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The Casimir surface force on a solid ball is calculated, assuming the material to be dispersive and

to be satisfying the condition e(cu)p(co) =1, e(co) being the spectral permittivity and p(co) the spec-
tral permeability. This particular condition simplifies the Casimir theory of dielectric media consid-
erably. As a dispersion relation we choose the analogue of Sellmeir s form (with one absorption fre-

quency), known from ordinary dispersion theory. We follow a combined numerical and analytic ap-
proach: the low values of the angular momentum variable are treated numerically, whereas the
higher values are treated analytically by means of the Debye expansion. The dispersive effect is

found to yield a strong, attractive contribution to the surface force. If the cutoff frequency coo is

large, the dispersion-induced surface force becomes proportional to Np.

I. INTRODUCTION

The study of the Casimir effect in spherical geometry is
interesting from a formal point of view, since the situa-
tion is relatively tractable and leads to results that
demonstrate in a striking way the effect of the geometri-
cal constraint at r =a, a being the radius of the sphere.
Moreover, the situation is of direct physical interest, as
exemplified in the following two cases.

(I) Casimir's semiclassical model of the electron
Casimir's original idea was that the force arising from
vacuum oscillations should be able to stabilize the classi-
cal electron. Although the idea appeared to be contra-
dicted by subsequent detailed calculations, by Boyer and
others (the force on a nondispersive perfectly conducting
shell was calculated to be repulsive instead of attractive),
we do not find it unreasonable that the Casimir idea will
be revived again in some modified form and prove to be
useful.

(2) The bag model in quantum chromodynamics This.
case can be physically quite important. There have been
many speculations about the possible role played by the
zero-point oscillations in QCD. (As regards bag theory
in general, the ready may consult reviews by Hasenfratz
and Kuti and DeTar and Donoghue. The first bag-
model calculation of zero-point energy was given by
Bender and Hays. Later, Milton examined different as-
pects of the zero-point oscillations in the bag. We men-
tion in this context also related papers by Olaussen and
Ravndal. Of particular interest as far as QCD is con-
cerned is Johnson's idea of picturing the vacuum as a
space filled with bags, the boundaries of which confine
color to asymptotically free regions.

The generic situation in all these cases is that of a per-
fectly conducting singular shell, situated in a vacuum.
Among the modern mathematical methods, the
multiple-scattering formalism of Balian and Duplantier
has proved to be a powerful and flexible tool in the han-

dling of problems of this type. What we shall be con-
cerned with in the following is however a different
method, viz. , the application of Sch winger's source
theory. ' This method, which is a point-splitting
Green's-function method, is remarkably compact and
effective. The source-theory treatment of Milton, De
Raad, and Schwinger" on the singular-shell problem is
well known. The electromagnetic Casimir surface force,
as anticipated above, was in this calculation found to be
repulsive.

One variant of the physical problem is obtained if we
consider, instead of a shell, a spherical ball make up of a
dielectric medium. Milton' has also considered this
problem, assuming the medium to be nondispersive. The
result of his calculation was that the medium gives rise to
a finite, attractive, term in the force. Essentially similar
results were later derived by one of the present authors, '

dealing with electrostriction effects.
One particular subclass of the material-medium prob-

lem corresponds to letting the medium satisfy the condi-
tion

e being the permittivity and p the permeability. We have
earlier' ' considered various aspects of the Casimir
theory (at zero temperature) for nondispersive, spherically
symmetric, media satisfying (1.1). This condition,
artificial as it might seem at first, is in fact appealing for
several reasons. For one thing it eliminates the need for
taking into account a contact term in the calculation of
the Casimir force. Milton' has devised a procedure for
subtracting off a contact term in the dielectric-medium
case when the medium is an "ordinary" one, i.e., not
satisfying (1.1). Although this method for constructing a
contact term compensating the infinities in the formalism
may be considered not to be strictly unambiguous, the
method is nevertheless in our opinion physically reason-
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able and mathematically clear-cut. The significant ad-

vantage we encounter when dealing with media satisfying
(1.1) is that the contact term simply becomes equal to
zero. ' "' Another advantage of (1.1) is that it is of in-

terest when trying to formulate a theory of the phenome-
nological vacuum in QCD, since the condition ensures
the velocity of gluons to be equal to the velocity of light.
The condition actually plays a significant role in Lee' s
model' for the vacuum exterior to the bag.

After all this it may be surprising to learn that the
Casimir calculations referred to above are in fact incom-

plete T. he reason is that they do not take dispersiue
eQects into account. The inclusion of dispersion in the
present problem is quite important since the dispersion-
induced part of the Casimir force becomes strong. This
force moreover is directed inwards, thus oppositely to the
nondispersive part of the force.

One may ask at this point why it should be so impor-
tant in the present case to take dispersion into account.
Namely, in most problems in the electrodynamic theory
of material media one manages well without paying at-
tention to the dispersion. The reason is (we restrict our-
selves to the source-theory approach) that an infinite con
stant is lost in the handling of the nondispersive forrnal-
ism. When doing Casimir calculations one is confronted
with a frequency integral of an infinite series over all an-
gular momentum variables 1. This series is usually calcu-
lated approximately by means of the Debye expansion,
which is an asymptotic high-l expansion. The important
point is that the sum and the integral are interchanged,
and the frequency integration carried out first. In general
it is known that when performing such an interchange
operation for a series that is not uniformly convergent,
one runs the risk of getting a wrong answer. Now the
asymptotic Debye expansion is not uniformly convergent.
So the loss of an infinite constant in the nondispersive cal-
culations is actually what we might expect. [Actually we
pointed out this possibility already in Sec. 3.4 in Ref.
15(b).]

Our recognition of the importance of the dispersive
effect in the present problem was triggered by some com-
puter calculations by Baacke (private communication):
He put the general formulas for the interior. and exterior
Casimir energies for a dielectric sphere, as given by Eqs.
(3.13) and (3.20) in Ref. 15(b), on a computer, without use
of the Debye expansion. The results were reported to be
in good agreement with our analytically computed re-
sults, Eq. (3.23) in Ref. 15(b), apart from a cutoff-
dependent, divergent term. See also the papers by
Baacke and co-workers. ' These computer results
clearly pointed toward the omission of a constant in the
usual analytic, Debye expansion-based calculations.

