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Exact ground-state properties of SU(3) Hamiltonian lattice gauge theory
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We solve for the exact ground state of SU(3) Hamiltonian lattice gauge theory via the guided-
random-walk algorithm. We show that the algorithm is effective in calculating the ground-state en-
ergy with excellent precision. By comparing exact and variational ground-state results in the case of
SU(2) and SU(3), we further demonstrate that variational calculations based on the independent-
plaquette trial function improve with increasing N from N=2to N=3.

I. INTRODUCTION

In the Hamiltonian formulation of lattice gauge
theory, physical observables such as glueball masses and
string tension can be studied nonperturbatively via varia-
tional methods by evaluating only ground-state expecta-
tion values.' =3 The required ground state can be evolved
exactly via Hamiltonian Monte Carlo methods,>~ 12 or
further approximated by a variational trial function. The
fact that a simple independent-plaquette trial function
can produce evidence for a scaling 0* * glueball mass'? in
SU(5) and SU(6) strongly suggests that similar results in
SU(3) can be obtained with a better trial function. Since
all algorithms for evolving the exact ground state are
computationally more intensive than merely sampling a
trial function, finding an adequate variational ground
state would greatly reduce the numerical efforts for deter-
mining physical observables. However, in order to assess
the quality of the trial function directly, it is essential to
know some properties of the exact ground state. In this
work, we computed the exact SU(3) ground-state energy
and the plaquette expectation value via the guided-
random-walk”!'%® (GRW) algorithm. For future refer-
ences, we give the exact ground-state energy numerically
and in the form of a fitted polynomial. By comparing
these results with those obtained variationally on the
basis of the independent-plaquette trial function, as well
as those obtained previously in the case of SU(2), we fur-
ther demonstrate that the independent-plaquette trial
function becomes increasingly better for larger N, at least
in going from N=2 to N=3.

II. HAMILTONIAN LATTICE GAUGE THEORY

We consider the Kogut-Susskind SU(N) lattice Hamil-
tonian'* in the form

, (D

where A=2N /g%, | and p are link and plaquette labels,
and where repeated indices imply summations. The
color-electric field operators are to be regarded as first-
order differential operators such that EfU,=3§,,T*U,
where T¢=17? for SU(2) and T“=1A" for SU(3). For
Monte Carlo calculation and other purposes, it is con-
venient to use the dimensionless Hamiltonian H with
coupling A as defined above. For example, in the strong-
coupling limit of A << 1, the dimensionless ground-state
energy per plaquette defined by
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for SU(3). The fourth-order ground-state energy in SU(3)

was previously computed in Ref. 15, but the explicit ex-

pression was never given. The above result is our in-

dependent determination. It also follows that the

ground-state expectation value of the plaquette operator,
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It has been suspected for some time'®~2° that a reason-
able trial ground state for (1) is the independent-plaquette
wave function

Py=exp( AN‘,NZP) , (6)

where P is the plaquette operator and A4 is the sole varia-
tional parameter. However, prior to the advent of Ham-
iltonian Monte Carlo methods for evolving the exact
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ground state, there was no direct way of gauging the
quality of this trial function, and no confidence was
placed on its results. As we shall see, in comparison to
the exact ground state, this trial function is an excellent
first approximation.

Because of its directness in addressing the question of
the spectrum, interest in Hamiltonian lattice gauge
remains unabated. Aside from advances in exact Monte
Carlo methods such as the GRW, momentum-space
GRW (Refs. 2 and 12), variant GRW (Ref. 11), Green’s-
function Monte Carlo methods,®® and projector Monte
Carlo® methods, there are also notable developments in
semianalytical methods of ¢ expansion,?'~23 basis diago-
nalization,?* and plaquette space integration.?® In this
work, we will concentrate on results obtained via the
GRW algorithm. Since this algorithm, as applied to lat-
tice gauge theories, has been extensively documented else-
where, 713 we will be brief in summarizing its salient
features.

III. THE GRW ALGORITHM

The exact ground state | ¥,) of H can be evolved from
any initial trial state | ®,) not orthogonal to | ¥,) via

|w0)=’1in;e—"”—5’|¢0> . @)

In particular, the mixed product ®,| ¥,) can be directly
evolved as

D, | ¥y) = lim ¢>Oe—t(H—E) | ®,)
t—

=lime "5 | o) , 8)
t— o0

where H=®,H®; !, By discretizing t =N At and insert-
ing complete sets of states between successive factors of
e AH-E " the right-hand side (RHS) of (8) can be
regarded as a path integral. To generate an ensemble
of lattice configurations distributed according to
Do(x)W¥o(x), the GRW algorithm samples this path in-
tegral iteratively as follows: A population of N, lattice
configurations is initially prepared with distribution
®3(x) using, for example, the Metropolis method. Suc-
cessive generation of lattice configurations are then
evolved stochastically according to the matrix element
(x, 1| e 8H=E | x ). To order At, this matrix ele-
ment can be factored into two pieces corresponding to
the kinetic (or electric) and the potential (or magnetic)
part of the Hamiltonian A. The kinetic piece can be sam-
pled by multiplying each link matrix of each lattice
configuration sequentially by a stepping SU(3) matrix
Gaussian distributed near the identity with step size
~V'At but slightly biased (i.e., guided) by ®,. The po-
tential piece can be sampled by replicating an entire lat-
tice configuration according to its expectation value of

exp{ — At [ @5 {(x)HDy(x)—E]} .

