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Feynman path integral for fermions
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With Lagrangian quantum field theory as a starting point, the general quantum transition ampli-

tude is derived as a sum of action exponentials over all paths connecting the initial and final fermion
states. For bookkeeping convenience in intermediate stages anticommuting parameters are intro-
duced. All integrals are determined by completeness and unitarity. Grassmann calculus is not pos-
tulated.

I. INTRODUCTION

In 1948 Feynman' developed an idea of Dirac to ex-
press the quantum-mechanical transition amplitude as an
integral over all paths connecting the initial and final
states, with each path weighted by a phase that is the
classical action in units of Planck's constant:

plitudes in terms of sums over all possible occupancy am-
plitudes of each mode at each intermediate time. As a
bookkeeping aid only, anticommuting parameters are in-
troduced but the integrals of these parameters are derived
from completeness rather than from Grassmann postu-
lates.

II. FERMION MODES AND COMPLETENESS

paths

a~b

The beauty of this approach lies first in providing a sim-
ple quantum explanation of why classical systems follow
paths along which the action is stationary and second in
giving a rigorous method of calculating quantum results
with only the familiar classical action as dynamical input.
Application of the Feyntnan-path-integral (FPI) ap-
proach to ordinary quantum mechanics is elegant and il-

luminating; its application to quantum field theory in re-
cent years has been very fruitful.

Problems in ordinary quantum mechanics usually have
a classical analogue so there is little difficulty in choosing
the correct classical action for the problem at hand. In
quantum field theory the classical analogue is not so
clear-cut but most agree that a satisfactory choice for the
classical action is in the form of the quantum action with
the quantum fields replaced by classical fields. This
choice is immediately successful for boson fields and can,
in fact, be derived from quantum field theory for scalar
fields and photon fields.

But the results of quantum field theory are not repro-
duced for fermion fields unless the classical fields are as-
sumed to anticommute. In modern field theory they are
chosen to be elements of a Grassmann algebra. ' Be-
cause of the ad hoc nature of this algebra and the identity
of differentiation and integration therein, the connection
of the field integrations to sums over paths is lost. Also
lost is much of the intuitive beauty of the FPI approach.

If one uses fermion quantum field theory to calculate
an arbitrary transition amplitude and then expresses it as
an FPI what does the classical action look like and what
does it tell us about the classical fermion field? This is
the approach taken here. We begin by finding complete-
ness relations for a set of fermion states and using these
relations to derive general expressions for transition am-

~y)—= g(y at+z ) ~0) . (3)

The order of the factors in (3) will be discussed later. The
corresponding bra vector is defined as

(y ~:—(0~ P(y' + *) . (4)

When y is a complex variable, y is its complex conju-
gate; when y is a Grassmann variable, y* is an indepen-
dent Grassmann variable.

The scalar product of two such states is

(y ~y) = g (y 'y +z *z ) .

For unitarity we require that each mode be separately
normalized,

y*y +z*z =1,
i.e., the total probability of any mode being occupied or
unoccupied is 1. We look for a weight that will give us
an overcompleteness relation

Fermion and antifermion modes are described by the
same four quantum numbers: three for momentum and
one for spin. (We only consider spin one-half. ) These
modes may be put into a one-to-one correspondence with
the positive integers a. For concision we define the
operator a to destroy a fermion in the mode a when
a&0 and to destroy an antifermion in the mode —a
when a&0. Then we have

(a, att j =5 tt, Ia„att) =0

with both a and P running over the integers from —ao to
+ ~ with zero excluded. The most general assembly of

states that can be constructed with the creation operators
a isf ~
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This requires

f» y y*=fBy z z'=1

(7)

(8)

f».=0,

f».y.y.' =1 .

(15)

(16)

(17)

and

with

yZy (9)

(10}

Note that (16) and (17) are identical to the complex vari-
able results. Equation (15) is different; it follows from
z'z =1+yy'. [Compare Eq. (6).] These integrals are
reminiscent of the Grassmann integrals

fdy'y'= fdy, y =1, fdy = fdy'=0

Such a weight is not unique but as all integrals that can
occur are those coming from (7), all weights are
equivalent. When y is a complex number the simplest
weight is

»~= d y~

with the range of integration being the interior of the unit
circle in the complex y plane. It is, however, superAuous
to specify the weight and (8) and (9) can be taken as
defining all integrals. This is especially relevant when y is
not a complex number.