The purpose of the present paper is to take dispersive
efFects into account from the beginning. We base our
analysis on a simple, one-absorption-frequency, disper-
sion relation. Since all material susceptibilities tend to-
wards zero at high frequencies, the aforementioned
mathematical problems with the handling of the infinite
series go away. After the calculation has been complet-
ed, it is straightforward to check the limit of nondisper-
sive media by letting the absorption frequency cop go to

II.BASIC FORMALISM: DISPERSION RELATION

A. The fundamental equations

Assume that the material posseses a frequency-
dependent permittivity e(co) and a corresponding permea-
bility p(co) that satisfy the condition

~(co)p(co) =1 (2.1)

for each co. At high frequencies, (2.1) becomes satisfied
automatically, since E(oi)~1, p(c0)~1 always when
co~00. We make use of Schwinger's source theory
(Green's-function theory). To avoid repetition of known
material, we refer to earlier works: the basic formalism
applied to spherically symmetric systems in vacuum is
contained in Ref. 11 (in turn, this followed from earlier

infinity. It is explicitly verified, in fact, that the expres-
sion for the surface force contains a term which, in the
limit of high coo, is proportional to coo [see Eq. (6.5)
below]. This is simply a divergent term in the case of a
nondispersive medium. We stress that this way of con-
sidering nondispersive media as a limit at the end of the
calculation is superior to the previous method where the
nondispersive property was assumed from the outset. In
the dispersive case, we have control over the formalism
and can check where the divergences actually come from.

To be more precise about the last-mentioned point: we
do not state that all the nondispersive calculations"
are simply incorrect. What is done in these works is to
restrict oneself to finite quantities throughout, disregard-
ing any dispersion-induced infinities, and that is just the
natural way to proceed once the initial assumption about
a nondispersive material has been adopted. The main is-
sue is how realistic the underlying model is.

We mention that our results are essentially in agree-
ment with Candelas, ' who similarly stressed the need of
including the strong, attractive, cutoff-dependent term in
the force. Whereas his arguments are mainly of a general
nature, we consider a specific model. We return to a
comparison with some of his results in Sec. VI.

The plan of our paper is the following. Section II
briefly generalizes Schwinger's source theory to the case
of dispersive media. As dispersion relation, we choose
the one-absorption-frequency Sellmeir form. 2 In Sec. III
the general expression for the surface force is given, and
methods for further handling of the expression are dis-
cussed. In Sec. IV we concentrate upon the Debye expan-
sion, and sum the various series over l exactly, using
complex function theory. The problem therewith be-
comes reduced to numerical evaluation of one-
dimensional frequency integrals. Since the Debye expan-
sion, however, is not expected to very accurate for low l,
our main strategy is to rely upon separate numerical
treatment for low I (l (10), and the Debye expansion
thereafter. The main results of our calculations are given
in tabular form and they show in fact, as anticipated, that
the dispersion-induced part of the force becomes attrac-
tive. We also calculate the Casimir energy for the sphere,
and close our paper with some discussion on the relation-
ship to previous work.
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work by Schwinger, DeRaad, and Milton, whereas the
adaptation of the formalism to media satisfying (1.1) is
contained in Ref. 15. We only supply here some remarks
related to dispersion.

The main technique is to relate the electric field E(x)
to the polarization P(x') through a dyad I (x,x'). Its
Fourier transform is I (r, r', co). The constitutive rela-
tions in the present case are

This equation can be solved, as usual, in terms of vector
spherical harmonics. The solution contains two scalar
Green's functions FI and GI given in terms of spherical
Bessel and Hankel functions. We write down the basic
expression for the effective product of two electric field

components:

D(co) =e(co)E(co), B(co)=p, (co)H(co) . (2 2) (Ei(r)Ek(r )
I eff I ik(r r (2.4)

The Maxwell equations imply in Fourier space the fol-
lowing governing equation for the dyad I:
—V &(V && I (r, r', co)+co I'(r, r'„co)= —(M(co)co 15(r—r') .

(2.3)

I

where reference to the frequency is suppressed on the
left-hand side. From this we derive the following expres-
sions for the effective products of the radial, and the or-
thogonal, electric field components:

(E,(x)E„(x')~,ff —— , f e '"" ' 'p(co} g 1(1+1)G((r,r'),
f7" —oo 2' ( ) 4' (2.5)

iEi(x)Ei(x') ~,ff—— e ' ' ' ((((co) gdc@,. „,,
" 2!+1, 1 () (}

co Ii((r, r')+, r, r'G((r, r')
2' 4 rr Br (3r

(2.6)

These expressions refer to the same direction: A~A'.
The magnetic field products iB„(x)B„(x')~,ff and
iBi(x)Bi(x') ~,ff are obtained from (2.5) and (2.6) if we
substitute G&~FI.

The electromagnetic boundary conditions at r =a have
to hold for each frequency separately. Let the permeabil-
ities of the inside and the outside regions be, respectively,
p, (co) and (((2(co). Then we obtain the following expres-
sions for the constants Az G and Bz G appearing in FI

po —1
p(co) —1 =

1 —co /coo
(2.10)

semiempirical formulas exist, containing one or more ab-
sorption frequencies. We choose in the following a for-
mula for (M(co) which is analogous to Sellmeir's formula
for e(co} in ordinary electromagnetism. Assuming only
one single absorption frequency, at co=coo, we can write
the formula as

e((z)et (z)
AF ——

, BF
s((z}s((z)

e, (z)e/(z)
=lVi(~) —

( 2(~)l
D((z)

e((z)eI(z)
BG

s((z)s('(z)

