PHYSICAL REVIEW D

VOLUME 37, NUMBER 2

15 JANUARY 1988

Hypercylindrical black holes

R. Gregory and R. Laflamme
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, CB3 9EW, Great Britain
(Received 17 August 1987)

We show that the Schwarzschild black hole extended to five dimensions by the addition of an
extra dimension is stable against linearized perturbations of the metric; thus the topology of the
horizon can be thought of as an extra black-hole hair.

I. INTRODUCTION

Recent developments in fundamental theories of phys-
ics suggest that the Universe might have more than four
dimensions.! It is believed that the extra dimensions
played an important role in the early Universe;? if this is
the case we must generalize familiar four-dimensional
objects to their higher-dimensional counterparts. An in-
teresting question is that of extending black holes, and
considerable progress has been made in this area.>* For
example, in the case of five dimensions we find that we
have at least two options: we could either have a hyper-
spherically symmetric black hole, or we could extend the
four-dimensional black hole uniformly into the fifth di-
mension producing a cylindrical black hole. The stabili-
ty of such objects has not been explored; their stability
would imply that not only the mass, Yang-Mills charges,
and the angular momenta were necessary to describe
higher-dimensional black holes, but also the specification
of the topology of the horizon.

Another recent area of interest and activity is cosmic
strings. These have aroused much interest as they give a
compelling description of the formation of structure in
the Universe. There is evidence that cosmic strings in
four dimensions are gravitationally stable;’ however, the
five-dimensional problem is slightly different. In four di-
mensions it is not possible for the string to have an event
horizon (unless it is a small loop) and radial collapse of
the string would result in a naked conical singularity. In
five dimensions this is not the case; for example, the
Schwarzschild metric extended into the fifth dimension
is a solution of the Einstein equations which has a hy-
percylindrical event horizon; it may be possible for a
cosmic string to shrink inside its event horizon, and it
would be interesting to know if such a string were stable.

We consider the problem of perturbing a Schwarzs-
child spacetime extended by the addition of an extra di-
mension (henceforth denoted as Sgy, XR). In Sec. II we
describe our approach, which is similar to the analysis of
Regge and Wheeler.® We choose to impose the trans-
verse trace-free gauge on our perturbation, which leads
us, via the Einstein equations, to the Lichnerowicz equa-
tion for the perturbation. Of critical importance are the
boundary conditions. Clearly the perturbation has to be
regular at large spatial distances from the string, but
near the horizon we must be careful as our coordinate
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system is not regular. Thus we impose regularity of the
perturbation with respect to an orthonormal tetrad. In
Sec. IIT we show that it is possible to apply a Kaluza-
Klein decomposition to the perturbation, regarding it as
a combination of a scalar, vector, and tensor part with
respect to the four-dimensional sections. In Sec. IV we
discuss an unexpected static mode for the tensor pertur-
bations and comment on the thermodynamics of black
holes in five dimensions. Finally we summarize our re-
sults and conclude that the S, X R string is classically
stable.

II. THE FORMALISM

The first steps towards a proof of the stability of a
black hole in four dimensions were established by Regge
and Wheeler® and later refined and extended by various
workers.””® We intend to follow the basic outline of
these methods.

The metric of the Schwarzschild black hole in five di-
mensions is given by
-1
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ds?=+dz*— dt?+

+rXd6*+sin*0d¢?) (1

(using units ¢ =G =1). Clearly this metric is a solution
of the five-dimensional vacuum Einstein equations:

G, (8.4)=0. (2)
We perturb this metric by setting

8ab —>8ab +hab ’

where h,;, is small (in a sense to be made precise short-
ly). We assume that the perturbed metric also satisfies
the Einstein equations

Gab(gcd +hcd )=0, (3)

which give us the equations of motion for h,,. The sta-
bility problem is then whether these equations allow os-
cillatory or undamped solutions for 4,,. In the former
case we would say that Sg, XR was stable, in the latter
case unstable.

Before discussing this however, we should turn to the
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questions of gauge and boundary conditions. We choose
a transverse trace-free gauge for A, i.e.,

8%ha =0, Vh,=0. 4)

We then see that the Einstein equations (3) for g,, +hg,
simplify to the Lichnerowicz equation for h,,:

Vevehac +2Rabcdhbd=0 (5)

(where R4 is calculated from the background metric).
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The boundary conditions we need to impose are that
h, is regular (and small) compared with the background
metric. Clearly there is no problem far from the black
hole since our coordinates are regular and we simply re-
quire that h,, be regular. However, near the horizon we
must be careful, as the (¢,7) coordinates become singular.
Vishveshwara’ overcame this problem by introducing
Kruskal coordinates. We choose to approach it some-
what differently by imposing that all components of A,
remain regular with respect to the orthonormal tetrad

1
3 5 —1/2a 5 1/2a 13 1 3
m m
{ea}—{az’ == o |' 77 3r’ r 30 rsinf 3¢ |- “

We prefer this approach as it gives access to the boundary conditions more readily, and it corresponds with the intui-
tive notion of what we would mean by regularity of a perturbation.

