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Variational calculation of the spectrum of two-dimensional P theory in light-front field theory
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We demonstrate that a coherent state may be a valid vacuum in light-front field theory. Then by
minimizing the sum of the expectation values of the light-front Hamiltonian and the momentum
operators in a variational trial state, we evaluate the ground state (vacuum) of two-dimensional P
field theory. The resulting expectation value in the coherent state is identical with the result of the
effective-potential method in the equal-time formulation. Thus we demonstrate how to solve for the
ground state of the strong-coupling (P~)i problem on the light front. We also discuss the calculation
of excited states.

I. INTRODUCTION

Variational approaches to quantum field theory have a
long history. The Hartree approximation or the Gauss-
ian effective potential (GEP) formalism has been particu-
larly popular. ' Recently there have been attempts to im-
prove upon the Gaussian ansatz. All these attempts at
nonperturbative methods have been made in the conven-
tional equal-time formulation of quantum field theory.
Until recently the light-front formulation of field theory,
originating from Dirac s work on different forms of dy-
namics, was employed solely for perturbative calcula-
tions. This changed when discretized light-front quanti-
zation (DLFQ) [also called discretized light-cone quanti-
zation (DLCQ)] was developed for nonperturbative calcu-
lations.

The DLFQ formulation is based on a Fock-space ex-
pansion and discretization in light-cone momentum vari-
ables. The greatest advantage of the light-front scheme
over the equal-time formulation comes from the fact that
the light-front momentum operator is a positive operator.
If the states where the particles carry zero light-cone
momentum are neglected, then the Fock-space vacuum is
not dynamically related to the remainder of the states.
However, in describing the vacuum structure itself, it is
important to include the zero —light-cone —momentum
(k+=0) states. The importance of the point k+=0 in
light-front field theory has been stressed in the past by
several authors.

In strongly coupled field theories, there are well-known
examples where the vacuum exhibits a nontrivial struc-
ture. The simplest example is the P field theory. In our
initial investigation of (P )z theory in the DLFQ scheme
we followed the approach of Ref. 4 and found that in the
strong-eoup1ing region the vacuum instability manifested
itself through the appearance of negative eigenvalues of
the invariant-mass-squared operator. We believe that
within the DLFQ method this is due to the lack of a
dynamical description for the ground state (vacuum) it-
self. In the present work we adapt the familiar GEP for-
malism to the ground state of (P )z theory in the light-
front formulation. One of our major results is that, in ad-

dition to the light-front Hamiltonian operator, the light-
front momentum operator also is affected by normal or-
dering. This is in sharp contrast to the equal-time formu-
lation where the momentum operator is not affected by
normal ordering, and variational calculations may be per-
formed by simply minimizing the expectation value of the
Hamiltonian operator. We show that a suitable pro-
cedure is to minimize the momentum plus Hamiltonian
operator in a manner that yields a coherent-state repre-
sentation for the dynamical vacuum in the strong-
coupling domain.

We should note that this is not the only attempt to in-
corporate the nontrivial vacuum structure in the light-
front formulation. By modifying the infrared-singular
point of the light-front theory Glazeks has been able to
incorporate ideas from QCD sum rules in the light-front
formalism.

This paper is organized as follows. In Sec. II we de-
scribe the GEP formalism applied to the light-front for-
mulation and show equivalence to the conventional
equal-time result. In Sec. III we discuss the calculation
of excited states in the DLFQ formalism. Section IV
contains the summary and conclusions.

II. VARIATIONAL ESTIMATE
OF THE GROUND STATE

Let us start from the light-front Hamiltonian operator
for a general scalar field theory in 1 + 1 dimensions for il-
lustrative purposes:

P = liin dx N, —,'m P, +—((), +
+L

i 22 ~ 4

L~oo —L
a 2 a 4 a

where the unspecified terms allow for higher-order non-
derivative self-couplings. Here we have adopted the nor-
mal ordering with respect to the Fock-space vacuum

~ P, ) of quanta having mass m. The normal ordering
with respect to a in the Hamiltonian operator can be in-
terpreted as normal ordering with respect to the mass m.
The field operator P, has the following expansion:
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((),(x )=f - dk+
[a(k+)e —('/2)k +

2~2k+

+at(k+ )e(i/2)k+x ]

We have

(2)

since a(k+)
i P, ) =0, we have b(k+)U

i P, ) =0. Thus,
the b-vacuum

i pb ) is given by

dk+
ipb)=exp f f(k+)[a (k+)—a(k+)] ~p, ) .

2m2k+

a(k+)
~ P, ) =0 .

Recall that in the equal-time formulation the correspond-
ing expansion is given by

That is, the new vacuum is a coherent state when de-
scribed in terms of the original a quanta.

From Eq. (8}we have

(1)(x)= f [a (k)e '""+a (k)e+'""],
27T2COg

where

cdk =+k +m

(I), (x ) =it)b(x )+P,(x ),
(4} where

(I),(x ) =2f(x ) .