(2.7)

where (Mo, as well as coo, are input parameters (the con-
stant (((0 has no relationship to SI units). We shall allow
the magnetic susceptibility (po —1) to take positive as well

as negative values.
Formula (2.10) is assumed to hold in frequency regions

lying far away from coo. In these regions, where disper-
sive effects are weak, it is possible to define the (mean)
electromagnetic energy density as a thermodynamic
quantity (Ref. 24, Sec. 80):

e, (z)eI(z)

D((z)
(2.8)

W= 1 d(toe) 2 d (co(u) 2E +
2 dco dt's

(2.1 1)

Here z =ka, sl ——zjI, and el ——zh&' are the Riccati-Bessel(1)

functions, and we have defined

Di(z) =p, (co)s((z)e('(z) p2(co)s('(z)e(—(z),
D((z) =pi(co)s('(z)e((z) p2(co)s((z)e((z) . —

B. The analog of Sellmeir's dispersion relation

We shall now make the dependence of e and p on co ex-
plicit, by adopting a dispersion relation that is analytical-
ly simple and physically reasonable. In the usual theory
of (nonmagnetic} dielectric dispersive media, several

However, near coo, Eq. (2.10) has to be supplemented with
an imaginary term in order to take into account absorp-
tion. From general arguments (Ref. 24, Sec. 82) we know
that e(co) and p((0), at least for nonmetals, have no singu-
larities on the real axis. Mathematically, the relationship
between the real and the imaginary parts are expressed
through the Kramers-Kronig relations. Thermodynami-
cally, one has to be most careful in the strongly absorbing
region: even the expression for the electromagnetic ener-

gy ceases to have a thermodynamic meaning.
In spite of these features, we can nevertheless use the

formula (2.10) without any difficulty in the present prob-
lem. The point is that (M(co), regarded as a function of a
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complex variable (co=co'+ico") is analytic in the upper
half-plane (co" & 0). When calculating physical quantities,
we will generally have to evaluate a frequency integral
which, in view of symmetry about the origin, can be tak-
en to run from co=0 to co= Oo. The path of integration is
the usual one for Feynman propagators: it passes above
the singularities on the real positive axis. The analyticity
property of p(co) thus permits us to make a complex fre
quency rotation,

CO~ l CO, (2.12)

so that without encountering any singularities we can
transform the frequency integral into an integral along
the positive imaginary axis. According to (2.10), p(i&)
becomes a real and positive quantity. The final expres-
sion for the surface force is free from singularities.

The fact that p(co) reduces to a real function on the
positive imaginary axis is actually in agreement with
what can be derived from the causality principle for real
dielectric materials (Ref. 24, Sec. 82).

The absorption frequency coo plays in our theory the
role of a soft, high-frequency cutoff. For definiteness, we
shall choose coo=3 X 10' sec ' to be typical value in our
numerical work later on. This value simply is taken from
analogy with the theory of ordinary dielectrics. Now,
our medium satisfying (2.1) is after all no ordinary dielec-
tric, and one might therefore find it more appropriate in-
stead to choose a typical value of coo of the order of 1/a
(a is the radius), since this is what one should expect in
the hadronic world. Anyway, we shall let the frequency
input parameter cover two decades, the lowest alternative
corresponding to coo=5/a. In this way the hadronic case
ought to be roughly covered also.

S~k
—— E;—Dk H(—BI, + —,'5;k(E.D+H B) . (3.1)

In dispersive media we can in fact use just the same ex-
pression, replacing each bilinear term in (3.1) by its ap-
propriate Fourier component. This is actually an impor-
tant point in dispersion theory: the spatial part of the
energy-momentum tensor (which is equal to minus the
stress tensor) gets no additional derivative terms in the
presence of dispersion. See, for instance, Ref. 24, Sec. 81.
By contrast, as we have already seen in (2.11), the energy
density gets additional derivative terms. Therefore, when
dealing with dispersion theory, it is simpler to start con-
sidering forces rather than energies

The Fourier component F(co) of the radial surface
force density is

F(co)=S„„(co)~, —S„,(co) ~, +

p(co) —1

2
—E„(co)— Ei(co)+ H„(co)

p(co) '
JLc(co)

+H~(co)
a+

(3.2)

The surface force can thus be expressed in terms of the
Green's-function dyad I;I, . We write the force as a
Fourier integral over all frequencies:

JM2(co)=1 in our previous notation, whereas the inside
permeability will for simplicity be denoted by p(co).

Assume that the two points r and r' lie in the same ra-
dial direction, close to each other. The spatial part of the
electromagnetic energy-momentum tensor in nondisper-
sive media is

III. GENERAL EXPRESSION
FOR THE SURFACE FORCE F I c07F

2' (3.3)

We consider in the following a compact spherical ball
of radius a, with a vacuum on the outside. Thus with ~= t —t'. Some calculation results in the expression

00

f dcoe ' 'z g (21+1)
16m a iX '(co)

si'(z)e((z)

iX '(co)1+
s((z)ei'(z)

t(zg 1(z
cue ' 'zX co 2 +1

32m a DI(z)DI(z)

d in[1+ A, l (z) ]

(3.4a)

(3.4b)

X(co)=p(co)—1

and also the abbreviation

(3.5)

A I (z) = [si (z)ei(z) ]' (3.6)

with a prime meaning differentiation with respect to z.
To obtain (3.4), we have employed the fundamental

where z =ka =
~

co
~

a. We have introduced the
frequency-dependent magnetic susceptibility

I

differential equation for the Riccati-Bessel functions,
and also the Wronskian (in standard notation)
WIs, , e, J

=i
Similarly as in the nondispersive case, we do not have

to subtract any contact term from the force expression
(3.4). The calculation proceeds just as previously, ' "and
will not be repeated here. The expression (3.4) according-
ly gives the physical force directly.

