immediate generalization of the Siegel trans-
formation laws (3).

It should be noted that the Wess-Zumino term in the
action (4) is separately invariant under the transforma-
tions (7). The coefficient of the Wess-Zumino term is
determined by demanding conformal invariance; or,
equivalently, by requiring that the model should couple
correctly to a background non-Abelian gauge field.

Having described the classical Lagrangian formulation
of chiral bosons, let us now turn to quantization. We be-
gin with the simpler case of a chiral scalar (1). Since one
must eventually perform a functional integral over the
gauge field A, , it is necessary to fix the Siegel invari-
ance. Choosing the quantum gauge A. =0 leads to the
ghost Lagrangian

J tr(g 'dg)',1
(4) Consider the generating functional W[A, ], defined by

functional integration over P and the ghosts:

37 3067 1988 The American Physical Society



3068 BRIEF REPORTS 37

exp(i8'[I, ])=f [dP][d(ghosts)j

Xexp[i(S[Q, A. ]+S „„,)) . (9)

=(a p) —2[2b++a c +(a b++)c ] . (11)

By straightforward computation, one finds

i ( T' U (x)U (y) ) = (1—26) 5(x —y),24~ a+

(12)

where the contribution —26 comes from the ghosts.
Hence, under a Siegel transformation,

We normalize the measure so that the functional integral
is unity for A, =0. To lowest order in A, , the gen-
erating functional is given by

W[A. ]=—,
' f d x f d yi(T U (x)U (y))

X A, (x)A, (y),
where

U (x)=2 5S
(x)

From (12), we see that the Siegel anomaly is proportional
to d —26; hence, for d =26, the anomaly is absent. It is
straightforward to couple this model to gauge and gravi-
tational backgrounds.

Next, let us consider the quantization of the non-
Abelian model (4). As in the Abelian case, there is an
anomaly in the Siegel symmetry (7), which must be can-
celed. However, the approach of Ref. 4 of adding anoth-
er term to the action cannot be generalized to the non-
Abelian case. Indeed, the term one would add is

—aA, tra (g 'a g),
which is identically zero, since g a g is Lie-algebra
valued. Hence, in order to cancel the Siegel anomaly, we
must follow the second approach; namely, we must add
to the model additional chiral fields.

As an example, consider the model describing a chiral
Lie-algebra-valued current a+gg ' and a set of d chiral
Abelian currents a+/, a= 1, . . . , d with corresponding
actions (4) and (16), respectively. Again we fix the Siegel
symmetry with the quantum gauge choice A, =0, and
we consider the generating function %[A, ] defined by

exp(iW[k j)=f [dP ][dg][d(ghosts)]

Xexp[i(S[Q, A. j+S[g,A, ]
5(%[A, ]= f d xA, a (13) +ss„.„)] . (17)

That is, the Siegel symmetry is anomalous. If the model
is to describe only a chiral scalar, this anomaly must be
canceled.

We know of two ways of canceling the Siegel anomaly.
The first, proposed in Ref. 4, is to modify the Siegel ac-
tion (1) by adding a new term which is linear in P:

S = f d'x[a, ya y+-,'X--(a y)' —~X--a' y] . (14)

This action has a tree-level Siegel anomaly proportional
to a, which can be made to cancel against the one-loop
anomaly (13), by choosing a =25/48m. However, there
is a diSculty in coupling this model to background (two-
dimensional) gravity g„„. Setting g„„=ri„„+h„„,and
working to first order in the fields k and h", we find
that the correct linearized gravitational couplings are
given by the action

S=f d'x[a ya y+ ,'h++(a, y)'+ ,'h-(a y)'---
+-,'x--(a y)' —~x--a' y —~h --a' y] .

(15)

Notice the last term in (15). It is needed to cancel a
curved-space Siegel anomaly. However, because of the
presence of this term, it is not clear how the couplings to
gravity can be generalized to the full nonlinear level.
(For further details, see Ref. 5.)

There is a second way to cancel the Siegel anomaly,
which avoids such diSculties with coupling to gravity.
Instead of a single chiral scalar, we consider a set of d
such scalars P, a = 1, . . . , d with action

S=f dx(a pa y+-,'X -a pa y ). -

The generating functional can again be expanded as in

Eq. (10). For the case that the group G is simple, the
two-point function of U:—25S/5A, is given by

where

cG ——dG/(1+CD /tc) . (18b)

Here, dG ——dimG, and a and C„are defined in terms of
the generators T, of G as

[T„T~]=if,i„T„Tg T, , ——

tr(T, TI, )=a5,1„ f„nfl„g C„5,1, . —— (19)

(See Ref. 6.) For a level-one representation of a simply
laced group, the quantity cG is equal to the rank of the
group. If G is a direct product of simple groups, CG is
given by a sum of terms (18b), one such term for each
simple factor.

From (18), we learn that the Siegel anomaly is absent,
provided that the condition

d +CG —26=0

is satisfied. Remarkably, this is precisely the no-ghost
condition for a string on a group manifold. Moreover,
we observe that for a chiral Lie-algebra-valued current,
there is a restriction

cg (26 . (21)

(T'U ( )U (y))= (d+ —26) 5( —y),1

24~ ' a,
(18a)
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In contrast, for the nonchiral case, there is no such re-
striction.

We have seen that there exists a classical Lagrangian
description of a free chiral Lie-algebra-valued current. In
particular, the o model (4) can accommodate chiral
E8XE8 gauge currents. This may help provide a bosonic
formulation of the E8XE8 heterotic string in which all
symmetries are realized linearly. A supersymmetric ex-
tension of the action (4) is also available. In fact, the
coupling of (supersymmetric) chiral bosons to arbitrary
metric, antisymmetric, and dilaton backgrounds has also
been determined.

Moreover, we have seen that the condition that chiral
bosons can be consistently quantized coincides with the
string no-ghost condition. One can think of Siegel sym-
metry (3) as the gauging of "half' of the group of two-
dimensional reparametrizations (diffeomorphisms),

5x =g (x"), 5x+=0 (Refs. I and 4). Hence, for a
chiral boson, the critical dimension is determined by the
requirement that the quantum theory be invariant under
half of the group of diffeomorphisms. This may be relat-
ed to the quantum DiffS '/S ' invariance considered in
Ref. 9, and also to the holomorphic factorization of the
string partition function in 26 (Euclidean) dimensions. '

On the other hand, the classical string action is invariant
under the full group of two-dimensional diffeomorphisms.
The quantum theory must also respect this full invari-
ance. It is intriguing that only half of this invariance is
needed to 6x the critical dimension.
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