Let us define

(14)

(15)

By comparing relations (2) and (4) we see that the light-
front field carries no explicit dependence on the mass m
as opposed to the equal-time formulation. One must,
however, note that the light-front expansion is divergent
at k+ =0. One possible way to manage this divergence
is to introduce the regularization

=2f(k+) .
2k+

Now

f(k+) 1 fdx —y(x —)e(i/2)k+x

(16)

(I) (x )= lim f [a(k+)e
A~oo m /A 2g2k+

If j'(x ) is a constant independent of x, i.e.,
J(x )=f0, then f(k+)=f02@5(k+) and

+a t(k + )e(i/2)k+x ] i(})b)=expI f0[a (k+=0)—a(k+=0)]) i(I), ) . (18)

The operators a and a obey the commutation relations

[a (k+ ), a t(k'+ )]=2m2k+5(k+ —k' +
)

[a(k+),a(k'+)]=0, [a (k+),at(k'+)]=0
(7)

b(k+ }=a(k+)—f (k+) (8)

Let us introduce a linear transformation which preserves
commutation relations:

Thus the light-cone vacuum is a coherent state of zero-
momentum bosons. Note that this condensate has arisen
from very general considerations of a scalar field and does
not depend on the Lagrangian in any way. The key issue
is simply whether

i P, ), the usual light-cone vacuum, or

i it)b), the boson condensate, is lower in energy for a
given field theory and given masses and coupling
strengths [i.e., fixed m, i(, in Eq. (1)].

Let us now consider the light-front Hamiltonian for
the ()I)4 problem as an illustrative case:

where f (k+) is a c-number field. Let us also introduce
the vacuum with respect to the b operator by lcm ~ N,' ~ +

L~oo
(19)

b(k+)
i it)b) =0 . (9)

Now
Let us also introduce a mass parameter p. The c-number
field f and the mass )M will be treated as variational pa-
rameters in the following. Once f and p have been deter-
mined variationally we will show how physical masses
can be obtained through, for example, the DLFQ
method.

To clarify the underlying physics one can construct the
operator

())),(x ) =it)b(x )+P, ,

where P, =2fo. Thus,

(20)

dk+
U =exp f f (k+)[at(k+) —a (k+)]

2m.2k+

Ua (k+ ) U =a (k+ ) —f (k+) .

(10)
+m 'it)b it), + it)2b itp2

+ ~4'b4" + ~4'b0, (21)

Defining

b(k+)= Ua (k+)U (12)
Now, by generalized Wick ordering' we have the follow-
ing results:
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m
N P=NP+ ln

4T JM

2

N P =N„$+3 ln
z N„P,

4m p~

N P =N&P +6 ln NP +3 ln
4m IM~

" 4m- p~

(22) S»bstituting back we arrive at

P =lim f dx N„L~co —L

m 6A, 1 rn

,'rn —+ ln, + p. ps+A/. pb+ pb+ m p, +A/, +A/, 3 ln
z

2

l m A, 1 m
+—,'m ln

~
+3— ln

47/ p 4 477 p

2

4 4m p~
(23)

Thus the light-front Hamiltonian density is given by

m'
ln +3— ln

Thus the light-front momentum density is given by

(p —m ).
2L 8m

(29)

m

p

(24)

In the conventional formulation, the variational princi-
ple is applied to the vacuum expectation value of the
Hamiltonian operator. In an analogous way we first ap-
ply the variational principle to the light-front Hamiltoni-
an density. Minimizing this quantity with respect to p
we arrive at

The dynamical dependence of the light-front momentum
operator also implies that the application of the varia-
tional principle must be examined. Since both the vacu-
um expectation values of the Hamiltonian and of the
momentum operator are bounded from below in the
light-front formulation, we may in principle apply the
variational principle to a linear combination. It can easi-

ly be shown that the only consistent result that p=m
when A, =O emerges when these two expectation values
are combined with equal weight. Thus we consider the
sum of the light-front Hamiltonian density and the
momentum density given by

m
m +3AQ, +3k, ln =0.

4m p~
(25)

We are led to an inconsistency since Eq. (25} does not
satisfy the requirement that p= rn when A, =0. To uncov-
er the source of this inconsistency we take a closer look
at the difference between the momentum operator in the
equal-time and the light-front formulation. In the equal-
time formulation, the spectrum of the momentum opera-
tor runs from —00 to + 00. Normal ordering does not
induce new terms. In other words the momentum opera-
tor in the equal-time formulation carries no dependence
on the mass of the quanta. However, the momentum
operator in the light-front formulation has a quite
different nature. We have

+ —,'(m~+3k, P, ) ln + ln
z

. (30)
47/ p 4 41T p

This expression coincides with the expression for the
Hamiltonian density obtained by Chang in the equal-
time formulation. To determine the appropriate mass IM,

we evaluate

(31)

P+= —,
' lim J dx N (8+/, B+P, ),I-~ oo —L

where

Thus, we end up with
(26)

m
m +3Apz+3A, ln =@~ .

77 p
(32)

=2 a
Bx

(27)

Again introducing the regularization we can write

N (3+/, B+$,}=N„(d+y.d+y. )+ (p, m) . (—28)
1

For given values of A, , P„and m we solve this equation to
determine p and calculate F. For convenience we set
rn =1.0. Plots of F vs P, for different values of A, are
shown in Fig. 1. The minimum of Fmoves from P, =0 to

P,+0 as A, increases and eventually passes through its
critical value.

Minimizing Fwith respect to P, we arrive at
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ln", .1 2p
4m m~

(34)

III. CALCULATION OF EXCITED STATES
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IV. SUMMARY AND CONCLUSIONS

'n a coherent state of light-cone zero-
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states built on the new vacuum.
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