Consider next the parameter r in (3.4). We have kept
this parameter so far in the formalism, to make the treat-
ment parallel to that of nondispersive media. In the
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k~ik=ip(, z= ka +—ik—a=ix . (3 7)

Accordingly, the susceptibility X(a() in (3.4) becomes a
function of the argument i &, whereas the quantities s&, e&,

D&, D&, k& become functions of ix. For simplicity, we
henceforth regard the last-mentioned quantities to be
functions of the real positive variable x, thus

I

latter case, ~ played an important role as a cutoff parame-
ter. In the present case, however, ~ can be omitted since
the susceptibility X(p() tends to zero at high frequencies
and so suppresses the contribution to the force from
those frequencies. Accordingly, we set henceforth ~=0.

Assume now that the dispersion relation is such that
the susceptibility X((o} is symmetric about the origin:
X(p() =X( —a(). Our model example (2.10) is of this kind.
Then the integral over co from minus infinity to infinity in
(3.4) can be replaced by twice the integral from zero to
infinity. We perform a complex frequency rotation,
co~i &, as mentioned above. Since co is now taken to be
positive, we can relate the frequency rotation to the re-
placements

s((ix}~s((x),etc. , or

s((x)=(irx/2)' l„(x),
e((x)=(2x/n)' E„(x)

(3.8)

with v=1+ —,'. This normalization corresponds to the
Wronskian W[s(, e(] = —1. Similarly, we let, in the fol-
lowing, D& and D& mean

D((x ) =p( p()s((x )e('(x ) s('(—x )e((x ),
D((x)= (M(co)s (( x)e ((x) s—((x)e('(x),

(3.9)

XQ
((,((x ) = [s((x )e((x )]', X(x ) =

1+x /xo
(3.10)

with Xp ——pp —1, xp =ct(pa [as regards the latter equation,
cf. (2.10)].

Expressions (3.4} for the surface force density can now
be written as

where now a prime means differentiation with respect to
x. Analogously, we define

00

4
dxx v

4m a X '(x)
s, (x)e('(x)

X '(x)
s('(x)e((x)

((,((x )A, '((x )
dx xX (x) g v

8m a D((x )D((x )

in[1 —A, ((x) )dx

(3.11a)

(3.11b)

where X(x) is to be inserted from (3.10). [Note that there
is no contribution to the contour integral over co from the
part of the contour that forms a circular arc at

~

a(
~

~ oo. Namely, for
~

p(
~

~ oo and fixed 1 we have '
s((z)~cosP, e ((z)~e'~, with P=z 2n(l +1). In—se—rtion
into (3.4a) then shows that the contribution from the cir-
cular arc vanishes, since 7 varies with co as 1/co in this
remote region. ]

Equation (3.11) is our final general result. Each of the
expressions (3.11a) and (3.11b) may, depending on cir-
cumstances, be convenient starting points for further
evaluation.

There are essentially two different ways of approach
now to be chosen if we want to make the calculation of
the force complete. One option is that we may attack the
problem numerically from the outset, making use of the
recurrence equations for the Riccati-Bessel functions and
their derivatives,

which in principle permit the evaluation of the functions
for all values of I and x if the lowest-order analytic func-
tions are given:

1
sp(x) =sinhx, si(x) = ——sinhx+coshx,

x

ep(x) =e ", e, (x)= 1+—e
1

x

(3.16)

The other option is that we may make use of the analytic
Debye expansion, whereby it will be possible to reduce
the fundamental force expression to a one-dimensional
frequency integral.

In the following we shall actually use a combination of
these two methods, leaning on the numerical method for
the low values of l and the Debye method thereafter. In
the next section we shall consider the latter method, and
sum the series over all values of l.

21 +1s(+i(x)=s( i(x) — s((x)

2l+1e„,(x)=e, ,(x)+ e,(x),

ls('(x) =s, ,(x)——s((x),x
l

e,'(x) = —e, , (x) ——e((x),
x

(3.12)

(3.13)

(3.14)

(3.15}

IV. USE OF THE DKBYE EXPANSION

A. Construction of the basic expressions

The Debye expansion is a uniform asymptotic expan-
sion, being most accurate for high values of l. As already
anticipated, it will be convenient for our purpose to sum
the series over all l in this section. The corrections from
the low values of l will be taken into account later.
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We proceed as follows.
(1) The starting point is the expression (3.11b), in

which the Riccati-Bessel functions are expanded to
O(v ). In particular, the numerator in (3.11b), i.e., the
derivative of the logarithm, which is first expanded in A.I

as a smallness parameter, is effectively expanded in v
because the leading term in A, I is of order v

(2) All terms are summed exactly, from I = 1 to I = oo.

(3) We end up with a one-dimensional frequency in-
tegral, from zero to infinity, which is evaluated by
moderate numerical effort.

The basic Debye expansions for si, ei and their deriva-
tives have been given previouslyi i, i4(b), i5, i6(b) and will not
be repeated here. We need the expansion coefficients u&,

vk up to k =2; these are given, for instance, in Ref. 11.
In accordance with common notation we henceforth let
the symbol z mean x /v. Further, we define

t{z)=(l+z ) (4.1)

It is convenient in our context to introduce a new symbol
a =a(z), defined as

' 1/2
Ho+1a(z}=

2

Xp
(4.2)

It is also useful to note that the permeability p(x) =IM(vz),
as defined by (3.10) in our model, satisfies the relation

tu(vz ) —1 Po 1—a
IM(vz)+ I po+ I v +a

(4.3)

We develop the formalism in analogy to our earlier treat-
ment on nondispersive media. ' The inverse denominator
in (3.11b) is expanded as

2a ppv+
pp+ 1

2 2a
pp+ 1

po —1

pp+ 1

t
1 ——

4
a

(4.4)+O(v )
v2( v2+ a2 )2v+aX '(x)

I
SI eI

X '(x}
I

SIeI

In the derivation of this expression we have made use of the expressions for u i, vi, and u2, v2. The coefficients in the
next approximation, ui and vs, are not needed to obtain the result (4.4); the O(v ) terms drop out automatically. Us-
ing (4.4), we can now express (3.11b) as

'2
Pp 1 00

F= —
4 g TI{Po~xo)

8ma pp+1

1 Pp —4Tl{vo xo)=JI{P0xo}—, II{I40xo}+O(v
v2 (p +1)2

with

(4.5b)

00 2

Jl{l 0 xo} dzz
2 27T 0 v+a

d
ln( 1 —I{,I),2

dz
(4.6)

2v' {) 0+1)'
Il{po~xo}= dzza t

4pp 0

2av+
pp+ 1

( v2+ a2 )4

2a pov+
pp+ 1

d 2ln(1 —xl )
dz

(4.7)

The special case of a nondispersive medium corresponds
to cop= ~, i.e., xp= ~ or a= ~. Then JI and II reduce
to their respective counterparts as given by Eqs. {2.51}
and (2.52) in Ref. 15(a) (for time separation v=0).

