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Properties of the quantized SU(n) Yang-Mills fields, for n=2, 3, and 4, have been studied numeri-
cally. We apply the Hamiltonian formalism to the continuum theory, with a truncated momentum
expansion in a finite volume, and have examined states in the vacuum sector using variational
methods in the Coulomb gauge. The results depend on the strength of the interaction constant a,
with a transition at na~ 1. For small @, there is a gap between excited-state energies and the vacu-
um energy, but the excited 0% * states correspond to pairs of weakly interacting transverse gluons.
For larger a, the excited states are associated with a collective degree of freedom and can be
identified with a glueball. There is no evidence for the existence of an instability associated with

magnetic interactions.

I. INTRODUCTION

The central problem of strong-interaction physics is to
understand how the confinement mechanism of QCD
operates, and how it produces the observed properties of
physical particles. Many interesting results have already
been obtained by Monte Carlo simulation of lattice gauge
theories, but it is also useful to investigate other ap-
proaches, which can give complementary insights and
might eventually even be able to compete in numerical
precision. Our nonperturbative, numerical calculations
use the Hamiltonian formalism, which allows us to look
at the vacuum and low-lying excited states directly.
Since our work is based on the continuum theory, in-
clusion of fermions would give no fundamental complica-
tions, but our present numerical calculations have been
restricted to pure-glue theories.

We use standard mathematical techniques and approx-
imation methods. The fields are represented by normal-
mode expansions in a finite volume. These expansions
are truncated at a finite momentum index A, giving a
quantum system with a finite number of degrees of free-
dom. The Coulomb gauge is used. This means that con-
straints can be eliminated and there are no residual un-
physical variables. In the inner Gribov' domain where
the Faddeev-Popov determinant has no zeros, the Hilbert
space as well as the Hamiltonian is positive definite. This
allows practical use of variational methods.

Gribov pointed out that the properties of the
Coulomb-gauge Faddeev-Popov determinant can explain
in a simple way the origin of a mass gap in the spectrum
of physical states.! To examine this scenario for
confinement, a sequence of numerical studies were car-
ried out by Cutkosky; the earliest of these used simplified
models to illustrate the influence of the determinant.>? A
recent variational calculation has included, for SU(2), the
Coulomb energy term in the Hamiltonian.> Similar re-
sults have been obtained in SU(2) Coulomb-gauge calcu-
lations by Schiitte and co-workers* using cluster-
expansion techniques, and the Coulomb energy has been
treated perturbatively by Swift and Morrero Rodriguez.’

37

We consider here the more physically relevant case of
SU(3), with some improvements and corrections. For
comparison, we extend the published® SU(2) results using
the same methods, and we have also examined SU4), in
order to develop insight into large-n approximations.

If the transverse amplitudes become large enough, at
the Gribov horizon, the Gauss-law constraint operator6
A (defined below) develops a zero eigenvalue, and the
Coulomb energy diverges if the color-charge density o is
nonzero. The amplitudes are thereby constrained, even
classically, to lie within the region where A has a positive
spectrum. The previously reported numerical calcula-
tions show that this constraint on the transverse ampli-
tudes is particularly important for long-wavelength com-
ponents of the gluon field, and effectively prevents them
from propagating when a=g?/4r is big enough. As a
result, the effective frequencies € of the transverse modes
have a characteristic dispersion relation of the form sug-
gested by Gribov, in which the minimum frequency w is
higher than the minimum free-field frequency, and occurs
at a nonzero momentum. This provides a simple ex-
planation for the existence of a mass gap in the physical
spectrum, but somewhat more is needed to ensure that
gluons are actually confined. In our calculations, this
occurs when gluon self-energies become so large that
configurations with local color-charge cancellation are
favored. Collective excitations involving these special
configurations can still have relatively low energies, but
the density of these lower-energy states is greatly re-
duced. We find that when g becomes large enough, the
first excited 0+ * state does become a locally colorless ob-
ject. In this regime, there is also a gap between the ener-
gy of this state and the energies of the higher excited
states, which can be identified with pairs of such parti-
cles. These results would be compatible with the phe-
nomenology given by semiclassical ‘“dual superconduc-
tor”” models of the QCD vacuum.”’~® However, our cal-
culations do not support suggestions that the dielectric
properties of the QCD vacuum might be associated with
a magnetic instability.!0— 13

