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We generalize the formula by Elitzur and Nair on the global-anomaly coeScients in even

(D =2n)-dimensional space and analyze global anomalies for Sp(2N), SO(N), and SU(N) groups. In
particular, we show that any irreducible representation of any Sp(N) and SU(2) group has no global
anomalies in D =8k dimensions. In D =8k+4 dimensions, SU(2) has Zz-type global anomalies
only if the spin J of an irreducible representation has the form J=

~ (1+41)= z, z, ~, . . . . For any

SU(N) group in D =2n, the global-anomaly coe5cients can be expressed in terms of so-called unsta-
ble James numbers of Stiefel manifold SU{n+1)/SU(n —k) an/ generalized Dynkin indices

Q„+,itv} for SU(n +1).

I. INTRODUCTION AND SUMMARY OF RESULTS

1
A (co)=exp 2ni

dn +1,k+1
Q„+i(co)

where

n.'I

d„+& t +i —— —mte er . (1.2)

The integral number U( n + 1,k + 1 } is the James num-
ber for the complex Stiefel manifold, SU(n + 1)l
SU(n —k). The definition and discussion of the James

It was noted by Witten' in 1982 that an SU(2) gauge
theory in four dimensions with an odd number of left
chiral doublets of fermions is mathematically incon-
sistent, because of the global (nonperturbative) anomaly
in the theory. This is partly reAected by the fact that the
homotopy group for SU(2) is nonvanishing, II4(SU(2))
=Zz. Subsequently, Witten and others derived general
formulas for global anomalies, including gravitation.
However, if we are interested only in the pure gauge
anomalies, then another method due to Elitzur and Nair
is often more convenient for the computation of the pure
global-gauge-anomaly coefficient A (to) for the represen-
tation (rep) to. This method has been utilized by many
authors for the study of A (co) for various SU(N)
groups in D =2n dimensions. In particular, in Ref. 6
(which will be referred to as I), we generalized the formu-
la for A (co) by Elitzur and Nair and proved the follow-
ing: Assuming that the rep co under discussion possesses
no local (perturbative) anomaly, both SU(n —1) in
D =2n (n &3) and SU(2k+1) in D =4k+2 have no
global anomalies, but SU(2k) in D =4k may have a Zz
global anomaly.

In this paper, we will extend the results of I. First of
all, we show that the global anomaly coefficient A (co} for
a rep co of SU(n —k) (0&k &n —2) in D =2n is ex-
pressed as

numbers wil be given in Sec. V and the Appendix. Here
Q„+i(co) is the (n+1)th generalized Dynkin index for
the rep co of the SU(n + 1) group. The rep to of
SU(n +1) must satisfy the requirement that under the
reduction of SU(n +1}into SU(n —k) the rep co reduces
to a direct sum of co and singlets of SU(n —k). As noted
in I, such a co can be always found for a given co of
SU(n —k), provided that we allow negative multiplicities
corresponding to fermions with opposite chirality.

As an application of Eqs. (1.1) and (1.2), we will show
in Sec. IV the following.

(i) Any irreducible representation (irrep) co of SU(2) has
no global anomaly in D =8k.

(ii} Only spinor reps of SU(2) with spins
J = —,'(41+1}=—,', —'„—'„.. . , have Zz global anomalies in

D =8k+4. Neither reps with J=—,'(4l+3)= —,', —",, . . . ,

nor reps with J =(any integer) have global anomalies.
(iii) SU(3) does not give rise to global gauge anomalies

in D =8k +6 for a rep co which is free of local anomaly.
%e emphasize the fact that the absence of the local
anomaly in (i} and (ii) is automatically satisfied for any co

of SU(2) in both D =8k and 8k +4 dimensions.
As another generalization of the method given in I, we

prove in Sec. III (without assuming the local anomaly-
free condition} the following.

(i) Any rep of Sp(2N) (with rank N) has no global
anomaly in D =8k. This is in conformity with the result
stated on SU(2), since SU(2) =Sp(2).

(ii) Any tensor rep of SO(2l+1) (l &3) has no global
anomalies in D =8k +4.

(iii) Any tensor rep of SO(21) (l &4) in D =8k+4
possesses no global anomalies, provided that the Young
tableau corresponding to the irrep u does not contain
any column which has boxes containing the maximally
allowable number l.

(iv) No global anomaly exists in D =20 for Gz, even
though IIzo(Gz ) =Zz. Similarly, F4 has no global anoma-
ly in D = 16 in spite of II~6(F4 ) =Zz 8Zz.
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II. BASIC PROPOSITIONS

Before going into detail, let H be the gauge group un-
der consideration, which is assumed to be a simple con-
nected compact Lie group. A generic rep ~ of H will be
expressed as

co= (9m co (2.1)

We organize our paper as follows. In Sec. EI we prove
various general propositions needed for the main results
mentioned above. The cases for Sp(2N) and SO(N)
groups are discussed in Sec. III. We show that the
present method is not applicable in general for spinor
reps of SO(N) groups. In Sec. IV we prove the formula
(1.1) with (1.2) for SU(N) and show the connection with
the James numbers. Finally, we make a comparison of
the present method with that of Ref. 3 in order to assess
their respective merits and limits.

9= f& mJco
J

(2.4)

where ~ are irreps of G with possibly negative multipli-
city m . Since the theory will not be consistent if H has a
local anomaly, we assume that the rep ~ of H must obey

D =2n .Now, the method of Ref. 4 (as well as that of I)
is to reduce the problem of computing the global anoma-
ly coeScient A (co} of H to that of calculating the local
anomaly of a group 6 in a rep co as follows. For this pur-
pose we must require that G and its rep 6 must satisfy the
conditions that (i) 6&H and II2„(G)=0 and (ii) co

reduces to a direct sum of co and singlets of H when we
restrict 6 to H. Note that the condition II2„(6)=0 im-
plies that 6 has no global anomaly in D =2n. The
second condition cannot be in general obeyed, unless we
allow negative multiplicity coefficients mJ s for 9 of G as
in Eq. (2.1):

T( )F +li 0 (2.5)

in terms of a direct sum of irreps co with multiplicity mj
which are non-negative. However, it is more convenient
(and even necessary for some cases) for our purpose to al-
low formal uses of negative values for the multiplicity
coefficients m. 's. Physically, the negative value of m im-

plies that we are considering the underlying fermion field
with negative (or right-handed) chirality in contrast with
that of the positive (or left-handed} chirality. This con-
vention is justified for the present problem by the follow-
ing reason. We are only interested in the calculation of

Tr' 'X"+ ' = ~ m Tr ' X"+ '
J

J
(22)

II,„(H)~0 (2.3)

so that some rep m of H may possess a global anomaly in

where X is a generic rep of a generic element of the Lie
algebra of H. Such a convention is more convenient than
dealing with a discussion of the group HL Hz instead of
H, where L and R refer to the left-handed and right-
handed chiral groups, respectively. We note that such a
usage has been already employed in the analysis of global
anomalies as well as that of local anomalies. ' A simi-
lar use of negative multiplicities has been also utilized"
for studies of Kronecker products and branching rules of
reps of classical groups.