Now expand the logarithmic factor in (4.6) and (4.7) in
A. l as a smallness parameter. We first calculate

I

into account that dt/dz= zti, —

v ln(1 A,I)= ,'zt 1 ——(2——36t +100t —71t )
dz 4~2

t
I(,l(x) =

2v
1 — (2—27t'+60t' 35t'}+0{v —')1

Sv

+O(v ) (4.10)

ln(1 —kl )= Al 'A, l+O (Ai)— —- (4.9)

(4.g)

which shows that A, l is of order v ', as mentioned above.
Inserting this expression into

We have multiplied by a factor v to make the leading
term of order unity.

The last expansion makes it natural to divide JI into
two parts:

and differentiating with respect to z we obtain, taking JI{Po»o ) =~i +(0) 1 (2)
|2 (4.11)
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with

2
2

J,'"= —f "dz z'r'
7T 0 v+a

(4.12)

form gi" f&, where the summand f& satisfies

gf(= f—o+ ,' -X A
I=] I = —oo

(4.15)

Jg ——— dzz t(2) 3 2 8

4~ 0

2
2

v +a

X(2—36r 2+100r' 7—1r') . (4.13)

When judging the order of v ' in these expressions, we
have to face the complications arising from the dispersion
factor [a /(v +a )] . Actually one might imagine to ex-
pand this factor also, in powers of a/v. In view of (4.2},
this ~ould be equivalent to an expansion in xp/v as
smallness parameter. We wish, however, to maintain xp
as a freely adjustable input parameter —as we have seen
the case of a nondispersive medium corresponds to
xp ——00 —and we therefore choose to judge the order of
the expansion without paying regard to the dispersive
effect. Consequently, both JI ' and JI' ' are reckoned as
being of 0 ( v ).

In addition to these two terms, there is a remainder of
O(v ") in JI, arising froin the last term in (4.10); this
remainder is omitted from (4.12) and (4.13), and is as-
sumed to be absorbed in the common remainder in (4.5b).

The expression for II, defined in (4.7}, is treated simi-

larly. From (4.5b) it is apparent that we need to retain
only the first term to the right in the expansion (4.10).
That means, II needs only to be expanded to 0 (v ):

in view of its quadratic dependence on v. The first term
to the right corresponds to I =0.

We replace I by a complex variable g, and consider

f (g) as an analytic function of g. This function will have
poles at g=g„, r =1,2, . . . . Thus taking the integral of
the function m f(g)cote( around a closed contour C en-
closing the poles at g„as well as the poles at all integer
values of g from minus infinity to infinity we obtain, since
f(g) is such that

( gf(g) [
~0 when

the following formula:

f(I)= —g Res[af(g)cote(]
I = —oo

dn —1

, [(g—g„)"nf(g)

X cote(]

(4.16)

3 (po+1)'I =— "dz z2a'r"
77 4Pp 0

2a2 +
Pp+1

2a ppv+
pp+ 1

The sum is taken over the residues. n is the order of the
pole at g= g„.

By means of this method we can calculate the useful
formula

2+&2)4

(4.14)

+ tanhma,1 4

, v2+a 1+4a
(4.17}

For, the correction term which we have omitted here is
of O(v ); when multiplied by v as required by (4.5b)
it becomes of O(v } and can as such be absorbed in this
equation's last term.

B. Summation of the series

Our next task is to sum the terms JI' ', JI' ', and II over
1. This can be done exactly. Each of the series has the

whose derivative with respect to a yields

1 16 + tanhna
(v +a ) (1+4a ) 4a

1

4a cosh ma

Thus, JI ', as defined in (4.12), can be summed as

(4.18)

y J,"'=—f "dzz2r'—
0

'2
4a 7T a+1+4a~ 4coshn. a

sin he.a 1

cosh ma
(4.19)

To calculate the sum of v J&
' we might use (4.16) directly. It is however more convenient to resolve into partial frac-

tions the expression
2a4 1

P( 2+ 2)2 2
( 2+ 2)2 2+ 2

and thereafter use (4.17) and (4.18), together with the formula

(4.20}
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(4.21)

to obtain the desired expression

7T 0

2
4a ~2

+1+4a 16cosh'.a
3 sinh~a 1

coshma

7T2

8

X(2—36t +100t —71t ) . (4.22)

The summation of v It, with It given in (4.14), can be done similarly. We first resolve into partial fractions the quanti-

ty

r r

2a &
2a pov+ V +

op+1 op+1

v2( v2+ ~2 )4

4Po 1 1 1

(go+I) cr v a (v+a ) a (v+a )

r r

pp —1

+
pp+ 1

a 1

( 2+~2)4 ( 2+~2)3
(4.23)

and thereafter sum the individual terms by using (4.21), (4.18), and (4.17), as well as the formulas

( v2+ 2 )3

64 3~ 3m 1 m tanhma+ — tanh~a-
(I+4a ) 16a 16a cosh ma 8a cosh m'a

(4.24)

1

( 2+ 2)4

256 5m 5m 1+ tanhma-
(I+4a ) 32a 32a cosh 77a

tanhm. a m 2 sinh m.a —1

8a cosh aa 48a cosh vra
(4.25)

which are obtained by successive differentiations of (4.18). In this way we find

3 p )4, 2 64a 3m 1
2 Ii ——— dz z t ,'tr — ——tanhma+

(1+4a ) 4a 4 cosh era

64a 1024a 1 1 m. 11m 1+ 22+ + tanhna-
4wo ( I+4a')' (1+4a')' cosh ma

m. a tanhm. a
4 cosh ma

a a 2sinh ma —1

48 cosh ma
(4.26)