A special feature of our calculations is that we use as a
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quantization volume the maximally symmetric simply
connected finite domain S*® (the surface of a four-
dimensional sphere). The simply connected topology is
especially desirable for the treatment of gauge theories.
The symmetry group of S* is O(4)=SU(2) X SU(2), which
has just as many parameters as the symmetry group of
Euclidean space, and provides rotational invariance as
well as a simulation of translational invariance. Note
that a periodic cube (hypertorus) with the same cir-
cumference as a hypersphere has a volume which is 47
times larger. As a result, we expect that for truncation
effects of similar magnitude, the number of modes needed
on the hypersphere can be reduced by a factor of about
47.

On S3, there are curvature effects to be considered. In
a free-field theory, curvature corrections to the spectrum
can be calculated explicitly and removed. However, since
there is no explicit Lorentz invariance, interactions might
lead to corrections in states with different momenta
which differ from the corrections for noninteracting par-
ticles. Similar boost effects would also occur in the
periodic cube, where they may be even more important
because they could depend on the direction as well as on
the magnitude of the momentum. These boost effects
should be studied in further explicit calculations; for the
scalar field with a ¢* interaction term (which is similar to
a free-field theory) the corrections were found to be unim-
portant.'* For electrically charged particles interacting
with an external magnetic field, we found that we could
minimize the curvature corrections by adjusting parame-
ters.!> An effect arising from the curvature which might
influence scaling properties is that a hadron of given
volume on the hypersphere has a smaller surface area
than in flat space. As a result, we can expect to estimate
volume contributions to the energies of hadrons more re-
liably than we can estimate surface energies. Along with
the breaking of Lorentz invariance, the influence of our
regularization methods on gauge invariance should be ex-
amined further.

II. HAMILTONIAN

Bosonic modes on the hypersphere S* can be efficiently
classified by use of the multiplets (1(K +h), :(K —h)) of
SU(2) X SU(2), where the index K labels the total momen-
tum and A is the helicity.'® The independent dynamical
variables are the expansion coefficients g, of the
transverse-vector potential A, where the label k indicates
the color, direction of momentum, and helicity # =+1 of
a transverse-vector mode; we use the representation in
which the ¢’s are diagonal. The color-charge density o
and the scalar potential ® are auxiliary quantities which
are expanded in scalar modes, for which we also use the
labels (Kk) except that h =0. The expansions in scalar
and vector modes are truncated at the same value A. The
only zero-mode on the hypersphere is the scalar mode
with K =0, and this is decoupled in states with no net
color charge. As a result, S° provides a natural infrared
regularization which is free of topological complications.

The energy of a free-field transverse mode is
Wy =K +1. In general, it seems more accurate to identi-
fy K +1 as the momentum, rather than K. The high-
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momentum form of matrix elements is then closer to the
flat-space limit, giving better scaling behavior. It is also
suggested by the motion of charged particles in a magnet-
ic field."

In the Coulomb gauge, V- A =0, the Hamiltonian is®

H=1[dv(E*+€+B?), (1

where E is the transverse part of the electric field, € is the
longitudinal part, and the magnetic field is
B=VX A—]g AX A. Color indices, the structure con-
stants, and the Faddeev-Popov determinant F( A) have
been suppressed from the notation. The expansion
coefficients for E are —pg,, where the p’s are conjugate
to the g’s, and € is defined below. The expansion for the
term B=—1g AX A in the magnetic field involves both
transverse and longitudinal modes. We remind the
reader that F(A4) appears as a weighting function when
matrix elements of H are evaluated, and that the correct
ordering is E>— EFE and €*—€Fe.

