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Improved variational wave functions for SU(3) Hamiltonian lattice gauge theory
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We study improved variational wave functions for SU(3) Hamiltonian lattice gauge theory by

comparing variational ground-state energies and scalar-glueball masses. Variational wave functions

that include twisted six-link Wilson loops and plaquettes are significantly better than those that in-

clude only plaquettes for calculating the ground-state energy and the scalar-glueball mass. The cal-

culated glueball mass approaches scaling, suggesting that further improvements can be made by in-

cluding more loops.

I. INTRODUCTION

The Hamiltonian lattice gauge theory provides a direct
way of calculating the low-lying spectrum of the gauge
field sector of QCD (Ref. 1). Monte Carlo calculations in
the Hamiltonian form of the theory appear to be less
computationally intensive than those in the Lagrangian
form because they use a three-dimensional spatial lattice
rather than a four-dimensional spacetime lattice. The
Hamiltonian form has the advantage that energy observ-
ables such as glueball masses and the string tension ap-
pear as eigenvalues.

Exact ground-state expectation values of the lattice
Hamiltonian can be calculated by Monte Carlo
methods, but much less computer resources are needed
if a sufficiently accurate variational wave function can be
found. It is therefore important to find accurate varia-
tional wave functions that are not too difficult to calcu-
late.

We consider the Kogut-Susskind lattice Hamiltonian

H = —g Et'Et'+ g (1—Re TrU ), (1)

Tr(T'T )= ,'b, b . — (3)

The commonly used one-parameter variational wave
function

where a, l, and p are color, link, and plaquette labels and

lEt' Ui ]=&tt T'Ui (2)

Here T' are the generators of SU(N) normalized so that

F=P —(P) (5)

and

P =— +Re TrU1 1

N 3L p 7

P

(6)

show evidence for scaling in SU(6) and possibly SU(5)
(Ref. 5}. Throughout this paper angular brackets denote
an expectation value with respect to the variational
ground state. Unfortunately, no evidence for scaling ap-
pears when these wave functions are used in SU(3}. Be-
cause of their relevance to QCD, variational wave func-
tions accurate enough to approach mass-gap scaling in
SU(3) are highly desirable.

The wave functions can be improved by including oth-
er types of Wilson loops and adjusting their contributions
with additional variational parameters. Since the one-
parameter wave function Po has the same form as the
first-order term in the strong-coupling expansion, it is
natural to try to improve it by including loops that ap-
pear in the second term. By far the easiest to include are
those that involve only functions of the trace of a single
plaquette matrix. We have considered a second-order
wave function of the form

is exact in the limit of strong coupling and surprisingly
accurate in intermediate coupling. It leads to a variation-
al ground-state energy that is only slightly higher than
the exact energy, and it seems to improve with increasing
size N of the gauge group. Calculations of the scalar-
glueball mass using Po combined with the simplest
excited-state wave function Fgo, where

$0——exp AN g Re TrU (4) /=exp g W, Re TrU~+ W2Re(TrU }

is sometimes called the "independent plaquette" wave
function. This could be misleading because the pla-
quettes are not independent in three or more dimensions
since the plaquettes that enclose any volume are correlat-
ed by the Bianchi relations. This simple wave function

+ 8'3TrU TrU&

Like the one-parameter wave function, this wave function
is separable in plaquette space so that the ground-state
energy density is easily calculated without recourse to
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Monte Carlo methods. This is done by transforming to
plaquette space and performing a character expansion of
the Jacobian of the transformation. Minimizing the en-

ergy with respect to the three parameters gives a slightly
improved variational wave function, with the energy
lowered by only about 15% of the difference between the
one-parameter value and the exact value. A similar re-
sult has been reported for the SU(2) case. Thus, it ap-
pears that a significantly improved ground-state wave
function will necessarily include more complicated loops.

Wilson loop

Plaquette
Twisted loop
Planar 6
Bent 6

No. in an L
lattice

3 L
4L'
6 L

12 L'

No. that contains
a given link

4
8

12
24

TABLE I. The number of Wilson loops in an L lattice
and the number that contains a given link.

