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A model problem is solved for a six-dimensional spacetime where ordinary four-space is flat and

the two extra dimensions have the geometry of a two-sphere. The geometry is driven by coupled
Yang-Mills and Higgs fields. The equations of motion are derived from a geometric theory of the
canonical gravitation-Yang-Mills-Higgs fields. The constant radius of the two-sphere is determined.
If certain reasonable values are taken for various arbitrary constants in the theory, the radius is of
the order of the Planck length and an exact value for the coupling constant of the Yang-Mills field is

obtained.

I. INTRODUCTION

Recently there has been an explosion of interest in
Kaluza-Klein theories' where spacetime is postulated to
have more than the usual four dimensions. The main irn-

pulse for this work has come from the fact that string and
superstring models of field theories have critical dimen-
sions that are greater than four. The embarrassment of
these extra dimensions, which goes back to the original
ideas of Kaluza and Klein, is that they are not perceived.
The solution is just as old and lies in supposing that the
extra dimensions have a compact topology. In a space of
dimension d )4, the topology of the compact extra di-
mensions is often assumed to be S",where the "ra-
dius" associated with these dimensions is small. Modern
approaches have the advantage of allowing one to calcu-
late (or at least put limits on) this radius given a series of
assumptions about the field equations that the d-
dimensional geometry obeys, while in the original work
of Kaluza and Klein the radius was given a priori.

One of the first modern attempts to calculate the radius
of the extra dimensions was due to Cremmer and
Scherk. They solved the model problem of gravitation
in six dimensions coupled to a Yang-Mills field and a
Higgs field, both with SO(3) internal symmetry. They as-
sumed that the physical four-dimensional spacetime was
Hat and that the two-dimensional compact space was a
two-sphere of radius Ro. The simultaneous solution of
the Yang-Mills Geld equations, the equations for the
Higgs field, and the six-dimensional Einstein equations
GJ ——8m TJ (i,j=0, . . . , 5) shows that Ro &( l/2tce ),
where 1/~ is the Planck length and e is the dimensionless
coupling constant of the Yang-Mills field. If e is not
extremely large, Ro is quite small.

In the original work of Cremmer and Scherk the action
functional was constructed in the usual fashion by sum-
ming the Lagrangian for gravity and the Lagrangians for

the Yang-Mills and Higgs fields in a curved space. At al-
most the same time an interesting and more unified
method of constructing these Lagrangians based on prin-
cipal fiber bundles was developed. The idea seems to
have originated with Cho. Recently Katanayev and
Volovich extended Cho's work to include the possibility
of torsion in the fiber-bundle connection. This approach
has the advantage of giving an action that automatically
includes a Yang-Mills field and the Higgs field as

geometric objects that arise naturally from the connec-
tion which has torsion on the whole fiber bundle but
where the four-dimensional spacetime components of the
torsion are zero. The price that one pays for this "natu-
ral" appearance of the Higgs fields is that one needs La-
grangians that are quadratic in the fiber-bundle curva-
ture. In sketch form this can be easily seen, because the
usual Ricci scalar that leads to the most natural Lagrang-
ian density is quadratic in the torsion, and since the
Higgs fields 4' are defined in terms of components of the
torsion, such Lagrangians densities are at most quadratic
in the O'. Terms of the form R . R will have torsion
terms of the form SSSS that will give rise to the 4 terms
necessary for spontaneous symmetry breaking. This
"price" that we pay for having the Higgs fields from the
fiber-bundle geometry is actually an advantage in dis-
guise, since Lagrangians quadratic in the curvature arise
naturally in the low-energy limit of superstring theory.

The basic idea of this paper is to redo the calculation of
Cremmer and Scherk starting from Lagrangian given by
the fiber-bundle approach. The most general Lagrangian,
as given by Katanayev and Volovich, is a sum of scalar
densities formed from geometrical objects on the fiber
bundles, each term with an undetermined coeScient.
The scalars that are integrated over the invariant volume
element are (l) the usual Ricci scalar, (2) the scalars
formed from contractions of second-order products of the
Riemann and Ricci tensors, (3) the square of the Ricci
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scalar (this possibility seems to have been overlooked by
Katanayev and Volovich), and (4) the scalars formed
from contractions of second-order products of the tor-
sion. Linear combinations of the arbitrary coefficients of
each of the above terms appear as numerical factors mul-
tiplying such quantities as the second-order products of
the four-dimensional curvature, quadratic, and quartic
terms in the Higgs field, the free Lagrangian density of
the Yang-Mills field, etc. These factors must be identified
with the usual parameters such as A, the cosmological
constant; s., the factor multiplying the Ricci scalar in the
Einstein Lagrangian; m, the mass associated with the
Higgs field; e, the coupling constant of the Yang-Mills
field; and A, , the parameter multiplying the quartic term
in the Higgs field. In general there will be enough free
parameters in the fiber-bundle Lagrangian to leave all of
the physical parameters undetermined (although the fac-
tor multiplying one important new term in the Lagrang-
ian is determined as a multiple of A,), but if restrictions
are placed on the factors, one ends up with algebraic rela-
tions among the physical parameters which lead to physi-
cal predictions that we will discuss below.