For our numerical work, we find it convenient to insert
a factor I'=(—V?)~!"? into the color-charge density o:

oc—gTAE, 2)

and %az then represents a free-field energy density. We

also remove I' from the scalar potential ®, so that the
constraint equation for ® is

A®=(1—-gT A-V[®=0 , 3)

where A and T, as well as A-V, are matrices in the space
of scalar modes. The longitudinal electric field is then
€=—VI'®, and €=®% The Faddeev-Popov deter-
minant is F =det[A].

As in previous work, we make some approximations
which simplify the numerical treatment. These include
replacement of the actual Gribov horizon by a
smoothed-out approximation, use of a class of trial wave
functions with restricted correlations between different
modes, and an approximate treatment of the non-Abelian
magnetic energy contributions. By introducing these ap-
proximations, we in effect replace the actual QCD Hamil-
tonian by a somewhat simplified model Hamiltonian
which we expect to have a similar spectrum.

III. CALCULATIONS

The numerical calculations were carried out in two
stages. In the “Coulomb” stage, for an appropriate set of
values of gy, , we determined parametrized forms for the
inverse of the matrix A and for the determinant F. The
second stage was a variational calculation for the ener-
gies, using these parametrized operators and a polyspher-
ical approximation for the wave functions:
Y=W¥(X,,...,X,), where Xgx =3, qZ;. This is a plau-
sible ansatz for the vacuum sector, because the deter-
minant F has approximately this form. Using such trial
wave functions, the variational calculations were done in
two steps, following the method used by Cutkosky for
SU(2), but with some minor generalizations to improve
convergence. First, in a “vacuum” step, we determined a
first approximation ¥, for the vacuum state, using a trial
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wave function which was similar to the usual Gaussian
approximation. Then, in a second “excitation” step, ¥,
was fixed, and a set of orthogonal functions of the form
V=0 (X)¥, was used to improve the energy of the vacu-
um and to estimate energies of excited states with vacu-
um quantum numbers. Here Q(X) is a polynomial of
maximum degree 5, with (A+1)(2A+1) independent
terms.

When the fields are expanded in normal modes, A-E,
A X A, and the matrix elements of A-V involve products
of the structure constants multiplied by integrals over
three-vector or -scalar normal-mode functions. These in-
tegrals can be expressed as a product of two 3-j symbols
and a reduced matrix element.!® For use in the
“Coulomb” calculations, we constructed tables of these
matrix elements, in which the products of the common
3-j symbols were transformed to a real basis.

Since we have already reported on the methods and
some of the results of the Coulomb stage of calculation,”
we shall only give a brief review of the technique and de-
scribe some points which are important for the subse-
quent variational calculations. We used a method
developed by Balduz, Cutkosky, and Tsao'® to determine
F and the locus of the horizon. We examine the matrix
D =gI" A-VT for a selected set of amplitude coefficients
dxx chosen in the following way. The ratios of the X
were kept fixed at the ratios obtained in the previous
SU(2) calculation for a~0.75, where a=g?2/4x. The re-
sults are not sensitive to the ratios of the X, ; we used a
relatively large value for a to fix the ratios, because this
seemed to be an interesting region, and also because the
matrix is less important for smaller a. For each K, ran-
dom directions in the K subspace were then chosen, to
define the relative values of the gg;. A sample of 128
different g, was selected for each A. We then used the
Lanczos iteration method to find about 7-15 leading ei-
genvalues of D of each sign, and the corresponding eigen-
vectors. The leading eigenvalues of each sign establish
the distance to the horizon from the chosen point in the g
space for an arbitrary value of a, in each of the two oppo-
site directions from the origin. Using perturbation
theory with the leading eigenvectors, we also determine
the tangents to the horizon surface at the 256 intersec-
tions. As in previous work, we find that the horizon sur-
face can be reasonably well approximated by the ellip-
soidal surface z(q)=1, where z(q)=3 £xq2;. For the
gauge group SU(n), as we reported earlier,!” we can ex-
hibit the main dependence on n and K by using the for-
mula

U
na K
= , 4
5= | 2K (K +2) @
in which the denominator is the total number

My =(n>—1)Ng [with Ng=2K(K +2)] of transverse
modes with total momentum K. The calculated values of
the Ug have been found to be nearly constant, which
means that the £ decrease rapidly as K increases. As
remarked in the Introduction, this implies that the ampli-
tudes gg,, for long-wavelength components of the gluon
field, will be greatly reduced when « is big enough. For
small K, the Uy increase somewhat with n, while for
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K ~ A they are nearly constant.