Now we return to the problem of analyzing the perturbation equation (5). Since we have a high degree of symmetry
of the background, it is possible to simplify these equations by decomposing the perturbation into its irreducible
modes with respect to the group of symmetries of the background metric. In our case, the ¢t and z translation sym-
metries mean that we can decompose the perturbation into frequency modes in the ¢ and z variables, and spherical
symmetry means that we can decompose h,, into tensor spherical harmonics. In this paper we will focus attention on
perturbations which are independent of 6 and ¢; thus, we can expand h as

H*(r) H#*(r) H"(r) O 0

H#*r)y H™r) H"(r) O 0
h%(z,t,r)=e' %' |H"(r) H"(r) H™(r) O 0 @)

0 0 0 K(r) 0

0 0 0 0 1?(2')

sin“0

Using this ansatz, Eq. (5) reduces to a set of coupled
second-order ordinary differential equations in r with pa-
rameters u and . By expanding the solutions in asymp-
totic series it is possible to find the leading-order behav-
ior near the horizon (» —2m) and near infinity (7 — 0 ).
We then demonstrate that the regular solution corre-
sponding to an unstable mode (imaginary w) at the hor-
izon cannot be matched to the regular solution corre-
sponding to the same mode at infinity. We therefore
deduce that the Sg, XR is stable.

III. THE PERTURBATION EQUATIONS

We now examine the set of differential equations con-
tinued in Eq. (5). The interpretation of the metric per-
turbations in a Kaluza-Klein fashion renders the prob-
lem more transparent. This consists of reinterpreting
the metric perturbation as scalar, vector, and tensor
fields which propagate in a lower-dimensional spacetime,
in our case four-dimensional Schwarzschild spacetime.
In this framework the “frequency” of the perturbation in
the z direction, denoted by u in Eq. (7), corresponds to a
mass parameter for the fields mentioned above.

(i) The scalar perturbation. The component A% can be
interpreted as a scalar field on a Schwarzschild back-
ground. Its equation of motion decouples from all other
components of the perturbation and reduces to [using
the ansatz (7)]

I

(r—2m)* d* ., 2r—m)r—2m)d .,
r? drzH + rl drH

H#%Z=0, (8)

QZ-{— gz(r —2m)
r

where Q=iw. The regular solutions at the horizon and
infinity are

HZ?%«< (r —2m)*® asr—2m , (9a)

HZce VO a5 p o (9b)
(using the convention 1 >0). Without loss of generality
we can choose the constant of proportionality in (9a) to
be positive, then H*-—0 as r—2m and dH?#/dr > 0; but
then in order to have a regular solution at infinity (i.e.,
H#*0) we must have a maximum at some value of r.
This is impossible by inspection of Eq. (8), since at such
a point dH?/dr =0 and d?H%/dr? <0. Therefore, the
scalar perturbation cannot lead to an instability of the
Sscn X R spacetime.

This result was expected because, as noted earlier, this
perturbation is similar to a massive scalar field and
four-dimensional black holes are stable to such perturba-
tions. Thus we must take this part of the perturbation
to be zero in the search of instability from other types of
perturbation.
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(ii) Vector perturbations. In this case we look at the az
(az) components. The equations for #* and h* are
coupled, but can be disentangled using the transverse
gauge condition. We obtain, for the h* perturbation,

However, the boundary conditions imply that
H”(1—2m /r)~"? must be regular; this imposes the re-
striction that Q> 1/4m from Eq. (11a). We can then see
that the coefficient multiplying H* in Eq. (10) above is
strictly positive outside the horizon and the argument of

d_2 H” 4+ 2r—m) d the previous section applies. Hence, the component H*
dr? r(r—2m) dr must be taken to be zero for any unstable perturbation.
2r —am) Q22 i The solution for H* can be obtained by integrating the
3 5 H7=0. gauge condition using the previous result and no regular
rir—=2m) (r—2m)*  r—2m unstable solution exists. Therefore, we conclude that the
(10) ‘Schh X R spacetime is stable against the vector perturba-
tions.
The regular solutions are of the form (iii) Tensor perturbations. Finally we study the tensor
perturbations. These behave like tensor fields in a four-
H” < (r —2m)™% asr—2m , (I11a)  dimensional Schwarzschild background. Using the
— Lichnerowicz equation, the gauge conditions, and the
HYxe -Vl as r— oo . (11b)  previous results we obtain, after a lengthy calculation,
J
m Q% H(r— 3m(r—m)  QXr+m) pu* 4 o
2r? 2"1 dr rfr—2m) m(r—2m) m |dr
Q*(2r2—8mr 4+-3m?)