We have thus finally obtained the following expression for F, with use of the Debye expansion for all l:

2
1 I p (o) 1 (&) 1 I '0 4Ji +—JI ' —— Ii+0(v )

g~a4 po+I, ,
' v2 ' v' (go+I)2 ' (4.27)

in which the order of the correction term is shown explic-
itly. Recall that a, as defined in (4.2), depends on z, and
also that J&, Jt ', and It are all of O(v ). The various
terms in (4.27}, which have now been reduced to single
integrals, can readily be calculated on a computer, with

pp and xp as input parameters.
For a nondispersive medium, xo —co, (4.27) is the

analogue of Eq. (2.56) in Ref. 15(a).

V. CALCULATIONAL METHOD AND RESULTS

Because of the limited accuracy of the Debye expan-
sion for low I we have found it to be most appropriate, as
mentioned earlier, to choose the numerical method of ap-
proach for I ranging from I =1 to I =10. The general ex-
pression (3.11a) is the starting point, with X(x} given by
(3.10). The basic recurrence equations for the Riccati-
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(5.1)

AI(x) =2 [si—(x)ei &(x—) sl—i(x—}ei(x)]
I

s, —
, (x)e,

1+ s&(x )el (x )
(2l +1)l (5.2)

I
DI(x) = —X(x)si(x) e~ &(x)+—ei(x) —1, (5.3)

I
DI(x) =X(x) sl, (x)——si(x) ei(x)+1 . (5.4)

By using these equations, together with (3.12)-(3.16), it is
in principle possible to calculate the contribution to the
force from the mentioned low values of I. We can inter-
change the sum with the integral without any problems.

For the lowest values of I, I =1,2, 3,4, the recurrence
equations were found to work well, except for the low
values of x where the calculated values of sl(x) were nu-

merically unstable. (It ought to be emphasized that these
problems were purely numerical. ) Therefore the re-
currence equations were not used in this region; instead, a
series expansion was worked out for the integrand for
small values of x, x &[0,0.3], and thereafter integrated
analytically (see the Appendix). For the higher values of
x, i.e., in the interval x C [0.3, ao ), numerical integration
was carried out using Simpson's method. As a check on
the numerical integration we compared Simpson's
method with Romberg's method and found good agree-
ment; in fact, the differences were so small that they do
not turn up in any digit in our tables given below.

For the next values of I, I =5-10, the numerical unsta-
bilities in s&(x) were found to be more pronounced. First,
for x K[0,0.3], the same series expansion as mentioned
above was used. Thereafter, in the region x K[0.3,3.1],
a satisfactory approach was found to be to use the re-
currence equation for sl(x) in the backward direction,
starting from tabular data for s9(x) and s,o(x). Such

Bessel functions are (3.12)—(3.15); they correspond to the
following recurrence equations for the various factors in
the integrand:

21
It./(x}= —s I( x)e i,(x)+SI ](x)eI(x}— —sr(x}e((x),

data are given in steps of 0.1 in Ref. 25. The numerical
integration could then be carried out using Simpson's
method. For the greater values of x, x E[3.1, 0O ) (and
still I =5—10), the calculations were easily done using the
recurrence equations and Simpson's method in an ordi-
nary way.

Finally, for I =11—ao, we made use of the Debye ex-
pansion as spelled out in Sec. IV, subtracting off from
(4.27} the contribution to the force from I =1—10. The
various integrals over z were conveniently calculated us-
ing Simpson's method.

Proceeding in this way, we expect the analysis to be
quite accurate. We recall that in many treatments where
the Debye approximation is involved, one accepts the ex-
pansion for all values of I, down to I =1, and expects a
reasonable accuracy nevertheless. In more accurate
work, such as in the one of Milton, DeRaad, and
Schwinger, " one applies a numerical treatment for the
lowest values of I (I = 1 —4) and the Debye expansion
thereafter. In the present case, where we apply the
numerics considerably further, up to I = 10, we would ex-
pect beforehand that the agreement between the exact
method and the Debye method should be quite good for I
lying around I =10. Actually, we have made an explicit
check of this, for I =10, and have found very good agree-
ment. The differences do not have any inhuence upon
our tabular data (Table I).

It is convenient to present the results in nondimension-
al form, by dividing F by the 6nite result calculated ear-
lier" for a singular shell:

F0 =0.092 35/8ma (5.5)

As noted above, we take coo ——3)& 10' sec ' to be a typ-
ical value for the absorption (or cutoff) frequency. As re-
gards the dimensions of the sphere, we take 2a =10 cm
to be a typical diameter (if effects from sphericity are to
be present, the diameter must necessarily be small}. In
dimensional terms, xo is defined as xo=cooa/c. We ac-
cordingly obtain xo ——50 as a typical value for the cutoff.
Table II shows calculated values of the ratio F/Fo with
this value for xo, and with various chosen values for the
static permeability po. To show the dependence of the re-
sults upon xo, we give in Tables I and III the correspond-
ing results for xo = 5 and 500. As we noted above, the ha-
dronic case is expected roughly to correspond to xo of
the order of unity, so that Table I is pertinent in this case.

The results are generally seen to be negative, corre-

TABLE I. Relative surface force density F/Fp when xp ——5 for some given values of pp. The contributions from the lowest l are
given separately. The bottom line gives the sum over all l.