II. THE TWISTED LOOPS

Link-space Monte Carlo calculations have been in-
dispensable for both exact ' and variational lattice QCD
calculations. They have the disadvantage that they are
computationally expensive because of the requirement
that a large number of matrix multiplications must be
done. The required number of matrix multiplications de-
pends on the product of the number of links per loop and
the number of loops that contain a given link. The pla-
quettes are the only type of four-link loop, but there are
three types of six-link loops as shown in Fig. 1. The
loops whose shape is shown in Fig. 1(c) have been called
"twisted plaquettes, "' but we call them simply the
"twisted loops. " They first appear in the third term of
the strong-coupling expansion. In link-space Monte Car-
lo calculations, the twisted loops are the easiest type of
six-link loop to include. This can be seen from Table I.

Here we concentrate on the twisted loops and define a
two-parameter wave function as

(I)=exp AN g Re TrU +BN g Re TrU, , (8)

where U, denotes the matrix formed by taking the or-
dered product of the six matrices associated with the
links depicted in Fig. 1(c). The variational dimensionless
ground-state energy density per gluon degree of freedom
is then given by

&H&a

3L (N 1)—
—A &P&+&& &&+, g'(I —&P &), (9)

1 1 2N
2 N —1

T= —+Re TrU, ,
1 1

41.' N
( 1o)

and

& [F,[H, F]]&

2&F'F &

(12)

with respect to F, where FPt2 is a variational excited-state
wave function orthogonal to P (Ref. 5). In order to in-
clude twisted loops in the excited-state projector, we used

F =P &P &+y(~—&~&), — (13)

where y is a variational parameter for the excited state.
No approach to scaling behavior was observed with
y=0. The denominator above is written in terms of the
derivatives

=6N'L'( & P'& —&»'),
aA

aB
==8N L (&PT& —&P&&T&)=—

3 BA

=8N'L'(& 7'& & T&')
B

(14)

(15)

(16)

so that the mass can be rewritten as

1

Ng 2

Equation (9) actually gives one-third of the density per
gluon degree of freedom to facilitate comparison with
earlier work.

The values of A and B that minimize the ground-state
energy density are given in Table II. In Fig. 2 the result-
ing ground-state energy densities are compared with
those obtained from the one-parameter wave function
and the exact values obtained from guided-random-walk
Monte Carlo calculations. Including the twisted loops
lowers the energy by about 40% in the region of interest.

If (}(2 is a good approximation to the exact ground state,
then the 0++ glueball mass can be estimated by minimiz-
ing

M 0= NL—
3

(x (E;P)~+2y(E;P)(E;T)yy~(E;T)~)
l, a

1 B&P& 1 r)&T& 1 B&P& 1 B&T&
3 BA 3 BA 4 BB 4 BB

(17)

and minimized with respect to y. The values of y that
minimize the mass gap are given in Table II.

III. METHOD OF CALCULATION

A one-hit Metropolis algorithm was used to generate
the ensemble of configurations on a 4 lattice with period-

a) Planar 6 b) Bent 6 c) Twisted 6

FIG. 1. The three types of six-link Wilson loops.
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TABLE II. Numerical values for the trial function parameters A, B that minimize the ground-state

energy, values of the parameter y, which minimize the scalar-glueball mass, the resulting dimensionless
ground-state energy density ep, and the dimensionless scalar-glueball mass Map at selected values of the

coupling /=1/3g~.

Ma(

0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.330
0.340
0.345
0.350

0.1626
0.1688
0.1750
0.1806
0.1864
0.1925
0.1986
0.2051
0.2126
0.2198
0.2258
0.2311
0.2365
0.2418
0.2473
0.2523
0.2577
0.2617
0.2650

0.0072
0.0089
0.0100
0.0116
0.0130
0.0141
0.0157
0.0175
0.0192
0.0214
0.0244
0.0278
0.0307
0.0332
0.0348
0.0361
0.0375
0.0399
0.0425

0.3290
0.3890
0.4326
0.4776
0.5134
0.5423
0.5683
0.5994
0.6343
0.6735
0.7161
0.7678
0.8172
0.8470
0.8649
0.8754
0.9065
0.9600
1.0211

0.530
0.538
0.546
0.552
0.560
0.567
0.574
0.580
0.586
0.593
0.598
0.604
0.609
0.614
0.619
0.623
0.627
0.632
0.635

0.716
0.698
0.687
0.677
0.669
0.662
0.650
0.633
0.610
0.586
0.563
0.540
0.522
0.511
0.505
0.504
0.502
0.498
0.497

0.70

0 65.