The average value of the relative spacing ¢t =z, —z, be-
tween the leading zero (at zy=1) and the next-leading
zero, for different n and A, is shown in Fig. 1. This rela-
tive spacing depends primarily on the total number of
scalar modes N, and is roughly proportional to A~!.
The degree of smoothness of the horizon is indicated by
the quantity s, which is the rms error in the quadratic ap-
proximation; as we expect, s is somewhat less than ¢. Fig-
ure 1 also shows, for comparison, the mean value
r=1—{z) in the vacuum state, as obtained in the final
calculations when na=1.2. Since r is about 4s, replacing
z by a smoothed-out function is probably good enough
for the vacuum state, but may not be adequate for some
of the higher excited states.

Along with the leading eigenvalues of D, we calculated
TrD? and TrD?3; these quantities were used to construct
the interpolation formula for the Faddeev-Popov deter-
minant F, as described by Balduz, Cutkosky, and Tsao.
We find that F can be adequately approximated as a func-
tion of z (q).

The Coulomb energy operator ®? has a number of spe-
cial properties, which determine its influence on the
eigenstates of the Hamiltonian and also affect the way in
which we calculate and parametrize it. Since it is a sum
of squared terms, it is non-negative. However, the struc-
ture of the gluon color-charge operator o does allow it to
vanish. If the parallel components of A and E are sym-
metric in color, there is no contribution to o, because the
color indices are combined using the structure constants.
When the fields A and E are expanded in modes, the
charge-density operator for a given scalar mode can be
written as 0 =g 3 Yy, no9aymPnn- Here the Y’s are the
numerical coefficients described above, given by a spatial
integral involving the dot product of the two vector har-

— T T T T T

T

| Rt

M = NE

FIG. 1. Properties of the leading zeros of F. Here s gives the
rms deviation of the true horizon distance (squared) from the
smoothed-out approximation, and ¢ =z, — 1 gives the separation
of the next zero of the determinant. The quantity r gives, for
comparison, the mean value of 1—z in the vacuum state for
na=1.2.
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monic functions (symmetric in the momentum indices)
multiplied by the antisymmetric structure constants.
Therefore, Yy, v, is an antisymmetric quantity. For
matrix elements between wave functions which have the
polyspherical form, the replacement py, —2qy, Py can be
made, where Py, is conjugate to X. The charge operator
can therefore be expressed, after summing over m and n,
as 0 =3 yny PunPn, Where pyy is antisymmetric. The
gluon Coulomb energy can then be written as
®>=3 ¢y PxGgnPy, where the matrix G satisfies the
identity ¥y Ggxy =0 as a consequence of the antisym-
metry of p.

One consequence of this identity is that certain com-
binations of derivatives of ¥ will not contribute to the
Coulomb energy. As we mentioned in the Introduction,
this implies that there will be a collective degree of free-
dom which does not carry color charges, and that excita-
tions associated with this degree of freedom can have rel-
atively low energies.

To calculate the matrix elements Gy, we first need to
evaluate

Sn=0""3 pun - (5)
M

However, in order to get some diagnostic information
about the spatial distribution of charges, we also evalu-
ated the auxiliary quantities

PN =TI 3 pyy (6)
M

where ITX is a projection operator onto scalar modes with
total momentum K. We only need to calculate for
N=1,...,A—1, because we can use the identity to
determine the values for N =A.

To determine the ¢&X for each of the ensemble of rays
in the space of the ¢’s, we calculate, for several values of
z, the inverse of A [as multiplying A(A — 1) different vec-
tors] by the conjugate-gradient method. We chose, for
each A, three matching points z; spanning the region of z
which had been relevant to the confined regime in the
earlier SU(2) calculation. To start off the conjugate-
gradient iterations, we use an estimate based on all the
calculated eigenvectors and eigenvalues, the known term
which is linear in g, and also the inverse as obtained for
the next smaller z;.