After the ensemble has evolved long enough to reach the
stationary distribution ®g(x)W¥y(x), the ground-state en-
ergy E, can be determined as that value of E which keeps

the ensemble population stable, usually around Npop» in
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successive generations. Alternatively, E, can be calculat-
ed directly from the ensemble configurations via

(H®, | ¥,)

— 70l Tol 9
07 (| ¥,) ©

Note that in this case, if ®, were the exact ground state,
then the above direct determination would yield E, ex-
actly irrespective of any Monte Carlo errors. In general,
significant reduction of statistical errors in the ground-
state energy can be achieved with any reasonable trial
functions. By repeating the calculation several times us-
ing different values of At, the residual error of order At
can be eliminated by a simple linear extrapolation. The
values of E, determined by these two methods are usually
in excellent agreement with each other after the time-step
extrapolation.

Since the GRW algorithm only generates an ensemble
of lattice configurations with distribution ®4(x)¥y(x), the
ground-state expectation values of operators other than
the Hamiltonian can be obtained most conveniently via a
simple perturbative estimate:*

(Wo[0[Wo) (P[0 W) (Po|0] D)
(W, | W) (D | W) (Dy | Dy
+0((Vy—Dy)?) . (10)

To the extent that the trial function is a reasonable ap-
proximation to the exact ground state, this perturbative
estimate can be quite accurate.

IV. GROUND-STATE RESULTS

For uniformity in comparing results for different
SU(N) gauge groups, it is more useful to introduce the di-
mensionless Kogut-Susskind ground-state energy per pla-
quette per gluon degree of freedom defined by

a<HKS)

T ‘”’
p

€o

and to employ the coupling constant £=1/Ng? where
€ is related to A via E=VA/2N® and
€o=eo/[EN(N?—1)]. Figure 1 shows the SU(2) ground-
state energy taken from Ref. 10 and plotted in this
manner. The variational results are ground-state energies
calculated with the trial function (6) and minimized with
respect to A. The average configuration population
maintained in the exact GRW calculation was N, =10.
The lower solid curve is the second-order strong-coupling
result given by (2). In the weak-coupling limit, the ener-
8y €, has the simple expansion

€(E)=Co—C,/E—C/E2— -+ . (12)

The constant C; is universal for all SU(N) gauge groups
but has a slight dependence on lattice size. For lattice
sizes of 4%, 6%, and «°, the values for C, are, respectively,
0.79343, 0.79542, and 0.79587. The constant C,; ap-
pears also to be universal, although it has never been ex-
plicitly calculated except in the case of U(1) (Ref. 19). As
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FIG. 1. The dimensionless ground-state energy per plaquette
per gluon degree of freedom ¢, as a function of the coupling
constant £=1/Ng? for a 4° lattice. The lower and upper curves
are strong- and weak-expansion results. See text for details.

we shall see, the SU(2) and SU(3) values for C, are nu-
merically found to agree well with the U(1) value of
C, =C(2)/16 (=0.039 34, 0.039 54, 0.039 59, respectively,
for the previous lattice sizes). As was first done in Ref.
10, by simply fitting a few data points at high values of &,
one finds that C;=0.041 and C,~0.004. The resulting
weak-coupling expansion with these constants is plotted
as the upper solid curve in Fig. 1. As a succinct sum-
mary, we also give the following low-order polynomial fit
to the exact ground-state energies between 0.6 <A < 3.0:

eo=—0.029 463+ 1.090 6821 —0.253 427A?

+0.029 7053 . (13)

The fitted results, reexpressed in terms of €, and &, are
plotted in Fig. 1 as a dashed line. We have chosen to fit
eo in terms of A because the plaquette expectation value
can then be estimated easily via (5). We caution that a
good fit for the energy may not be good enough for es-
timating its derivative.

Figure 2 contains our new results for SU(3). Asin Ref.
10, the GRW algorithm is initiated by sampling ®3 with
the optimal value of A4 via the Metropolis algorithm.
The number of hits per link ranges from 1 to 5 depending
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FIG. 2. The dimensionless ground-state energy ¢, as a func-
tion of the coupling constant £=1/Ng? for the case of SU(3).
See text for details.