_ 3mri—6m?r +2m?
rir

—2m)? 2mr(r —2m)?

2
29,2 2 2
pA2r*=10mr+13m?*) r | , _Q°r r
2mr¥(r —2m) 2m M T om
[
and the regular solutions behave like r—2m d* o 2(2r —3m)(r —4m) d_
H"«<(r —2m)='*2"% a5 r—2m , (13a) rooar rir—3m)  dr
PR 8m r 2gyrr
H7ae V04 a5r oo . (13b) _mH =-wHT, 13

In this case we must have Q> 1/2m in order to have a
regular perturbation at the horizon. By a similar argu-
ment to the previous case, we see that the two solutions
cannot match.

This completes the proof of stability for the Sg, XR
spacetime in the case of (6,4)-independent perturba-
tions. In the case of (0,¢)-dependent perturbations the
only modification brought about by the fifth dimension is
an additional u2-dependent term in the H® coefficient;
however, this only strengthens the four-dimensional sta-
bility argument, as we have shown.

IV. DISCUSSION AND CONCLUSION

In the previous section we studied the perturbations
with Qs£0, i.e., nonstatic perturbations. However, there
do exist nontrivial solutions of the perturbation equa-
tions for =0, e.g., a static vector perturbation of a
four-dimensional black hole corresponds to charging up
the black hole. In analyzing the static modes of (5) we
found an unexpected perturbation of the form

R = diag[0,H"(r), H™(r),K (r),K (r)/sin20] .  (14)

Again, using the Lichnerowicz equation and the gauge
conditions we obtain

which is an eigenvalue equation for H”. A similar equa-
tion has already been studied in the context of the nega-
tive mode of the Schwarzschild instanton.”!® Its solu-
tions are not known analytically, but it can be solved us-
ing numerical techniques which show the existence of a
regular solution only for the value u?~0.22/m? (Ref.
11). This indicates the existence of a (z,r)-dependent
solution in five dimensions with parameter u?, which
scales the usual four-dimensional geometry as we
proceed along the z direction. If we were to interpret
this perturbation in a Kaluza-Klein spirit, we would
conclude that this static solution represented a black-
hole hair from a massive spin-2 field (with mass parame-
ter ).

Usually in Kaluza-Klein theories, the extra coordinate
is identified periodically giving the extra dimension the
topology of a circle. This would restrict the parameter u
to take values of the form (27 /L)q for integer q, L being
the proper length of the extra dimension. The previous
argument given for stability remains unchanged; howev-
er, the static solution discussed above exists only when
the circumference of the extra dimension is a multiple of
m/v0.22.

Like its four-dimensional counterpart, the extended
Schwarzschild black hole will emit Hawking radiation.
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It is easy to calculate its temperature by asking for the
regularity of the Euclidean section. The result is similar
to the four-dimensional case: T =8wkm, where k is the
Boltzmann constant, m is the mass (in five dimensions)
per unit length for the hypercylindrical black hole and
we assume ¢ =fi=1 and the five-dimensional Newton’s
constant, Gs=1. The entropy of such a black hole will
of course be unbounded if the length of the fifth dimen-
sion is infinite; however, it is possible to calculate the en-
tropy per unit length, which is given by S/L =4rm?.
The entropy S for a length L of the black hole is
S =47M?*/L, where M is the total mass of that length.
It is interesting to compare this to the entropy for a hy-
perspherical black hole S =(727/3%)2M3/2, In this
case the entropy of the hypercylindrical black hole in-
creases linearly with M, and that of the hyperspherical
black hole increases as M3/2. This suggests that the
former would be favored for low masses, and the latter

for high masses. It is tempting to suggest that this could
provide a mechanism to trigger dimensional reduction;
this is presently under investigation.

To summarize, we have shown that the extension of a
four-dimensional black hole into an extra dimension is
stable against linearized perturbations of the metric.
This implies that the topology of the horizon is neces-
sary to classify black holes in higher dimensions and
thus can be thought of as an extra black-hole hair.
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