1

2
3
4
5—10

11—00

Sum

I p=0. 1

—0.5429
—0.4102
—0.3133
—0.2407
—0.6932
—0.5029
—2.7033

pp
——0.4

—0.1523
—0.1208
—0.0955
—0.0754
—0.2286
—0.1815
—0.8541

pp
——0.8

—0.0106
—0.0087
—0.0071
—0.0057
—0.0184
—0.0161
—0.0666

—0.0072
—0.0061
—0.0051
—0.0042
—0.0141
—0.0134
—0.0501

—0.1009
—0.0878
—0.0755
—0.0642
—0.2288
—0.2488
—0.8060

Pp=5

—0.4290
—0.3916
—0.3559
—0.3195
—1.3046
—1.9548
—4.7554

pp ——10

—0.6677
—0.6257
—0.5884
—0.5476
—2.4831
—5.0361
—9.9487

pp ——50

—0.9530
—0.9204
—0.9044
—0.8853
—4.8023

—22. 1671
—30.6325
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TABLE II. Same as Table I but with xp =50.

1

2
3
4
5-10

11-00

Sum

pp
——0. 1

—0.6871
—0.6720
—0.6671
—0.6604
—3.7551

—26.4813
—32.9230

po=0. 4

—0.1853
—0.1836
—0.1831
—0.1819
—1.0460
—8.4282

—10.2080

pp=0. 8

—0.0124
—0.0123
—0.0123
—0.0123
—0.0712
—0.6590
—0.7796

JMo ——1.2

—0.0083
—0.0083
—0.0083
—0.0082
—0.0481
—0.4967
—0.5779

pp= 2

—0.1120
-0.11i4
—0.1115
—0.1113
—0.6541
—7.9927
—9.0929

Pp=5

—0.4536
—0.4481
—0.4485
—0.4480
—2.6597

—47.1841
—51.6420

po= 10

—0.6892
—0.6775
—0.6776
—0.6771
—4.0378

—98.8146
—105.574

pp ——50

—0.9598
—0.9381
—0.9373
—0.9368
—5.6115

—305.180
—314.563

hm g JI' '(5)= —
—,', (nondispersive theory) .

sponding to an inward force. Moreover, the strength of write down the result:
the force increases as the cutoff xp increases. The relative
importance of each I is seen to diminish with increasing I. (6.2)

VI. CONCLUSIONS AND FINAL REMARKS

We arrive at the following conclusions.
(1}The most striking property of our calculated results

is that, with the input values for xp and pp chosen, they
predict the surface force to be attractive. The attractive-
ness in fact persists for each value of 1 separately. For
great values of xp the force becomes very strong.

(2) The reason for this circumstance lies entirely in the
inclusion of the dispersive effect. Having developed the
formalism, it is now easy to demonstrate in detail the
properties that we explained qualitatively in Sec. I. For
our purpose it is suScient to consider the limiting case of
large xp. The delicate part of the problem is the evalua-
tion of the zeroth-order part JI ' of the integral JI, cf.
Eqs. (4.11) and (4.12). From (4.19) we have, when xo is

large,

The point is that we get the same expression as in (6.1),
apart from the cutogterm Thu. s, if we start with the gen-
eral dispersive formalism and let xp~ 00, which is physi-
cally the most realistic way of obtaining the case of non-
dispersive media, we are left with an infinite term in the
force, a term which has been left out in the conventional
nondispersive theory.

It ought to be stressed that the dispersive term de-
scribes a physical contribution to the force; it is not mere-
ly a spurious contact term in the formalism. This follows
from the fact that the dispersive force depends on the
finite dimensions of the sphere, and is moreover finite for
any finite values of xp.

(3) Let us calculate also the remaining terms in the gen-
eral force expression (4.27} in the case of great xo: from
(4.22) we have

g J,"' —J "dzz't'( —1+ ,'na)-
l=1 0

' 1/2
3 xp Pp+ 1

32 8 2
(6.1)

JI ' —+( —,'6 —4)
I=1

and correspondingly, from (4.26),1, 2 63
II ( ,'m —4)——

I=I & 211

(6.3)

(6 4)

It is clear that the second term, proportional to xp, is due
to the dispersive effect. Let us compare this with what is
obtained in the conventional nondispersive theory, i.e.,
when the medium is assumed nondispersive from the
outset. In the latter case we know from earlier
works"' ' ' that it is necessary to introduce a cutoff pa-
rameter 5 to avoid divergences when summing over l.
[The nondispersive expression for Jl' ' can be obtained
from (4.12) by putting a=Do and introducing a factor
cos(5vz). ] We shall not go into detail about this, but

p
Fp

pp —1~1.004
pp+ 1 (go+ 1)

' 1/2
pp+ 1—1.348xp

2 (6.5)

Then by using (4.27) and (5.5) we obtain for the force ra-
tio

TABLE III. Same as Table I, but with xp ——500.

1

2
3
4
5—10

11-~
Sum

pp=0. 1

—0.6894
—0.6781
—0.6787
—0.6789
—4.0724

—328.516
—335.314

p.p=0. 4

—0.1858
—0.1849
—0.1856
—0.1859
—1.1168

—101.950
—103.809

pp ——0.8

—0.0124
—0.0124
—0.0125
—0.0125
—0.0751
—7.7886
—7.9134

pp= 1.2

—0.0083
—0.0083
—0.0083
—0.0084
—0.0503
—5.7739
—5.8574

pp=2

—0.1121
—0.1117
—0.1122
—0.1124
—0.6758

—90.8560
—91.9804

Pp= 5

—0.4539
—0.4489
—0.4500
—0.4504
—2.7050

—516.016
—520.524

pp ——10

—0.6894
—0.6781
—0.6788
—0.6791
—4.0759

—1055.01
—1061.81

pp ——50

—0.9599
—0.9382
—0.9376
—0.9374
—5.6231

—3144.44
—3153.84



37 CASIMIR FORCE ON A SOLID BALL WHEN e(ap)p(cg) = 1 2987

Ec=0.092 35/2a (6.6)

be the Casimir energy corresponding to the force (5.5).
When the material in the sphere is homogeneous, there
are no electromagnetic forces in the interior, and thus the
only forces occurring are the surface forces. The formula

—BE/Ba =4m.a F (6.7}

can thus be used to calculate the energy ratio E/Ez that
corresponds to (6.5):