0.60.

Su(3)
—=EXA

——=OL

~ =NEW

0.50
0.20 0.25 0.35 0.40

FIG. 2. The ground-state energy density for the gauge field
sector of the Hamiltonian lattice QCD as a function of the cou-
pling constant showing the improvement of the wave functions
that include twisted loops (solid circles) over the one-parameter
values (dashed line). The exact values obtained by the method
of guided random walks are shown for comparison.

ic boundary conditions. For each point ( A, B) in param-
eter space, 10 warm-up sweeps were discarded before 10
measuring sweeps were performed. Average values and
variances of the following five quantities were measured:

(1.'g(Ev)'),
l, a

L g (EI'P)(EI'T), L g (EI'T)
l, a E, a

To calculate the variance, 100 block averages of 100
sweeps each were treated as statistically independent
samples.

Considerable difficulty was experienced in finding the
values of the ground-state variational parameters A and

+C11 A6 +C20 A +C02B (18)

were determined by a local least-squares fit to the ener-
gies. The paraboloid then provided interpolation so that
values of the energy at general A and B were available.
This procedure also resulted in some smoothing of the
Monte Carlo noise. The minimum energy and the corre-
sponding values of A and B were then derived from the
paraboloid. They are given in Table II at selected values
of the coupling, and the energy is compared to the old
variational energy as well as the exact energy in Fig. 2.
The fit was made local by weighting each data point with
a product of Fermi functions that cuts off the contribu-
tion from data distant from the point of interest, A0. By
iteration, the point of interest was kept very close to the
point where the actual minimum was located, ensuring
that the least-squares fit was localized appropriately. The
Fermi function used is

W, ( A, , Ao)= 1+exp
[A; —Ap/ —»

s/4

where s is the spacing in A between data points. This
weight was multiplied by a similar function of the dis-

B that minimize the ground-state energy density. The en-

ergy is a very Hat function near its minimum, and small
irregularities due to statistical noise in the data make it
difFicult to determine values of B consistently. After try-
ing several different approaches, the following procedure
was adopted: Using Monte Carlo, the five measures
given above were calculated at about 100 points that lie
on a rectangular grid in A, B space. For each value of the
coupling, the energy was calculated at all of the points.
The coefficients of the paraboloid

E ( A, B)= Coo+ C &o A +Co&B
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excited states lowers the minimum of the glueball mass
estimate (Ma() from 0.76 to 0.50. This is a significant
improvement, and the slope of the plot approaches that
of the asymptotic scaling curve. Closer approaches have
been achieved using Lagrangian methods. ' '" The lack
of scaling is not surprising when the minimum is com-
pared to the minimum of about 0.30 obtained in the La-
grangian formulation by including all loops up to length
6' . It seems that more types of loops will have to be in-
cluded before true scaling appears.

0.20 0.25 0.30
(=1/Ng

0.35 0.40

FIG. 3. The scalar-glueball mass estimate as a function of the
coupling constant calculated using the one-parameter wave
function (stars) compared to calculations using the improved
wave functions (solid circles). The straight line gives the slope
of the expected asymptotic scaling.

tance in the B direction to give a rectangular area of the
A, B plane where data were included in the least-squares
fit.

Having thus determined the A and B that minimize
the energy for a given coupling, we used local paraboloid
fits to each of the measures in order to determine their
values and partial derivatives that were needed to mini-
mize the scalar-glueball mass.

The results of the scalar-glueball mass calculations are
shown in Fig. 3, and numerical values are given in Table
II. Including the twisted loops in both the ground and

IV. CONCLUSIONS

We have shown that including the twisted loops in the
ground state and first excited state has a large effect on
both the variational ground-state energy density and the
scalar-glueball mass. Our wave functions for the scalar
glueball are accurate enough in the intermediate coupling
regime to show an approach toward scaling in SU(3).
Since it appears that variational wave functions can be
systematically improved by including additional loops,
we plan to study the effects of other loops on the scaling
behavior of the glueball mass.
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