Hereafter, we restrict ourselves to the case of even di-
mensional spaces with D =2n and assume that

Here F are the Lie-algebra-valued field-strength
differential two-forms. ' As we have emphasized in I,
Eq. (2.5) is stronger than that of the Green-Schwarz
mechanism of anomaly cancellation, ' and our results ap-
ply only to this stronger form of the local anomaly-free
condition. However, we note that Eq. (2.5) is automati-
cally satisfied for any self-contragredient rep co of H in
D =41 (n =21). In particular, if H is one of the groups

SU(2), G2, F&, E7, Es, Sp(2N),

SO(2N + 1) (N & 3), SO(4N) (N & 2),
(2.6)

then any rep co of these groups automatically satisfies Eq.
(2.5) in D =41, since these groups allow' only real (or-
thogonal) or pseudoreal (symplectic) reps. As we noted
elsewhere, ' this reflects the fact that groups listed in Eq.
(2.6) possess no odd-order Casimir invariants. In this pa-
per we will not make any specific difference between
SO(N) and Spin(N), since the distinction is rather imma-
terial for the present discussion of global anomalies.

Note that for the Lie groups H and G with H C G, G
can be considered as a principal bundle over base space
G /H with fiber H. More generally for a bundle
P=IB,P,X, Y, GI with bundle space 8, base space X,
fiber Y, group G, and projection P, let Yo be the fiber over
xp EXand yp E Yp and let i:Yp ~B and j:8~(8, Yp ) be
the inclusion maps. Then we have the homotopy se-
quence' of (8, Yp, yp) given by

II (Y ) II (8) II (8, Y ) II,(Y ) II,(B)

where 8 is the natural boundary operator and where i „j„and8, are maps induced by i, j, and 8, respectively. Let Po
denote the restriction of P as a maP (8, Yp,yp)~(X, xp, xp). Then Ppj is the Projection P:(B,yp)~(X xp). For N &2
we have the isomorphism relation'

p, :II~(8 Yp) IIx,(X xp)

Defining b =8 (P ) '.II&(X,xp)~IIN &( Yp,yp), the exact homotopy sequence can be written as

lg Pg l~

II (Y,y ) II (8) II (X,x ) II,(Y,y ) II,(8)
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Now, under our assumptions for H and G with 8 =G,
X =6/H, and Y =6 =H for all these Lie group spaces,
the choice of the base points xo and yo are irrelevant in
our discussion, since all the relevant homotopy groups
based upon different points are isomorphic.

With the above preparations, we can now consider the
following exact homotopy sequence

II „,(6) II „,(G/H) II „(H) II „(G)=0 .

(2.7}

Since H is assumed to be a simple compact connected Lie
group, then II2„(H) must consist of purely torsion
groups, i.e., finite cyclic Abelian groups, proved by
Serre. ' Therefore, we may write

(2.8)

Now, let m be the least common multiple of M integers,
m, , mz, . . . , mM, appearing in Eq. (2.8). Then, in I, we
have proved the following proposition.

Proposition 1. Suppose that we have Ilz„+,(G}=Z.
Then the global anomaly coefficient A(cv) of H is given
by

A (to)=exp 2ni Q„. —+(ico)
. b (2.9)

p, (x) =dy +t, (2.10)

where d is a nonzero integer and t is an element of T.
Then, the global anomaly coefficient A (to) of H is
effectively given by

where b is an integer and Q„+i(tv) is the (n +1)th Dyn-
kin index of G in the rep co, which is always an integer.

We will prove the following propositions.
Proposition 2. Suppose that we have II2„+,(6)=Z

and II2„+,(6/H)=ZS T, where T is a (finite) torsion
group. Let x EII2„+,(6) and y EII2„+,(6/H) be gen-
erating elements of Z's. Suppose that they are related by

(ii) If G has no fundamental (n + 1)th-order Casimir in-
variant, then we may set Q„+,(co)=0, so that A (co)=1.

(iii) If 6 =SU(n +1) and H =SU(n —k)
(0 & k & n —2), then the value of d is given by the formu-
la Eq. (1.1). That is, d is inversely proportional to the
James number.

Proposition 3. Suppose that II&„+i(6) or
II&„+,(6/H) is zero or a finite group. Then we have
A (co)=1 for H.

If II&„+,(6)=0, then II&„+,(6/H) is isomorphic to
Ilz„(H) by the exactness of the homotopic sequence.

Proposition 4. If co of G satisfies the local anomaly-free
condition

(2.12}

then we have A (co)=1.
Note that the validity of Eq. (2.12) immediately implies

that of Eq. (2.5). Moreover, if 6 is one of the groups list-
ed in Eq. (2.6), then the condition Eq. (2.12) is automati-
cally satisfied in D =4l (i.e., n =21=even integer).

Proposition 5. Suppose that II2„+,(G/H) contains a
torsion part T such that its image b, (T) coincides with
Ilz„(H). Then we have A (co) = l.

Moreover, if we have II2„+i ( 6)=Z and

II2„+,(6/H)=Ze T as in proposition 2, then proposi-
tion 5 is equivalent to proposition 2 for the case where
d =1 and T is out of necessity isomorphic to Ilz„(H).

Now, we will proceed for proofs' of these proposi-
tions. First, note that the map 6, is onto, since the ex-
actness of the homotopy sequence Eq. (2.7) requires
Imb, ,=Keri, . Thus, for any h E II2„(H), we can always
find an element g E II&„+i(G/H), satisfying

i
g~ h~0.

However, since m is the smallest common multiple of
jm, , m2, . . . , m~ ) in Eq. (2.8), h is a trivial element of
Ilz„(H) so that b, ,(g )=0. Therefore, the exactness
condition, Imp, =Kerb„ implies the existence of
g 0 E IIz„+,( 6), satisfying

g'Q~ g™~0. (2.13)

A (to) =exp 2mi Q„+,(co.)—. 1
(2.11)

in a sense that all other global anomalies are some in-
tegral powers of the expression A (co) given by Eq. (2.11).
There are two simple cases' where we can estimate the
value of d immediately.