III. THE BOOKKEEPING PROBLEM

Now we come to a crucial point. We can proceed in
the well-known fashion ' ' to develop transition ampli-
tudes as sums over intermediate paths by using the corn-
pleteness relation (7) at all intermediate times. Eventual-
ly we shall obtain the usual Feynman rules as a result.
Because of the anticommutation rules (2), at intermediate
stages of the calculation we find a large number of minus
signs that must be kept track of—a bookkeeping prob-
lem, really. If our object were to obtain the Feynman
rules we would either tolerate the bookkeeping or turn to
more conventional and simpler derivations. But our ob-
ject here is to find an elegant intermediate stage —the
Feynman path integral —and it is precisely here that the
minus signs spoil the elegance. Therefore as an artificial
device to help us keep track of signs and maintain the
FPI elegance we require that the coefficients of the
creation operators in (3) be anticommuting parameters:

IV. WAVE FUNCTIONS

The wave function of some arbitrary state, for exam-
ple, the state

~a)=II(a ) '~0), k =Oor 1, (19)

is defined as

+,(y)—:(y ~a) .

For the example state this is

(20)

+,(y)= II (y,*) (z') (21)

The order of the anticommuting parameters in (21)
reflects the order of the creation operators in (19). These
wave functions are normalized via

(22)

provided that
~

a ) is normalized. Finally note that the
wave function of the vacuum is

and, indeed, would follow from them if we set» =dy'dy . The main difference is that (15)—(17) are
derived from completeness while the Grassmann integrals
(18) are simply postulated with normalizations fixed sepa-
rately. Also the Grassmann integrals involve more detail
than is needed. Clearly all the results of Grassmann cal-
culus, e.g., inverse Jacobians, invariance under shift of
origin, etc., follow equally well from (15)—(17).

Iy. yt l
= Iy. yP =o (12)

(23)

These parameters occur only in the integrals (8) and (9)
and are therein converted into ordinary numbers. With
the y s anticommuting, the state (y ) in (3) is indepen-
dent of the order of the factors in its definition. The com-
ponents of the vectors

~ y ) and (y
~

are Grassmann pa-
rameters. As the overall "phase" of a state is meaning-
less we are free to assume

(13)

V. TRANSITION AMPLITUDES

We can look upon
~ y ) to be a t=0 interaction-picture

state. The Heisenberg-picture state at time t is then

(24)

Because this is a unitary relationship the Heisenberg
states are also overcomplete at each time,

An immediate consequence of (13}and (12}is then
y yt yt =l . (25)

yaZa ya~ y aZa y a

so that the fundamental integrals (8) and (9) reduce to

(14)
The transition amplitude from a state

~

at, ) to a state

~

btb ) can then be written as
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&iitb
I «. &= f»'&v'&&tb Iv'tb&&v tb ly't. &

x(y't,
I «, &

X' X +b X X tb X't. +. X' .

N

&y tb ly't. &= f» g &y'+' l(1 —te&; (0)) ly'& .

(32)

(The limit e~0, Ne finite, is understood in all equations. }

Thus we can concentrate on the transition kernel,
&y tb lv t &

We can express the kernel as a sum over all intermedi-
ate paths as follows. Break up the time interval,
T =tb —t„ into X+ 1 equal parts of lengths e and label
the times by t:—t, +je, j =0, 1, . . . , %+1. Insert a
complete set (25) at each intermediate time,

VI. FREE-PARTICLE KERNEL

80——fd x:g(x)(—,'y. V+rn}g(x):,

where

(33)

The free Hamiltonian in fermion quantum field theory
has the Hermitian form

N N

&y't ly't. & =f p»'p &y' +'t ly't &, (27)
1 0

f(x)= g P (x)[8(a)a ~8( —a)a t ] (34)

where y:—y', y +':—y". With t, +,——t, +e and (24) we
have

is the fermion quantum 6eld in the interaction picture.
The Dirac wave functions satisfy

&y'tb ly't. &= f&y p &y'+'le " ly'&
0

(28)
x x —,

' . +m &x =co a (35)

with now

N N»-=II»'—= ll H»'.
1 1 a

(29)

Note that g, is a positive- or negative-energy wave func-
tion as a is positive or negative, respectively. Here co & 0
is the energy of the corresponding mode (co:—ei, }. One
easily gets

and 8; (t) is the interaction-picture Hamiltonian with

8;~(0)=8. We note that occupancy amplitudes at
different times are taken to anticommute:

210= CO 0 0

From the anticommutation rules (2), one has

(36)

Iv". yt I
= Iy". y'p* I =o ~

A very useful lemma is the following exact relation:

N N
lim g (1/eaJ/e P / )= lim g e
a~0 0 e~O

(30)

(31)

e ' = g [1+a,tt (e ' —1)]

and immediately the kernel is seen to be

(37)

This is easily established by comparing terms on either
side and using the fact that all terms like ge at and
ge p, etc. , vanish in the limit e~0 with Ne finite.