on A and 1500 sweeps are typically used for equilibra-
tion. An average population of N, =20 configurations
are maintained in the exact GRW algorithm for both the
6° and the 4° calculation. Each complete calculation at a
single value of A, with four runs of different time-step size
for the 4° lattice and three runs for the 6° lattice, requires
~2 Cyber 205 hours. The largest step size used in the 6°
lattice calculation ranges from A¢r=0.06 for A=5 to
At=0.02 for A=10. For each step size At, after equili-
brated for 200-300 generations, expectation values are
computed in blocks of 100 generations (~2000
configurations), and averaged over 8-15 blocks. The
plotted variational results have the same meaning as in
the SU(2) case and are taken from Ref. 13. The lower
curve is the strong-coupling result given by (3). The
upper solid curve is the fitted weak-coupling expansion
with C;~0.040 and C,~0.006. The numerical values of
the plotted ground-state energies are tabulated in Table I.
The dashed curve is the polynomial fit to data between

I<A<12:
eo=—0.31324941.214 4380 —0.067 63112
+0.001 862A° . (14)

In the case of the ground-state energy, finite-size effects
appear to be small, as is evident from the close agreement

TABLE 1. Numerical values for the optimal variational parameter 4, the SU(3) exact ground-state
energy eg, and the plaquette expectation value evaluated according the perturbative estimate (10). Un-
certainties in the last digit are enclosed in parentheses.

A A ey (6) (P)pert (6°) (P)pert (4)
3 0.13 2.775(0) 0.1605(5)

4 0.18 3.575(1) 0.231(1)
5 0.225 4.304(2) 0.298(5) 0.305(3)
6 0.27 4.939(2) 0.377(3) 0.383(5)
7 0.315 5.510(3) 0.449(4) 0.449(4)
8 0.35 6.034(5) 0.491(5) 0.503(5)
9 0.38 6.50(1) 0.539(3)

10 0.41 6.92(1) 0.576(5)

12 0.44 7.74(1) 0.616(5)
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FIG. 3. The SU(3) ground-state plaquette expectation value
as a function of the coupling constant £=1/Ng?2 See text for
details.

between the 4° and the 6° data. The SU(3) ground-state
energy has also been computed via the ¢ expansion
method;?? unfortunately, because Ref. 22 only presented
results in graphic forms, we were unable to make a direct
comparison.

Figure 3 gives the SU(3) expectation value of the pla-
quette operator P. The numerical values for both the 6°
and the 4 calculations are given in Table I. The impor-
tance of this expectation value is that it is essentially the
derivative of the ground-state energy. The lower solid,
upper solid and the middle dashed curves are obtained by
differentiating the strong-coupling, the weak-coupling
and the fitted ground-state energy, respectively. The
direct perturbative evaluations of (P ) according to (5),
despite greater time-step extrapolation errors, remain in
good overall agreement with the above results. In com-
parison, the variational estimates are generally lower, and
appear to have less of a bend, than the exact expectation.
These characteristics of the variational calculation are
also similar to those found previously!® in the case of
SU(Q2).

From Figs. 1 and 2, it is clear that the independent-
plaquette trial function is capable of reproducing the bulk
behavior of the exact energy. Its major failing appears to
be that of being higher than the exact energy in the
weak-coupling regime by a roughly constant amount. In
SU(Q2), from the last two data points in Fig. 1, we find
Ae=¢y(var) —€ylexact) =0.024. However, in SU(3), over
that same range of £, this difference has diminished to
Ae=~0.016; a 33% improvement. It is thus highly sugges-
tive that @ is becoming a better trial ground state as N
increases.
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V. CONCLUSIONS

In this work, we have shown that the GRW algorithm
is effective in computing the exact ground-state energy.
Our numerical value for the exact energy can serve as a
useful reference point for future improvements of the
variational ground-state wave function. Since our experi-
ence has been that a GRW run requires at least an order
of magnitude more CPU time than a corresponding vari-
ational calculation, finding an adequate trial function
would greatly reduce the numerical efforts needed to
evaluate physical observables. Already we have some evi-
dence that a sufficiently good trial ground state for SU(3)
may not be too difficult to devise. 2

By comparing the exact and the variational ground-
state energy in both SU(2) and SU(3), our work has not
only shown that the independent-plaquette wave function
is a very good first approximation to the exact ground
state, but also provided the first direct evidence that it ac-
tually improves with increasing N.

The current GRW algorithm is less effective in com-
puting expectation values of operators other than the
Hamiltonian. In evaluating the plaquette expectation
value, due to the fact that we are limited to only three or
four At values for performing the Az—0 extrapolation,
the resulting extrapolation errors are quite large. All er-
rors noted in Table I are errors of this type. Moreover,
we have noticed considerable bias in { P) as we go from
Npop=15 to N,,,=20. We would have preferred to do
the calculation, resources permitting, with a population
size of N ,, =30-50 instead. A possible improvement of
the GRW algorithm, that would alleviate some of these
difficulties, would be to develop a second-order GRW al-
gorithm that*has only a residual error of (At)%. As point-
ed out elsewhere,’ the guided walk part of the GRW al-
gorithm is exactly the same as the Langevin algorithm.
It is very likely that recent advances in developing the
second-order Langevin algorithm®’—%° for solving Eu-
clidean pure gauge theory can lead to similar improve-
ments in the GRW algorithm.
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