Our formula for Ggy involves an interpolation in z,
and also an extension to other values for the ratios of the
Xg. Our prescription is as follows: We first define the
auxiliary quantities

Ciw
F =
KNT1.0.72

Cin 4t
l1—z  (1—2)?2"’
where 7 is obtained from the leading eigenvector of D,

and the Cjy are chosen to reproduce the value of Gy at
the three matching points. Then we write

Gxn=fgn+2Fgn)Xg Xy for K#N

GKKZ"— 2 GKN ’
N#K

Cin
1-0.9z

)]

(8)

where fyy is the second-order perturbation theory term.
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This prescription for the dependence on the X’s is exact
for the term involving fgy, and is an approximation for
the remainder.

To construct the magnetic Hamiltonian term
a =1 [dvB? we truncate the expansions for B at the
same momentum index L =A used for other quantities.
Somewhat simpler formulas are obtained, however, if we
only use the implicit cutoff given by addition of angular
momenta, which allows a smoother truncation extending
up to L ~2A. We shall first describe our treatment of a
using this simplified version. Expanding the A’s in vec-
tor modes, we have, explicitly,

A=1g*3 gigjakal fr*"
X [av(VixV))-(VExV}), ©)

where the f’s are the structure constants. To minimize
further proliferation of indices, we adopt the convention
that the meaning and range of an index such as k depends
on the context; that is, on f it refers to the color variable,
while on ¥V it labels the spatial mode. The vector-
harmonic functions have been normalized so that

Ng8™

6?2

JavVi-vi=8,8% and 3 VEVE= (10)
k

(where r and s label the vector components). For poly-
spherical states, averaging over the g’s with fixed X’s, we
have

XX,
MM,

(q19faKaL ) =8,x878,. 8" Qyy +interchanges ,

(1n

where Q;; =1, if I4J, and Q;; =M, /(M;+2). Using the
value of the Casimir operator along with Egs. (10) and
(11), we obtain

g’n
T e 5 e 12

The effect of truncating the B expansions at A is just to
insert an extra factor 7T}, into the summation in (12),
where T;; is given by a sum over reduced matrix ele-
ments. Note that T, =1ifI +J <A.

The magnetic Hamiltonian term which is cubic in A
has a vanishing expectation value if the wave function
has a polyspherical form. However, this term gives a
large negative contribution to the vacuum energy in
second-order perturbation theory, and it should not be
omitted.!”* We use a self-energy approximation (SEA) to
include the second-order contribution of this cubic term.
For consistency, the quartic magnetic term is then treat-
ed in the same way. The SEA magnetic energy is defined
to be

Hgpga=3 (AW +aSx)Xg +aU, , (13)

where Wy =K +1 gives the free-field part of the energy.
We choose Si so that the order-a magnetic contribution
to the (perturbative-vacuum | |two-gluon) matrix ele-
ment will be reproduced. Since Si by itself will not ex-
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actly reproduce the magnetic energy of the vacuum to
this order, a constant U, has been added, but this term
does not contribute to excitation energies. The same idea
was used in Cutkosky’s SU(2) calculation,® but there was
a numerical error in the Sy used in that paper. To illus-
trate the method, we describe how a term §K is derived
from (12). In the free-gluon vacuum |0), we have
(Xgx)=My /2Wy. The excited state is proportional to
(Xx —{Xg))|0). Using the matrix elements

(0] QX X,(Xyx—(Xk))|0)
=(61K +5_]K)<X1)<XJ>/WK ’

(14)
<0|XI(XK—<XK>) l 0)=SIK<XI)/WK ’
we obtain
nL(L 4+2)Tg;
§K_§ W, . (15)