Using the lemma we can write the transition kernel in
a useful alternative form:

(38)

It is very useful to express the kernel as a path integral.
To this end we use (32) to write

N

(y tb ly't, ) =f» g (yj+'
I
(1 iePO) ly')—

N

+a ~a+Za Za ~~ ~ p +p +a ~a+Za Za
0 a P a~I3

N

PJIJ+ +g J ~ZJ+ +ZJ

0 a
(39)
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with

ga —1 —16'COQ . (40)

both operators refer to a particle or to an antiparticle. In
conventional notation with b, b referring to antiparti-
cles we have

The integrals in (39) can be evaluated using (8) and (9).
With &y If(o. op, b„bs) I y &=f(y. yp y„— ys—) (49)

lim (y )"+'=e
N~ oo

the result (38) is reproduced.

(41) where f involves an even number of operators. Thus we
expect the proper classical Dirac field will be

VII. THE FREE ACTION

The free action is defined by

&y't, ~y't. &'= f2)y e' ",
which means that

g (
k+le k+ k+le k

)

k=0 a

(42)

(43)

g(x, tk)= gg (x)[8(a)y —8( —a)y'] .

Using (35) one gets

f d x Q(x, tk)(2y 7+m)ttI(x, tk)= +to~"'y"

so that
N

f d x p(x)( ,'y V+—m)g(x)= g peto~"'y" .
k=O a

(50)

(51)

(52)

so that

N
go y y in(y~k+leyk +zk+I zk )

k=O a
N

i g—g in[1 i ceo—~"+ "y"+(y"+"—y"' )y,"
k=O a

Next with

ax px —ap

one finds

efd x f(x, tk ) Y Roti'(x tk )

(53)

+( kyle k»
) k] (44) y (

ke k+1 kyle k
) (54)

a

Here we used (6). We can expand (44) in the usual loga-
rithm series; all terms higher than the second order van-
ish becausey =0. The result is

so that

fd x f(x)( —,'y Bo)1(I(x)=—g g(y"'y" +'
k=O a

a

(y~k+ 1 eyky

keyk~~)
ka

(45)

y
k + ley k

)

(55)

Note that this exact result has been obtained without the
usual assumption that y" +' —y"=O(e). This is just as
well since that assumption is rather meaningless (i.e., for-
mal) for anticommuting parameters.

Here we have defined the time derivative of y by

y
k

y
k + 1

y
k (56)

UIII. FREE ACTION IN DIRAC FORM

Although (42) and (45) give the Feynman path integral
for fermions it is still desirable to write the action in a fa-
miliar classical form —in terms of classical fermion fields.
In order to find the form of the classical field we calculate
matrix elements of the possible quadratic operators

To identify Sb, in (45) with the familiar classical ex-
pressions (52) and (55), one must make some formal
manipulations. First one writes

(y
k + 1 eel

y
k eI

)y
k

(y
k eeI

y
k

)
E' d

Q Q a 2 d Q Q

+ 1(yk+leyk ykeyk+1) (57)

&y I
o ap ly &=y yp

&y I . Iy&= —yw

&y Io op ly &= —y yp

(46)

(47)

(48)

When the sum over k (= integration over t) is performed,
the time derivative here yields surface terms that exactly
cancel those in (45). Thus we have, to lowest order

Here use was made of (14).
For operators that do not change the charge of the

state, (47) and (48) can only occur when one operator
refers to a particle, the other an antiparticle, while in (46)

gO I. y y [
. k» k

k=O a

+1(yk+ 1 eykykeyk+1)] (58)



2994 ROBERT E. PUGH 37

Thus with (52) and (55) we have

fb

Sb, = —f d x g(x)( ,'y—"B„+m)P(x),
a

which gives the free action in Dirac form.