(i) If II2„+,(G/H) =Z and II2„(H)=Z, then we have
d =m.

(ii) If II2„+,(6/H)=ZSZ, and II&„(H)=Z with m,
then l divides m. If m is an integral multiple of I, then'
d =m /i. Moreover, if 1 =m, then A (co)= 1 with d = 1.

Three comments are in order.
(i) For a reason to be explained shortly, propositions 1

and 2 must be slightly modified when G is SO(2n +2)
with n being odd in D =2n, since then G possesses two
independent (n + 1)th-order indices Q„+&(co) and

Q„+,(co). This case will be discussed in Sec. III.

Now, as in Ref. 4, we may identify h as a representative
of the element h (x):D "~H for x ED ". Compactifying
D " into S ", then h E II&„(H). Following Ref. 4, we con-
struct g(y) EG, where y ED "+' such that g(y) coincides
with h (x) on the boundary B(D "+')=S ". This con-
struction is due to the following observation:
g(y):D "+'~6 is classified by the relative homotopy
group, II2„+,(G,H), which is isomorphic to
II&„+i(G /H) (Ref. 16). Moreover, the local anomaly-free
condition, Eq. (2.5},guarantees the fact that the anomaly
coefficient A (cu) does not depend upon the detail of g(y),
but is a functional of IIz„+,( 6/H). For a given
h E II&„(H), it may happen that we can find more than
one g EII2„+,(G/H), which will be mapped to h. In
such a case, we can choose any one of them for our pur-
pose. This remark will be relevant for proposition 5.

Now, under these preparations, the global anomaly
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A (co)=exp i f, ,y(g, A, F) (2.14)

in the notation of Ref. 4. The integral in Eq. (2.14} is a
linear functional of II2„+,(6/H). Then, proposition 4 is
almost self-evident, since there is no local anomaly of 6
under the assumption of proposition 4. Although a more
formal proof based upon Eq. (2.14) can be given along the
line of Ref. 4, we will not go into detail.

Next, we prove the first part of proposition 5. We
rewrite Eq. (2.14}further as

coefficient A (co) can be computed as a local anomaly of
6 by

g=y +tp (2.20)

for some integer k and some tp E T. Hence, the sequence
(2.13) may be written as

as in I, provided that we have only one (n +1)th-order
Dynkin index Q„+i(co). This proves proposition 1. Note
that the uniqueness condition for Q„+,(8) excludes the
case of 6 =SO(2n +2), with n being odd. We will coine
back to this exceptional case in Sec. III.

Now, we proceed to prove proposition 2. Since
II2„+i(6/H) =Ze T and y is the generator of the Z part
of II2„+i(6/H), we can write

A (cp)=exp —f, , y(g, A, F) (2.15}

when N is an arbitrary finite integer. If the assumption of
proposition 5 is valid, then we can choose fG T for any
h C II2„(H). However, since T is a finite group, there ex-

ists a finite positive integer N that (g} corresponds to a
trivial element. Therefore, Eq. (2.15) implies A (co}=1.
The second half of proposition 5 will be proved at the
end.

We turn to proposition 3. Since N is arbitrary, we may
choose N =m in Eq. (2.15) and use the homotopy se-

quence Eq. (2.13) to rewrite Eq. (2.15) as
r

x ~y +t~~O.
On the other hand, we have, by assumption,

(2.21)

A (t0)=exp —f, ,
y(I', A, F)

=exp —,,y gp A F (2. 16)

in the same notation as in Ref. 4. For an arbitrary finite
nonzero integer N, we can rewrite Eq. (2.16) as

A (tp) =exp f, , (yg, A, F)

=exp, ,y gp, A, F (2.17)

b
gp =x

for an integer b Therefore, Eq.. (2.16) leads to

(2.18)

A (co)=exp —f, y(x, A, F)

. b=exp i , ,y—(x,A, F)

. b=exp 2@i Q„~i(co)— (2.19)

Suppose that II2„+i(6}is a finite group. Then, there ex-
ists a finite positive integer X such that gp is the trivial
element of IIz„+,(6). Thus Eq. (2.17) leads to A (pi) =1.

In order to prove proposition 1, let us suppose
II&„+i(G)=Z and let x be its generator. Then, the ele-
ment gp F- Iip + i(6) can be written as

x~y "+t~O

for some t E T. Consequently, we get

(2.22)

b= —k . (2.23)

Actually, we can choose k =1 by the following reason.
Since b,, is onto, there exists an element hp & Iip (H),

satisfying y~ hp. This implies that A (co) for k =1 is the
possible global anomaly generating element. Any other
element g G II2„+i(6/H) can give an anomaly coeflicient

of the form [A (pi)
~ k, ]", since the torsion parts T do

not give any contribution of A(co) as can be seen in the
proof of proposition 5. Thus, for the basic global anoma-
ly, we can set k =1 in Eq. (2.21) and have b/m =1/d.
For the special case of II2„(H)=Z with

II2„+,(6/H) =Z, we have d =m as can be seen from the
proof given in I.

If we have II2„(H)=Z and II2„+,(6/H)=ZSZ, ,
then we can prove that 1 divides m when we assume d&0.
It is sufBcient to prove that 6, restricted to ZI is a one-
to-one map to Z . Suppose that we have 6,(tp)=0 for
some tp&ZI. Then tp&Kerh, =Imp„so that there ex-
ists an element xpEIIz„+,(6), satisfying p, (xp)=tp.
Since we can express xp=x for some integer k in terms
of the generating element x E.Z, then,
tp=p, (xp)=kp, (x)=k(dy +t) Since tp. EZ&, k =0,
and tp=0, l must divide m. Moreover, if l =m, then
b, ,(Z&)=Z . In this case, proposition 5 will lead to
A (pi) =1 and d = 1, as we will see shortly. If m is an in-
tegral multiple of l, then the proof given in I together
with the inspection of Eq. (2.10) gives d =m /l.

Now we study the relationship between propositions 2
and 5. We first note that proposition 2 implies A (co}= 1

if d =El, since Q„+i(co) is an integer. Second, we re-
mark that proposition 5 is valid, even though
II&„+,(6/H) and II2„+,(G) have structures more com-
plicated than those specified in proposition 2. However,
if we assume that 112„+,(6)=Z and II2„+,(G/H)
=ZS T, then proposition 5 is equivalent to the case of
d =+1 in proposition 2 by the following reason. Suppose
that 6„(T)=112„(H)as in proposition 5, then for the
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p, (g&)=y+to

Let gz ——x for some integer N. Then

p, (gz ) =Np, (x)=N(dy + t)

(2.24)

by Eq. (2.10). Comparing this with Eq. (2.24), we must
have

However, since both N and d are integers, we have
N =d+1. Conversely, suppose that we have d =+1 in
proposition 2. If d = —1, then we use —y instead of y so
that we can set d =1 without loss of generality for our
purpose. Then we prove b, (T)=11&„(H),which satisfy
the condition of proposition 5.