The remaining part of Si is somewhat more complicated,
because there is an extra factor X; as well as the energy
denominator (W;+ W;+ W, ). The final corrected values
for Sx are shown in Fig. 2; there is an almost complete
cancellation between the attractive and repulsive terms,
leaving a small net attraction. In the confined regime, the
calculated excitation energies were changed very little by
correction of the error. Figure 3 compares the results of
test calculations for SU(2) in which the SEA term was
omitted with our final results in which it is included. In
the SEA approximation, the non-Abelian magnetic field
term has an insignificant effect on the excitation levels.
For the “vacuum step” of the variational calculations,

Magnetic self-energy

0.2 v v .
A=2 o
3 +
4 o
—~ 5 x 1
8V 6 o
+ I
<
—~~
- RS
+ 0.0 <
< O
N’ ~
~N ‘©
= g®
[77) ‘\ x 4
o+ o
S|
8 c_lj‘,o—"
_0.2 4 A A e
0 1

(K+1)/(A+1)

FIG. 2. Values of Sk, our estimate for the higher-order mag-
netic terms in the SEA Hamiltonian.
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we use the trial wave function
Wo=(1—zexp |—1 3 nxXx +m622 |, (16)

which has A +1 adjustable parameters 7,. This expres-
sion is similar to the usual Gaussian approximation, but
the Gaussian has been modified by the extra functions of
z as well as by the need to weight with F. The quadratic
behavior in 1 —z near z =1 is imposed by the structure of
the Coulomb energy operator. The use of Gaussian wave
functions is common in variational calculations because
they often lead to integrals which can be evaluated in
closed form. Here, however, we have numerical in-
tegrals, because F and the Coulomb energy operator lead
to integrals which cannot be evaluated analytically. One
reason we use Gaussian-type wave functions is that the
derivatives with respect to the parameters 75 and the
matrix elements in the basis set obtained by multiplying
¥, by the polynomial Q (X) can be evaluated using simi-
lar computer codes. In addition, we know that Eq. (16)
will give a good approximation for the larger values of K,
even when a is large, because for large K, the dependence
of z on the amplitudes will be very weak, and there will
be very little deviation from the Gaussian approximation.
For the polynomial Q (X), we use all quadratic polynomi-
als in the X, and the additional independent polynomi-
als obtained by multiplying these by a polynomial in z of
degree L,=3. In the previous SU(2) calculation,’ in
which the parameter 7, in Eq. (16) was not used, and L,
had a maximum value of 2, convergence as L, was in-
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FIG. 3. A comparison, for SU(2) and A=S5, of excitation en-
ergies as calculated with the term Sy included (solid curves) and
with Sy omitted (dashed curves). The plotting symbols show
the values of na for which calculations were made; the connect-
ing curves are spline interpolations.
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creased seemed somewhat marginal for the excited states
when a was large. The extra parameters used here give ¥
adequate flexibility in the region near the Gribov horizon.

We used a special method for the numerical integra-
tions. For the fixed-z hyperplanes in the space of the X’s,
an open hexagonal lattice was found to give reliable re-
sults. About 10° points were used for A =6, with the size
of the integrand being checked, roughly, at about 10
times as many points. To integrate over z, we used a
mapping which somewhat enlarged the region near z =1,
with about 50-100 points in the interval 0<z <1. We
also used formulas with weights which had been tuned
for the various terms in the Hamiltonian near z=1. A
difficulty with this method is that it is not so well suited
to the free-field limit, where {z ) is small, especially when
n and A are large. In this case, ¥? is almost a § function,
located in the region for which the integration was not
optimized.

The numerical calculations were carried out on the
Cray X-MP at the Pittsburgh Supercomputing Center.
In the Coulomb calculations, the computer time was
mainly needed for the eigenvalue determination and for
the matrix inversion; it depended strongly on the total
number of scalar modes N, and therefore on n and A.
For SU(4), we considered only A <5. In the variational
calculations, extensive computer time was needed for nu-
merical evaluation of the matrix elements of the Hamil-
tonian; it was very strongly dependent on A. Also, we
did need to use more integration points for each A when
n was larger. For SU(3), the two stages of calculation
used about equal amounts of computer time.