*2
po —1~ 1.004
pp+ 1

1+0.310
(pa+1)'

where we have omitted the correction term. Here the
negative contribution to the force from the dispersive
effect is shown clearly. [The reason for the factor 1.004
in front is that our accuracy in the evaluation of J& goes
only to O(v ); the nondispersive result (5.5) for FD ob-
tained by Milton, DeRaad, and Schwinger" was found in
a more accurate calculation. ]

The high-xc formula (6.5) is surprisingly accurate, even
for low values of xo. Let us choose pz ——10 for
definiteness; then inserting x~=500 in (6.5) we obtain a
value which deviates only about 0.01% from the value in
Table III. If we insert xz ——50 or xz ——5, the deviations
are somewhat greater, as expected, viz. , about 0.05% and
0.15%, respectively. Equation (6.5) predicts the force to
be slightly weaker than the tabular data do. Recall that
our numerical data are expected to be roughly applicable
in the hadronic case (xo of the order of unity} also.

(4) It is worth recalling that in the nondispersive
calculations' ' ""' the force was found to be invariant
under the substitution @~1/p. When the medium is
dispersive, this kind of symmetry (for p, ~) does not hold.
See the tables, or formula (6.5).

(5) Whereas it is simple to obtain an approximative ex-
pression for the force in the limit of large xz, a corre-
sponding approximation at the opposite extreme, for x~
much less than unity, would be more complicated. Con-
sider, for instance, the first term in (4.27), as given in
(4.19). The quantity a runs from zero to infinity, regard-
less of the value of xo, and there is a significant contribu-
tion to the integral from low z. A simple high-z expan-
sion for the hyperbolic functions cannot be used.

(6) Formula (6.5) for the force in the limit of large xu
makes it possible to derive a corresponding formula for
the Casimir energy E. Let

imposition of perfect conductor boundary conditions
with A determined by the microstructure of the shell, he
arrives at a cutoff-dependent term in the energy that is
linearly dependent on A but independent of the radius.
The surface force corresponding to an energy term of this
kind is zero, cf. Eq. (6.7). Thus, if we focus attention only
on how the dispersive terms vary with cutoff and with ra-
dius, we have, according to Candelas,

Edlsp ——2A Fd —0 (6.9)

Edlsp coplnQ, Fdlsp —cop /0 3 (6.10)

Since Candelas's cutoff A plays qualitatively speaking the
same role as our co~, it is seen that our results are mainly
in agreement, as far as the cutoff is concerned. There is
some difference, however, in the predicted variation with
radius. Instead of obtaining an energy completely in-
dependent of radius, we find a weak, logarithmic depen-
dence. After all, it is according to our opinion physically
reasonable that the radius ought to turn up in the expres-
sion for the energy, all the time that this energy is just a
consequence of the presence of the sphere.
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APPENDIX: I'HE CONTRIBUTION
FROM LOW FREQUENCIES

As mentioned above, we performed for technical
reasons a series expansion of the integrand in the general
force expression (3.11) for small values of x. Needless to
say, the general expression is not very transparent to
physical interpretation, so that it may be desirable to
write down some of the results for small x explicitly,
thereby making the formalism more easy to inspect in

this particular frequency region.
Since x =coa/c in dimensional terms, the condition

x ((1 implies that the electromagnetic wavelengths cor-
responding to these frequencies are much greater than
the dimensions of the sphere.

We start from the small argument approximation for
J„(x),as given in Ref. 25, p. 375. E,(x) can then be cal-
culated by means of the general formula

whereas our model calculation yields (for the case of
large xc)

' 1/2
go+ 1

+ 1.348x()
2

lna
[I .(x)—r, (x)] .

2 sin~v
(Al)

(6.8)

In this way we derive the following expressions for the
Riccati-Bessel functions:

+const .

(7) It is interesting finally to make a brief comparison
with the discussion of Candelas for the case of a spherical
shell [Ref. 21(a), Sec. 7.2]. As we mentioned in Sec. I,
Candelas's arguments are of a general nature. Assuming
there to be an angular-momentum cutoff 1 =a A for the

' v+1/2
77 X

s((x) =
I (v+1) 2

—X (1 2)2

X 1+ + +O(x )
v+1 2(v+1)(v+2)

(A2)
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' —v+ 1/2
I (v) x

e v~ 2

—'x ( —'x )

v —1 2(v —1)(v—2)
(A3)

tions (3.9) as

Dt (x ) =X(x )st (x )et'(x ) 1—,
D, (x)=X(x)st(x)et(x)+1,

and inserting the expansions

(A6)

(strictly speaking we have assumed that I & 2 when giving
the order of the remainder here). Differentiation of the
product sleI gives the function A,l.

st (x )et'(x )=—
i 3 2v —— 4X1+, ,

+O(x')
(v —1)(v——,

'
)

2X
3 2 —Xis 4

~t(x)= 1 — + q q
+O(x )—1 (v —1)(v —4)

(A4)

st'(x )et (x ) =
v+ —,

i
4X
3 2

1 — 2, +O(x )
(v —1)(v+ —,

'
)

(A7)

which upon differentiation once more yields we can work out the contribution to the force from the
frequency region x E [0,b, ], taking into account also that

A, I(x)=— 3x
2v(v —1)

—X
1 — +O(x")

v —4
(A5)

We work in the following to an accuracy of O(x ), as
given in this formula.

We need also DI and DI. Writing the definition equa-

X
X(x)=Xo 1 —

~
+O(x )

Xo

The result becomes

(A8)

F(x &6)=— Q3 00

277 0 1=1
24&

(v —1)

v
'2

Po+1
4v

po —1

9g2
1—

V2 2
Ho+1

4v —1
Pp —1

3 2
io~ 8v —17

v —1 v —4

pp+ 1

xo (Vo —1)' 2
Ho+1

4v
Po —1

+O(b, ')
(A9)

The final sum over l is made numerically. In our calculation we used b, =0.3 as the upper limit. It is apparent that the
contribution to the force from low frequencies is negative and thus of the same sign as the full force.
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