The proof is as follows. Let us note that

Imp, = U (ky +kt),
k = —oo

if we assume that d =1. However, since Imp, =Kerb „
this implies that we have

kA, y +kh, t =0 (2.25)

for any integer k. Now, let h be a generic element of
Ilz„(H). Since 6» is onto, there exists an integer I and
t ETsuch that

h =b»(y'+t )=lh»y +b»t .

Using Eq. (2.25) with k = I, we have

h =b, ,(t lt). —

Since t It ET, thi—s proves that b, (T)=II&„(H). Since
d =1 in proposition 2 implies that A (co) =1, proposition
2 with d =1 and proposition 5 are consistent with each
other, as it should be. Also, as we may see from the proof
given above, we can in general find more than one ele-
ment g in II&„+,(6/H) which corresponds to the same
element h of Ilz„(H) under the condition of proposition
5. Also, since 6, restricted to T is a one-to-one map as
we have proved in connection with proposition 2, we see
that if d =1, then T and II&„(H) are isomorphic. We
simply mention here that these facts will be an immediate
consequence of a more general result d =ord[IIz„(H)]/
ord(T) when Ilz„+,(G)=Z and II&„+,(6/H)=ZttiT
which will be reported elsewhere. '

III. CHOICE OF ri) AND Sp(2N}
AND SO(N) GROUPS

In order to use our formulas, we have to find G and co

of G for a given co of H, satisfying the condition that co

generating element y EZ of Iiz„+ i(G/H), we set

b„y =toEII~„(H). However, by the assumption, there
exists an element t p E T such that

h, tp ———tp .

Therefore, we find that b, »(y + to ) =0. Then, since
Kerb, ,=Imp, , there exists an element gzEII~„+,(6},
satisfying

reduces to a direct sum of co and singlets of H for the
reduction of 6 into H. As we have emphasized in I, this
is not in general possible, unless we allow negative multi-
plicity coefficients mj in Eq. (2.4), corresponding to the
opposite chirality of the underlying fermions.

A. Choice of co and 6
H=SU(N). First, we consider the case of H =SU(N).

It is clearly sufficient for us to consider the case of co be-
ing an irrep of H. Then, let I be the Young tableau as-
sociated with co. For any N &N+1, we can always find
co of 6 =SU(N). We will show this by induction as in I.
If co is the fundamental rep of H with one box in its
Young tableau, then we choose co to be the corresponding
fundamental rep of 6 =SU(N) with one box. Clearly,
this co reduces to co and singlets for the reduction of 6 to
H. Now, we proceed to prove the general case by induc-
tion. Suppose that the Young tableau I associated with
co of SU(N) contains k boxes. Suppose that our assertion
is correct for any co of SU(N) whose Young tableau con-
tains boxes equal to or less than k. Let to be the rep with
k +1 boxes in its Young tableau I . Let co' be the irrep
of SU(N ) with the same Young tableau I with k + I
boxes. Clearly co™'will reduce to a sum of co and other
reps whose Young tableau contain boxes less than or
equal to k for the reduction of SU(N) to SU(N). There-
fore, by the induction hypothesis, we can always find co of
SU(N} such that it reduces to a direct sum of co and sing-
lets of SU(N), if we allow negative coefficients mj in Eq.
(2.4). Thus, our statement will hold generally.

H =Sp(2N). The same induction proof will clearly
hold for any rep to of H=Sp(2N) (N =rank of H) by
choosing 6 =Sp(2N) for any N &N+ 1.

H=SO(N). For the case of H=SO(N), the situation is
different. First, consider the case of H=SO(21 —1), and
co being its tensor rep. In this case, the induction method
works for any G= SO(N ) with N & 21. However, for the
spinor rep of H=SO(21 —1), the Young tableau method
is not applicable. We know that the group SO(21 —1)
contains the unique fundamental spinor rep of dimension
2' ' and that the group SO(21) possesses two fundamen-
tal spinor reps of the same dimension. When we reduce
SO(21) to SO(21 —1), any one of these two fundamental
spinors of SO(21) reduces to the unique spinor rep of
SO(21 —1). However, the spinor rep of SO(21+1) will
reduce to the direct sum of two fundamental spinor reps
of SO(2!) under the reduction. This implies that we can
choose only G =SO(21} for the spinor rep of
H=SO(21 —1), but we cannot in general find any G and
co for the spinor rep as well as self dual reps of
H=SO(21). A more careful analysis of the branching
rule "indicates the following.

(i} For any tensor rep of H=SO(21 —1), we can choose
any SO(N ), satisfying N & 21.

(ii) For any rep (including the spinor rep) of
H =SO(21 —1), we can choose only 6 =SO(21}.

(iii) Let co be any tensor rep of H= SO(21) whose Young
tableau I does not contain any column with maximally
allowable I boxes in it. Note that this condition excludes
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self-dual tensor reps. For such a case, we can use any
G =SO(N ) as long as N & 21+ l.

(iv) For spinor reps and self-dual tensor reps of
H=SO(21) (1 &4), it appears in general that we cannot
find any co and 6 satisfying the desired condition. In oth-
er words, for such cases, our method seems powerless.

B. Sp(2N}

II2„(SO(2n +2})=0, n+0 (mod 4),
II2„(SO(2n +1})=Z2,

Hz„+,(SO(2n +2)/SO(2n +1))=Z,

Z(}}Z, n:—1 or 3 (mod 4),
Hz„+,(SO(2n+2))= ZSZ, n—:0 (mod 4),

Z, n—:2(mod4).

(3.3}

For D =2n, we must choose G so that II2„(G)=0, jn
addition to the condition for co. For symplectic groups,
the Bott periodicity theorem implies that

Z, k —=3,7 (mod 8),
Hk(Sp(2N)) = Zz, k =4, 5 (mod 8), (3.1)

0, k—:0, 1,2, 6 (mod 8),

for 4N & k —1. Therefore, for H= Sp(2N), we can choose
G= Sp(2N ) for any N, as long as N & N + 1 and
4N &2n —1 for D=0, 2, 6 (mod 8). In particular, we
have Hz„+,(G)=0 for D =8p. Consequently, we find
that Sp(2N) has no global anomalies in D =8p by propo-
sition 3. We can use proposition 4 to show the same,
since in D =Sp the local anomaly-free condition Eq.
(2.12} is automatically satisfied. Using the isomorphism
of Sp(2}=SU(2), we see that SU(2) has no global
anomalies in D =8p. We will prove the same in the next
section by choosing G =SU(N) (N &3). For the case of
D —=2, 6 (mod 8), we find that II2„+,(G)=Z, so that we
can use only propositions 1 or 2. In this case, we use the
trace identities given in I and prove that both H=Sp(2n)
and Sp(2n 2) hau-e no global anomalies in D =41+2.
However, in Sec. V we show more generally that any
group H listed in Eq. (2.6) has no globa! anomalies in
D=41+2, if the local anomaly-free condition Eq. (2.5) is
satisfied.