IV. RESULTS

Figure 4 shows how the wave function for the vacuum
state is influenced by the value of a. We plot {(W¥?) for
SU(3), for fixed z and integrated over all other variables,
against z/na. The density is extremely small when z is
small, because it contains a factor z*~!, where 2v is the
total number of vector modes included in the calculation.
For a=0.24, the horizon is off-scale and the density is
essentially given by the free-field wave function. For
a=0.48, the location of the horizon is indicated by the
X on the axis. For this value of a, the horizon lies in a
region where the free-field wave functions would be large,
and the actual wave functions are strongly affected by the
presence of the horizon. We see clearly, from Fig. 4, that
the probability density does go to zero as the horizon is
approached.

To examine how the constraining influence of the hor-
izon affects gluon frequencies, we define effective frequen-
cies Qg by (g2, ) =R /2Qg. The “renormalization fac-
tor” R was estimated by fitting the calculated values of
(g2, ) with the interpolation formula

Q% =W2+u(A+1)+6*/WE (17)

using R, u, and « as parameters. We required u to be in-
dependent of A. This scaling assumption is actually a
good approximation, and allows us to include the value
A=2. For SU(3), with =0.48, the Qx =R /(2{qZ; ))
are shown on the left side of Fig. 5. The dots show the
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FIG. 4. The density distribution {¥?) plotted against z /na,
in the unconfined (dashed curves) and confined (solid curves) re-
gimes, for SU(3).

interpolated minima, which define characteristic momen-
ta k and characteristic frequencies . The inverse of the
characteristic momentum « can be interpreted as a corre-
lation length for the field or as a “bag radius.” On the
right side of Fig. 5, for the values of a shown, the fre-
quencies Wy and Qx have been rescaled to align the
minima. For a given «, the bands of points with different
A interpolate a curve which illustrates the dispersion re-
lation suggested by Gribov.! The plots also show how
the location of the minimum changes when A and a are
increased. For large a, however, these frequencies do not
give a complete picture of the excited states, because
there are also strong interactions between the gluons.
Figure 6 shows energies of excited 0% states versus
na for A=35; note that the main n dependence is given by
the Casimir operator. In this figure, as well as in Fig. 3
and in those which follow, the plotting symbols show the
values of na for which numerical calculations were made,
and the connecting curves represent spline interpolations.
Figure 6 shows that for na~1, when the correlation
length is similar to the size of the hypersphere, there is a
transition to a regime in which there is a gap between ex-
cited states, as well as between excited states and the vac-
uum. In other words, there seems to be a transition from
a perturbative regime, in which the quantization volume
approximates part of a hadron’s interior, to a confined re-
gime in which the higher excited states are some approxi-
mation to a two-glueball continuum. The fact that the
energies for different n are not coincident when na is
small is probably an artifact of our integration method;
however, the region na % 1 is not subject to this problem.
The n dependence observed here originates in the n
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FIG. 6. Excitation energies for A=5. In this figure and in
the remaining ones, the plotting symbols show the values of na
for which calculations were made, and the connecting curves
are spline interpolations.

dependence of the Uy and A.

We find that the energy gap between the vacuum and
the first excited state is about twice the characteristic
gluon energy o, for all the values of a, n, and A that we
considered. As shown in Fig. 7, this enables us to plot all
our results on a single graph. The second excited state is
also shown. We see that, provided we stay away from
weak- and super-strong-coupling regimes, there is a re-
gion where the A dependence of these ratios is not great.
There are also smaller regions where the ratios to @ do
not depend greatly on na, which determines the infrared
scale. This value of na is bigger for the second excited
state, which is what one expects if the volume is to be big
enough that the higher excited states can contain two
separated glueballs. Of course, ® is only approximately
interpretable as a physical quantity, so these ratios have
only a qualitative significance. It is also possible that the
scaling with respect to na is distorted by hadron
surface-energy corrections, as we mentioned earlier.