IX. INTERACTING FERMIONS —QUANTUM
ELECTRODYNAMICS

(59)

Now we show that

tb

H&
—= f d x &&(x, t)

Eb

=ie f d x P(x)y a(x)P(x)

adds to Sb, in the expected fashion:

(62)

ff f(x) —= ie:g(x)y a "(x)g(x): (60)

between fermion states. Here a„"(x) is the classical pho-
ton field at time tk. Using (49) one gets immediately

&,(x, t„)= &y"
I
ff ", (x)

I

y" &

Consider quantum electrodynamics as an example of
interacting ferrnions. We assume the photon matrix ele-
ments have already been calculated so we are now in-
terested in the matrix elements of the operator

Sb, —Sb, —H) .

We start with the kernel in the form

N

&V'tb
I
V't. & =f» II &y""

I
(1—ie»

I

V" &

with

8=A'o+8, ,

(63)

(64)

(65)

=icy(x, tk)y a "tP.(x, t/, ) . (61) and write out the product in detail:

N N

&y "tb lv't. &=f» g &y"+'
I
(1—ie&o) lv" &

—ie g &y'"
I &i lv'& p &y""

I
(1—ie&o) lv" &

j=O

+(—ie)' 2 &v"'
I &1 lv'&&v'"

I &1 lv'& g &v""
I
(1—ie&o) lv" &+

k&j, l
(66)

In a typical term the coefficient of the matrix elements of 8& is of the form

k~j, l, . . .
&y"+'

l
(1—iso) ly" & . (67)

Note that each of the factors missing from this product is almost unity:

&y'+'1(1 iso) I
y—~& =1+0(e) . (68)

Since the number of such factors does not increase with N, we can insert the missing factors without error in the limit
a~0. Thus with

II &y""
I
(1—ie&o) ly" & =—e "

0
(69)

we have

IS0 N

&y'tb ly't. &=f» e "
1 —ie g &v"' IH| ly'&+( —ie)' 2 &y'+'

I &1 lv'&&v'+'
I &i lv'&+

j=0

ba
N

ye 'exp —ie y +'
& y

j=0

I (Sb —H
l )»e

(70)

(71)

= f»e'". (72)
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In going from (70) to (71) we have replaced
(y'+'

~
H,

~

y') by &y
~

II,
~ y &+O(

This is as far as we need to go for our present purpose:
to establish the fermion FPI from Lagrangian field
theory. We remark that the anticommuting nature of the
occupancy amplitudes was introduced as an extremely
useful bookkeeping device. All such anticommuting pa-
rameters occur in conjunction with an integration weight
Dy, and ordinary numbers result immediately. It was not
necessary to make the Grassmann postulates; all results
follow from completeness.

In summary, the principal advances contained in this
paper are (1) the integrations of anticommuting parame-
ters are derived from completeness, (2) the field integra-
tions are properly defined by expressing the classical
fields in terms of the anticommuting mode parameters,
(3) the Feynman path integral for fermions is derived
from canonical Lagrangian quantum field theory, and (4)
the Feynman rules follow from the Feynman path in-
tegral. (In the usual treatment the —ie in the fermion
propagator must be put in "by hand"; here it follows nat-
urally. See the Appendix. )

tions requires that terms of order e be kept. This is in
close analogy to the usual prescription for Green's func-
tions that requires the poles be infinitesimally removed
from the real axis during integration.

If we write

iS&, ———y My

and evaluate M from (45),

p p ~ ~ ~

—y 1 0 0
0 —y 1 0
0 0 —y

(Al)

(A2)

1l E'N
2

l 6'N
2 2

0 0 e ~ ~

0 0

one immediately gets the Feynman propagator with the
correct causal property (see Ref. 6 for details). However
if we use the formal expression (59), we would get
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APPENDIX: THE FEYNMAN PROPAGATOR

Some discussion of the derivation of the Feynman rules
is necessary for two reasons. The first is that the usual
prescription ' of replacing a time-ordered product of
quantum spinor fields by a path integral of an ordinary
product of classical spinor fields is not valid as such; it
only works for expressions that are bilinear in the fields at
a given time. This is not a problem since the interaction
is always bilinear and local. The second reason is that
the formal treatment of S keeps only terms of lowest pos-
sible order in e while proper care for the boundary condi-

which gives equal weight to the forward and backward
directions of time and thus gives an incorrect causal
property to the propagator. To correct this
oversimplification we must modify the formal expression
for S into a causal product

tb

Sb, = —f d x[g'+'(x, t +e)( ,'y"B„+m)g'—+'(x,t)

'(x, t)( —,
' y"t)„+m )g' '(x, t +e)],

(A4)

which is equivalent to (59) at the formal level. Now the
correct propagator results.
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