C. SO(N)

The Bott periodicity theorem states that

Z, k =—3,7 (mod 8),
IIk(SO(N))= Zz, k —=0, 1 (mod 8),

0, k =—2, 4, 5, 6 (mod 8),
(3.2)

for N & k +2. For H =SO(N), we may choose
G =SO(N) with N &N+1 and N &D+2 in D —=2,4,6
(mod 8), in order to satisfy Hz„(G)=0. If D =8p+4
(n =4p+2), then Eq. (3.2) implies that H2„+&(G)=0
also. Consequently, in D =Sp+4 no global anomalies
exist for any tensor rep of H=SO(21 1) as well as any ten-
sor rep of H=SO(21) where Young tableau contains
columns with only boxes less than 1. Note that tensor reps
of H=SO(21} satisfying the condition are automatically
self-contragredient reps which satisfy Eq. (2.5) in
D =8p+4. For a general rep co of H=SO(21 —1), we
can choose only G =SO(21). Hence, let n =4p+ 2 with
D =Sp +4. Moreover, the choice of l is further restrict-
ed by the requirements of II2„(G)=0, but H2„(H)&0.
For I =n + 1 with n & 5, we have

Actually the first one is valid for n & 1 by Bott's periodi-
city theorem. The second one is valid for n &5 while

H&(SO(5)) =Z2, II6(SO(7) ) =0, IIs(SO(9) )=ZzSZ2 for
n =2, 3,4. The third one is valid for n & 1 by the fact that
II (SO(m+1)/SO(rn))=II (S }. The last one is valid

for n &2.
First, consider the case of n =4p+2 (p &0) where

II2„(G)=0 but H2„(H)&0. Then, G =SO(2n+2) has
the unique (n +1)th-order Dynkin index, Q„+&(co). Note
that it is the unique odd-order Dynkin index for
SO(2n +2). In this case, Q„+I(co) will vanish identically
for all ordinary (non-self-dual) tensor reps whose Young
tableaux do not contain any (n +1)th row. We now have
to normalize Q„+&(co) to be 1 and —1 for two fundamen-

tal spinor reps of SO(2n+2), respectively. Note that

Q„+,(co) here corresponds to Q„+,(co) of Ref. 8. Then,
the anomaly coefficient is given by

A (co)=exp[imQ„+&(co)],

since we have d =m =2 in proposition 2. Since the local
anomaly-free condition Eq. (2.5) is automatically satisfied
for H=SO(2n +1) for n=even, we see that A (co}=—1

for the fundamental spinor rep. Thus, we conclude that
SO(2n+1) in D =2n =8p+4=4, 12,20, ..., can have a
Zz global anomaly for spinor reps (but not for tensor
reps, including self-dual ones).

Next, consider the case of n =2k +1=odd for
H=SO(2n +1) in D =2n The ge.neral result to be prov-
en in Sec. V by another method implies that any locally
anomaly-free self-contragradient representation e of any
H has no global anomaly in D =4k+2. Therefore, any
locally anomaly-free rep co of H =SO(2n + 1 )

(n =odd & 3) has no global anomaly in D =4k +2=2n.
In particular, SO(7) in D =6 has no global anomaly in
conformity with II6(SO(7))=0. However, this fact is
rather difficult to be shown by the present method. The
reasons are as follows. First, for G=SO(2n+2) with
n =2k +1=odd, we have

II2„+,(G)=II2„+,(SO(2n +2))=Z@Z for n &3,
in contrast with a11 the previous cases where we had
II2„+&(G)=Z. This exceptional behavior is quite likely
related to the fact that only 6=SO(2n +2) with n being
odd alone has two independent (n +1}th-order Dynkin
indices Q„+,(co) and Q„+,(co) (Ref. 8). We must normal-
ize Q„+,(co) to be 1 for the fundamental vector rep, but

Q„+&(co}must be 1 and —1 for two fundamental spinor
reps, since the latter vanish for the vector rep. Thus, for
odd n, Eq. (2.11) of proposition 2 must be slightly
modified as
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A(9) =exPIi 7rtb ]Q +](co)+bzQ +](r0)] (3.4)

Q (co )=—2" '(2~ —1)8p s
~ p

(3.5)

where B is the Bernoulli number, i.e., B2 ———,', B4———
—,'„

etc. From Eq. (3.5), we can prove that Q„+](9,) is an
even integer for n) 5 as we have stated earlier. The
derivation of Eq. (3.5} will be given elsewhere. The fact
that A (co) given by Eq. (3.4) cannot assume the value —1

for any locally anomaly-free e is not self-evident by this
method since we have to take into account the local
anomaly-free condition Eq. (2.5).

So far we have used G from the stable region where the
Bott periodicity holds. We may use 6 from the unstable
region. For example, II2„(SO(2n —5))=0 for n =6. For
D =8P (n =4P =4, 8, 12, . . . ), we have IIz„(SO(2n
+2))=zz&0, and hence we cannot use G =SO(2n +2).
However, we can use G =SU(N) for sufficiently large N
as we see from Eqs. (2.2) and (2.9). Such a case will be
discussed elsewhere.

D. Exceptional Lie groups

Concluding this section, let us investigate the cases
where H is one of the exceptional Lie groups G2, F4, E6,
E7, and E8.