In Fig. 8 we show the relative contributions from
different terms in the Hamiltonian to the energy
difference between the vacuum and the first excited state.
In this figure, C is the fractional contribution from the
Coulomb term le2, while M is the fractional contribution
from the magnetic energy 1B 2. The fraction from the
transverse electric energy, LE 2 is 1—C —M. This is the
largest single term. We see that in the confined regime,
most of the energy difference between the first excited
state and the vacuum is provided by the transverse elec-
tric field, while the contribution from the Coulomb ener-
gy is insignificant. This suggests that the glueball can be
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FIG. 8. Ratios of partial contributions to the first excitation
energy, the “glueball mass.” The fractional contribution of the
Coulomb energy is C, the fractional contribution of the magnet-
ic energy is M, and the fractional contribution of the transverse
electric energy is 1| —C — M.

interpreted as a structure formed by endless lines of elec-
tric flux. The curve for C +M has a somewhat irregular
dependence on na. This may be a result of the fact that
energy differences and partial energy contributions are
often given less accurately than total energies, when a
variational approach is used. It may also be, in part, a
hadron surface-energy effect.

As a consequence of the well-known antiscreening
effect of a Yang-Mills field, the ‘“interior charge” o
should be smaller than the associated “exterior charge,”
which with our normalizations can be taken to be I'V-¢,
or ®. In Fig. 9 we show how the ratio of energies
I/E=(0?)/(€*) is decreased as a is increased. To ex-
amine properties of the longitudinal propagator in more
detail, we use the ¢5X defined in Eq. (6) in terms of the
projection operators ITX, and consider the Coulomb-
energy term

C(K,L)=(cIXa~'I* A 'IXs ) , (18)

which exhibits the momentum correlation between the
interior and exterior charges. We find that C(K,L) can
be represented as the sum of a Kronecker & term
¢(K)8g; and a remaining ‘“diffuse” term d(K,L) in
which K and L are essentially uncorrelated. The ratio of
the diffuse part of the energy to the total Coulomb ener-
gy, D/JE=3 d(K,L)/3 C(K,L), is also plotted in Fig.
9, and it is seen to also have a universal behavior.

In summary, our calculations support the idea that the
characteristic dielectric properties of the QCD vacuum
arise directly from properties of the electrical terms in
the Hamiltonian, through the matrix A and from F.
Even though the electric energy controls the dynamical
behavior, large negative contributions to the electrical en-
ergy from the determinant F make (B?) > (E*+€*). A
contrasting idea is that the dielectric properties of the
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FIG. 9. The internal/external charges (normalized to give
the energies) and the ratio of the diffuse component to the total
external charge.
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QCD vacuum arise more indirectly, from some other as-
pect of the theory. It has been suggested that there is an
instability in the magnetic sector,'®!"!> and that this
leads to a state with very strong magnetic fields which
might bring about a transition to a state in which electric
flux lines would be compressed. However, there is no
sign of magnetic instability in our calculations. Rather,
the long-wavelength components of the Abelian part of
the magnetic field are much weaker than in a free-field
theory. Much of the phenomenology suggested by use of
a dual potential as a mean field’~° nevertheless seems to
be compatible with our conclusions about the behavior of
the electric field, even though one of the ideas which had
provided a motivation for these models is contradicted.
Although we did not find any instability within the physi-
cal sector of QCD, it is possible to interpret the existence
of null eigenvalues of A and the existence of the Gribov
horizon as arising from an instability in the ghost sector.
In our SEA, as given by Eq. (13), we do not have a
good estimate for the non-Abelian contribution to the to-
tal magnetic energy in the confined regime, or for how
this energy might be apportioned among different wave-
lengths. Note that in constructing the SEA we used
free-field energies in the internal loops, in order to have a
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simple, fixed expression for the Hamiltonian. If we were
to use the effective frequencies given by Eq. (17) instead,
the contributions would be reduced, especially the contri-
butions to the attractive term. A more detailed variation-
al study of these and other non-Abelian magnetic effects
is projected.

Our nonperturbative numerical calculations have
helped to clarify the mechanism for confinement of
gluons in QCD. However, there are many questions
which we have not yet investigated. We must examine
excited states which have other quantum numbers, and
include quarks. There are also many fundamental ques-
tions about Lorentz and gauge invariance which still need
to be addressed.
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