For H=Gz, we can always choose 6=SO(N) or
SU(N) for any N larger than 6 and satisfy the require-

where b are integers. Any global anomaly is generated
by two possible independent fundamental anomalies, cor-
responding to (b] ——1, bz ——0) and (b] ——0, bz ——1). Al-
though Q„+](co)vanish for any non-self-dual tensor reps,
Q„+](co) is nonvanishing for spinor reps as well as for
self-dual tensor reps. However, the numerical values of
Q„+](co) for spinors and self-dual tensor reps are always
even for n ) 5. Therefore, we may say that Q„+](co)con-
trols global anomalies of all non-self-dual tensor reps,
while Q„+](co) does the same for both spinor reps and
self-dual tensor reps of SO(2n +2). The explicit formulas
for both Q„+](co) and Q„+](0]) are found in Ref. 8.
Here, we give a formula for Q (co, ), where p is any even
positive integer (2 &p & 2n) and co, is any of two funda-
mental spinor reps of SO(2n +2):

ments speci6ed in Sec. II. We note that two fundamental
reps co, and co2 of 62 have dimensions 7 and 14, respec-
tively. For both of them, we can And ' formal tensor reps
co]=7 and coz ——21e7 of 6=SO(7), where 7 and 21 are
tensor reps of SO(7} with their dimensions 7 and 21, re-
spectively. Since any irrep co of Gz can be constructed
from products of two fundamental irreps co& and co2, we
can readily prove by induction that we can always find a
general tensor rep co of SO(7), such that co reduces to sum
of ro and singlets of Gz. Since co is a tensor rep of SO(7),
it is not difficult to find a tensor rep co of G =SO(N) for
any N )7. Also, by embedding SO(7) into SU(7), we can
do the similar thing for G =SU(N ) (N )7). For the case
of 6=SU(7), this fact has been used in I to prove that
any local anomaly-free rep m of 62 in D =6 has no global
anomaly. In D =8p +4 for any positive integer p, we can
show that 62 has no global anomaly by choosing
G =SO(N) for a sufficiently large odd N and using either
proposition 3 or 4. However, the cases of p =0 and p =1
are trivial, since II4(Gz) =II,z(Gz) =0 (Ref. 22). The first
nontrivial case occurs at p =2 (D =20) where
~20(G2 } Z2'

For H=F4, we can use G=E6 to do the similar thing.
Using Table I (Ref. 22) we find that

11,(F,)=Z„ 11,(E,)=0, II,(E )=Z,
rl]4(F4) =Zz, II]4(E6)=0, II]5(E6)=Z,
rI, 6(F ) =ZzeZ, rI, 6(E6)=0,
11]7(E6)=Z8 Zz

and IID(F4)=0 for D =4,6, 10,12. Because E6 possesses
no fundamental Casimir invariants of order 15 and 17,
proposition 1 implies that F4 in D =14 and 16 has no
global anomalies. In particular, in D =16, the local
anomaly-free condition is automatically satis6ed for F4.

Unfortunately, for H=E6, E7, and Es, we cannot find
in general 9 and 6, satisfying the requirement that 6
reduces to co and singlets of K. Thus, the present method
is not applicable for the general study of global anomalies
for these groups. However, for special cases, we can say
something. Note that we have 1120(F4)=1120(E]])=0,as
well as the fact that both F4 and Es are groups listed in

TABLE I. Homotopy groups H&(G) for compact exceptional groups (courtesy of H. Toda).

3 4 7 8 9 10 11 12 13 14 15 16 17

G2
F4
E6
E
Es

6 0 oo+2
2 0 oo+2
oo 0 oo

0 0 oo

0 0 0

0
0

12
2
0

168+2 2
2 00

0 oo

0 oo

0 oo

6+22 8+2
22 2
0 oo+2
2 2
2 2

k 18
G2 240
F4 720+ 3

E6 720+ 6
E7 12
Eg 24

19
6
2
3

oo +2
0

20 21
2 0
0 3

1512 3
2 6
0 2

22
1386+8

27
27+3

108
0

23 24 25 26 27 28 29 30

Do+2 22 6
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Eq. (2.6). Thus, by proposition 4, any subgroup H of
6 =F4 or Es has no global anomaly in D =20, if the rep
ro of H can be derived from co of F4 or Es. Thus, those
reps of G2 and E6 which can be derived from some reps
of F4 and Es have no global anomalies in D =20. For
H=SO(9), the rep 368 16 is obtained from 52 of F4 (Ref.
21). Since any non-self-dual tensor rep of SO(N) in
D =8@+4 has no global anomaly, this implies that the
32-dimensional spinor of SO(9) has no global anomaly in
D =20. Similarly, for H=SO(16), the rep 1208128 is ob-
tained from 248 of Es (Ref. 21). Therefore, the funda-
mental spinor rep of SO(16) with its dimension 128 has
no global anomaly in D =20, since the adjoint rep (120)
has no global anomaly in D =20.

p, (x)=d„+) „+(y + t

for some t E T, where d„+, k+, is given by

(4.7)

dn+l, k+1 U(n + l, k +1) (4.8)

Comparing Eq. (4.7) with proposition 2, we find that
d =d„+, k+i, which leads to Eqs. (1.1) and (1.2). The
fact that d„+, k+, is an integer is a trivial fact, since the
map p, is a homomorphism from Z to ZT. Unfor-
tunately, the numerical values of the James number
U(n+l, k+1) are known only for few cases. In
particular, for k =n —2, corresponding to H =SU(2), we
have25

IV. SU(N) AND JAMES NUMBER
1 for n =0 (mod 4},
2 for n —=2 (mod 4), (4.9)

G =SU(n+1), H'=SU(n),

H =SU(n —k} (1&k &n —2) .

Then the quotient group G/H is the complex Stiefel
manifold W„+i k+, SU(n +——1)/SU(n —k). Using the
fact that in general

11 „,(G/H)=II „,( W„, „„=Z(E)T,
where T denotes a torsion group, we have

(4.2)

Let G DH'DH and consider the homomorphisms be-
tween two homotopy sequences

Py b, ~ l~
II „,(G) II „,(G/H) 11 „(H) II „(G)

I, q, q, i (4.1)

11 „,(G) 11 „,(G/H') 11 (H ) II2„(G) .

%e are interested in the case of

for even n, while for odd n

d„+, „z denom8„( for n —=3 (mod 4),
dn+1 n —) 2dn+)n —2 gd m n —i

for n—:1 (mod 4),

(4.10)

where Bk is the Bernoulli number, B2 ———,', B4———
30 etc.,

and denomBk denotes the denominator of Bk, i.e., a
product of primes p, which satisfies the condition that

p —1 divides k.

A. H~SU{2)

For D =8k (n =4k), we see that d„+,„,——1 so that
the formula (1.1) implies that

A (to) =exp[2mig„+)(to)] =1 .

Py b, ~ lg

Z Z(!)T "z (H} 0
q,

Z ~
q,

Zn

The commutativity of the diagram implies

(4.3)

Therefore, SU(2) has no global anomalies in D=8k di
mensions This co.nclusion of course agrees with that of
the previous section based on the isomorphism between
SU(2) and Sp(2).

For D =8k +4 (n =4k +2), d„+ i „ i
——2 so that

A (to) =exp[mig„+)(to)] .

tl»P» =P»t (4.4)

Let x and z be the generators of Z = Iiz„+,(SU(n +1))
and Z = IIz„+i(SU(n + 1)/SU(n)), respectively, and y be
the generator of Z, contained in II2„+,( W„+( k+, ).
Then, the integer U(n + l, k+1) defined by

q»(y) = U(n + l, k + l)z (4.5)

is called the (unstable) James number. '2 We remark
that the James numbers are important in mathematics,
since it will give information on existence or absence of a
global section in the Stiefel manifold. On the other hand,
it is easy to see

P»i (x)=n!z (4.6)

from the exact homotopy sequence in the second row of
Eq. (4.3). Thus, the commutativity relation (4.4}gives'

A (co)=exp[mig2(to)] (4.12)

for H=SU(2) in D =8k +4 dimensions. Since the local
anomaly-free condition for SU(2) in D =8k +4 is au-
tomatically satisfied, co could be chosen as any rep of

Now, recall that to is a rep of SU(n + I ) which reduces to
a direct sum of to and singlets of SU(2). Then, as in Ref.
26, we can prove by induction that

Qn + 1( to }
I sU( n + ( )

=Q 2 ( (o )
I sU( n + ( ) ( mod 2 }

(4.11}

Moreover, by branching index sum rule, we can show
the validity of

Q2(@) I sU(n+)) =Q2(~)
I SU(2) =Q2(~)

as in Ref. 26. Consequently, we conclude that
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SU(2). We consider co to be an irrep, corresponding to a
(2J+1)-dimensional rep with J =0, —,', 1,—'„2, . . . . We

can then easily show that

Q2(c0) =—', J(J+ 1)(2J+ 1),

U(n+1, 1)=1 .

Therefore, we find

. 1
A (cv) =exp 2rri Q„+,(co)

n! "+

(4.14)

which is even for all integers J as well as half-integer
values of J of the form J=—,'(4l+3)= —',, —'„—",, . . . . On
the other hand, if J is a half integer of the form
J=—,'(41 + 1)=—,', —'„—,', . . . , then Q&(co) is an odd integer.
Thus, we have proved that among irreps ofSU(2) only the
half integer spin irreps of the form J=T)(4l+1) have Z2
global anomaly in D=8k+4. In particular, this repro-
duces the result of Refs. 5 and 26 for D =4 (k =0).

For D =8k+2 or 8k+6, the present method is not
useful, since first we do not know the precise values of the
James number and second we have to utilize the local
anomaly-free condition Eq. (2.5) for co. However, we will
see in the next section that SU(2) in D =4l+2 has no
global anomalies, provided that the local anomaly-free
condition is satisfied.

B. SU(3) in D =41 +2

Using the fact that SU(2) has no global anomalies in
D =41 +2, we can prove that any local anomaly-free rep
co of SU(3) will have no global anomalies in D =8k +6.

First note that

1
A (cv)

~ $U(3) exp 2mi
dn+&, n —Z

Q„+)(8) (4.13)

1
A (cop)

~ sU(p) =exp 2ni
dn+l, n —)

Q„+)(cv)

for the satne co. However, if D =8k+6, we know from
Eq. (4.10) that d„+, „2——d„+, „ i and hence we find

~ (~)
I sU(s) = ~ (~0)

I SU(2)

Using the fact that A (coo)
~ sU(2)=1 in D =4l+2, we

conclude that SU(3) does not have global anomalies in
D=8k+6 for local anomaly free reps In p-artic. ular,
SU(3) has no global anomaly in D =6, which agrees with
the result of I. For D =8k+2, we have d„+& „
=2d„+,„,so that SU(3) may have a Z2 global anomaly
in D =8k +2. However, we can show by an explicit cal-
culation that SU(3) in D = 10 has no global anomaly.

C. 0 =SU(n —k) arith k =0,1,2,3

In connection with I, we study these cases, using James
numbers.

For H=SU(n} in D =2n, the James number is given
by

Now, let us consider the branching of SU(3) into SU(2),
where co will reduce to a rep coo of SU(2). Then co of
SU(n +1) will also reduce to a direct sum of coo and sing-
lets of SU(2}. Moreover, the local anomaly-free condition
for SU(2} is automatically satisfied by our condition for co

being local anomaly-free in SU(3). Therefore, the global
anomaly coefficient of c00 of SU(2) is given by

which is the same as in Ref. 4 and I. As we have ex-

plained in I, the quantity (1/ n!)Q„+)( co) is an integer if
n =odd, but a half-integer in general if n =even, because
of the local anomaly-free condition, Eq. (2.5}.

For H =SU(n —1), the corresponding James numbers
are

r

2 for n =even&4,
U n+1, 2 =

1 for n =odd&3, (4.15)

which lead to

A (cv)=

. 1
exp 4mi Q„+)(co) for n =even & 4,n!

. 1
exp 2ni Q„+)(cv) for n =odd & 3,n!

24(n —2, 2)
(24, n —2)(n +1,8)

(4.16)

where (p, q) is the greatest common divisor of p and q.
The complication is of group-theoretical origin. The
anomaly coefficient in these cases is given by

. 2m 24(n —2, 2)
n! (24, n —2)(n+1, 8)

The problem of calculating Q„+)(c0)becomes horrendous
in these cases, since we have to reduce the trace identity
of I for 6 =SU(n+1) to H=SU(n —2) or SU(n —3).
As a result, we are unable to give any general statement
in these cases. However, assuming the local anomaly-free
condition, we have verified that no global anomalies exist
for the following special cases: SU(4) in D = 12, SU(6) in
D = 16, SU(8) in D =20, and SU(10) in D =24 for
SU(n —2) eases with n =6,8,10,12. Similarly, no global
anomalies exist for SU(3) in both D = 14 and 18 with the
local anomaly-free condition. Since these calculations in-
volve a considerable amount of algebras, we will not dis-
cuss them. Note that in the Appendix, we give a method
of computing the James numbers U( n + 1,k) for k =5 or
6 where we utilize the notion of stable James numbers re-
lated to the stunted projective space.

In ending this section, we note that our proposition 2
implies that we have

in agreement with the calculation of I for the minimum
value of b =2 for n =3 and n =even) 4 and b =1 for
n=odd) 5. As we have shown in I, we have always
A (cv) =1 for these cases, because of the local anomaly-
free condition, Eq. (2.5).

For H=SU(n —2) and SU(n —3), the situations be-
come more complicated. The James numbers are given
by

U(n +1,3)= U(n +1,4)
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m n!"+"+' I U(n+l, k+1} ' (4.17)

if II&„+,(SU(n+1)/SU(n —k))=ZZI and 1I2„(SU(n
—k))=Z with m being an integral multiple of I . This
happens for D =6: n =3, k =1, I =2, and m =12, which
lead to d42 ——6, in agreement with Eq. (4.15). This fact
has been already used in I to establish the global
anomaly-free property of SU(2} in D =6. Similarly, if we
have

II&„+&(SU(n + 1)/SU(n —k) )

=Z and II2„(SU(n —k)) =Z

then proposition 2 implies

+l, k+1 m (4.18)

Such a situation happens for the case of 0 =1 and
n=even) 4 where we have m =—2n!. This again agrees
with Eq. (4.15).

V. COMPARISON WITH A DIFFERENT METHOD

In this section, we compare our method with a more
general formula derived by Bismut and Freed. They
have derived the following formula for the A (co):

A (co)=exp[in(indD2„+2/)], (5.1)

where indDz„denotes the Atiyah-Singer index for the
Dirac operator in 2n-dimensional space M and

a ChF (5.2)

is an integral involving the Dirac genus A and the Chem
character ChF in (2n+2)-dimensional space MXR .
Since we are interested only in the pure gauge anomaly,
we can effectively set 3 =1 for a Hat space or a sphere.
Then, the integrand inside Eq. (5.2) in 2n +2 dimensions
is proportional to Tr' 'F" +'

~ H which vanishes because
of the local anomaly-free condition, Eq. (2.5). Hence, we
find

A (co) =( —1} (5.3)

which proves that we have at most Z2 global anomaly for
any gauge group H. Moreover, indD2„ is identically zero
for n =2k+ 1 =odd for a real or pseudoreal rep of any
gauge group, since then indD2„ is in proportion to an in-
tegral involving TrF' . In particular, those groups listed
in Eq. (2.6) have no global anomalies in D =4k +2. This
result is difficult to be shown by the method used in the

I

Q3(co)=—Q2(~) (mod 2) (5.4)

for the case of H =SU(N) (N & 3) as has been explained
in Refs. 26 and 28.
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APPENDIX: COMPUTING JAMES NUMBERS

We explain a method of computing the James number
U(n+ 1,k+1) for some values of k. Let C(n+1, k)
denote the stable James number of stunted complex pro-
jective spaces, where the stunted complex projective
spaces are the quotient spaces given by

CPn+1+j j =CPn+1+j/CP„+~ (A 1)

with CPz denoting the N-dimensional complex projective
space. We define a function of an integer N and primes p,
v (N), such that if an integer N contains a factor p for a
prime p, we set v (N}=a. Now, let M (C) denote the
Atiyah-Todd number defined by

previous sections except for some special cases. Howev-
er, apart from these general statements, it is in general
difficult to explicitly compute indaz„. In contrast, for
the method employed in this paper, the calculation of
A (co) is relatively simple, although it seems that our
method is inapplicable to spinor reps of orthogonal
groups as well as higher-dimensional reps of E6, E7, Es as
stated in Sec. III. Nevertheless, both methods are com-
plementary in their predictions. Our results sometimes
give information on the index. For instance, our result
that any rep of the Sp(2N) group in D =8p has no global
anomaly will imply the fact that the Atiyah-Singer index
for the Dirac operator must be even. Similarly, the same
index for SU(2) in D =8p +4 can be either odd or even,
depending upon whether the underlying rep has spin of
the form J= —,'(4I+1) or otherwise. In D =4, the rela-

tion between both methods are expressed as the even-odd
rule

Max [r +v~(r)], 1 (r (
p J

p

0 ifp&j,

if p(j,
(A2)

where [x] is the greatest integer not exceeding x. Then,
we have the following theorem.

Theorem C(Nj ) is. equal to U(IM (C) Nj ) if—
IMJ(C) & N +2j —1 for a positive integer l.

As an example, we calculate

C(N, 5)=U(IM~(C) —N, 5) for IM~(C) &N+9 .

The value of M5(C) can be computed from Eq. (A2) to be
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M5(C) =2 X 3 X 5 =2880 .

For IMs(C) —N =n +1, we have n & 8

N = IM5(C) n ——1. Therefore, we obtain

U(n +1,5}=C(28801 n ——1,5} .

and

if N&4k+1,24

N, 24

C(N, 4)=C(N, 3)= ~ if N =8k+1,12
(N, 3)

if N =8k+5,6

t

(A3)

On the other hand, we have

C (N, 5 ) =C(N, 4)denom[C(N, 4}a,(N, 4)]

with

and

N(15N +150N +485N+502)
2'X3'X5

where denom x denotes the denominator of a rational
number x when the fraction is expressed in its lowest
terms. The explicit values of C (N, 4) are given as

8 for n =241+8,241 +20,
24 for n =241,241 +4,24l +12,24!+16,
12 for n =241 +1,24l + 6, 241 +9,241 +13,241 +21,24l +22,
4 for n =24l+5, 241+14,241+17,
2 for n =24l +10,241+11,241+18,
6 for n =24l +2,241 +3,241 +19,
1 for n =24l+23,
3 for n =24l+7, 24I +15,

for N =28801 n —1.—If we consider H=SU(n —4),
with 2880& n +1, we can choose I =1. For! & 2, the re-
sults remain the same due to the James periodicity prop-
erty.

Example 1. For example, for n =8 we compute
denom[8a, (N, 4}]=10, so that U(9,5)=80. Therefore,
the global anomaly coefficient for H =SU(4) in D =16 is
given by

A (co) =exp 2ni Qs(ro) = 1,. 80
81

where we used the local anomaly-free condition Eq. (2.5)
for the evaluation of Q9(ro) as in I.

Example 2. For n =10, we calculate U(11,5)=2
X 3 X 5 =240 and we calculate, similarly,

~ 240
A (co)=exp 2@i Qii(co) =1

9l

for H=SU(6) in D =20.
Example 3. For n =12, we find U(13,5) =24X 3X 5.
For U(N, 6) [H =SU(n —5)], we use

U(n +1,6)=C(IMs(C) —n —1,6},
if IMs(C) & IMs(C) n —1+—2X 6—1. Together with the
relation

C(N, 5) if N =2I, 32!+1,321+11,32l +27,
2C(N, 5) otherwise,

we can calculate U(n +1,6). For example, we have

U(11,6)=2 X 3 X 5 in D =20,
U(13,6)=2U(13,5)=2X24X3X5 in D =24 .

We can compute formulas for U(n + l, k) with 7 & k & 10
except for ambiguity in k =9 and 10 as in Ref. 24. How-
ever, we will not give them here.
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