As we mentioned above, we will redo the calculation of
Cremmer and Scherk for our new Lagrangian [the SO(3)
symmetry group is achieved by choosing the appropriate
structural group for the fiber bundle]. This recalculation
turns out to be possible, the only difficulty being slightly
more complicated algebraic equations. In the case where
no restrictions are placed on the free parameters in the
Lagrangian, the only difference between our solution and
that of Cremmer and Scherk is a somewhat less restric-
tive lower limit on Ro. A useful restriction on the pa-
rameters of the theory is suggested by the low-
energy limit of string theories. It is well known that
the Gauss-Bonnet combination of R terms,
R" ~R„„~—4R +R +R, leads to ghost-free nontrivi-
al gravitational self-interactions for dimensions higher
than four. If we apply this restriction to the torsion-free
part of our Lagrangian, an interesting set of relationships
among the physical parameters appears that leads direct-
ly to a prediction of the size of the dimensionless cou-
pling constant of the Yang-Mills field (or of the
Weinberg-Salam angle if one prefers} that fits the best-
known experimental value within 2%.

The organization of the paper is as follows. Section II
is devoted to the construction of the most general La-
grangian in terms of the curvature and torsion of the fiber
bundle. In Sec. III we do the analogue of the calculation
of Cremmer and Scherk. In Sec. IV we discuss the possi-
ble restrictions on the general Lagrangian, with special
emphasis on the Gauss-Bonnet form of the curvature
terms, and their efFect on the problem. Section V covers
conclusions and suggestions for further research.

II. PRINCIPAL-FIBER-BUNDLE STRUCTURE
AND UNIFIED LAGRANGIAN

As pointed out in the Introduction, Cho has
developed a comprehensive geometrical treatment for a
Kaluza-Klein-type unification of gauge fields and gravita-
tion. The procedure involves in essence a principal fiber

bundle n.:P~M with characteristic group 6 over a
spacetime M with metric g. If u is a connection one-form
on P and k is an Kb-invariant metric on the Lie algebra 0
of 6, then a metric h can be constructed on P, which de-
pends on g, k, and co. Furthermore, one can verify that
for all A EG, the right action R~:P~P on the fibers is
an isometry of (P, h), from which it follows that the sca-
lar curvature R:P~R of h is constant on the fibers and
thus yields a well-defined function on the base space M.
Integrating R(g, co) over an open subset U of M with
compact closure, and assuming that this integral is sta-
tionary both for independent variations of g and co, the
Einstein and Yang-Mills field equations arise simultane-
ously from this single variational principle that derives
from the scalar curvature of the metric h on P.

One restriction which is contained in Cho's work is
that the connection one-form 8(h), from which the cur-
vature tensor of (P,h) is derived, is a Levi-Civita
(torsion-free) connection. This assumption implies that
the projection on M of the scalar curvature of P with
bundle metric h =m'g +k co is the function
R(g)+S(g, co)+RG, where R(g) is the scalar curvature
of M, S(g, co) =———,'k(Q"', Qi, ; ) is the self-action of co, and

RG is the (constant} scalar curvature of the fibers of P
with metric induced by h and which plays the nontrivial
role of a cosmological constant in the theory.

For the purpose outlined in the Introduction, we now
want to generalize the results of Cho by allowing an arbi-
trary connection in the formalism. As noted by Ka-
tanayev and Volovich, such a generalization makes pos-
sible the construction of Lagrangians quadratic in the
Riemann and Ricci tensors on (P, h), which when pro-
jected on the base manifold provide a dynamical charac-
ter to the torsion terms that may thus be identified with
the Higgs fields. Not only do these scalars appear in the
theory in a natural and geometrical fashion, but so does
the quartic-type potential needed for the spontaneous
symmetry-breaking process which gives mass to the
gauge vector bosons.

Although Katanayev and Volovich display in their
Letter the forms of the components of the Riemann, Ric-
ci, and torsion terms resulting from a specific connection
suited for their construction, we feel that both a more
general and more detailed derivation in this section might
be useful, since, as far as we know, such material has not
been published before or, at least, it is not easily accessi-
ble. One additional benefit from this extra work is that
we will be able to present to the reader an easy procedure
for relating notation and dimensional units commonly
used by differential geometers with those appearing in the
work of field theorists and particle physicists.

Those readers less interested in the underlying
mathematics of this paper may readily skip this section
and need only refer to the basic results which are con-
tained in Eqs. (2.35)—(2.49) to be able to follow the
remainder of this work.

For notation, we shall rely heavily on the one used by
Bleecker (Secs. 6.2 and 9.3}. The reader will also find
there some of the details which have been omitted here
for the sake of brevity.

We thus consider an orthonormal bundle of frames
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n-.F(P)~P, for which our principal fiber bundle P is a
base manifold. A frame at p EP is given by
E„.. . ,E„,E„+„.. . ,E„+f, where E„.. . , E„[defined
on n '(U)UP] are horizontal lifts, relative to co, of an
orthonormal basis E„.. . ,E„on (M, g} [i.e., co(E;)=0,
n, (E; ) =E, ], and E„+ ——e ', where e ' are fundamental
vertical fields on P [i.e., co(e' ) =e E 9] generated by the
elements of an orthonormal basis e„.. . ,ef of 9 relative
to k. We will use the following ranges for our indices: la-
tin lower-case letters from the rniddle of the alphabet will
have the range 1 & i,j,k, . . . & n, greek lower-case letters
will have the range 1 & a,P, y, . . . &f, and lower-case la-
tin letters from the beginning of the alphabet will cover
the total range of the dimensionality of P,
1&a,b, c,d, . . . &n+f.

Note that from the bundle metric

Making use of these basic definitions, we are now ready
to summarize the relevant steps to be followed for com-
puting the components of the curvature tensor of (P,h),
emphasizing those results which involve generalizations
of the ones given in Ref. 6.

First, recall that the components of the Riemann ten-
sor are related to the connection one-forms by means of

—,'R'b, dp'Ap =d8(h)'i, +8(h)', A8(h)'b . (2.5)

Thus, in order to evaluate R'b, d we need to calculate
first the various matrix terms 8(h}'b for 1 &a, b & n +f.
To this end note that (2.2) implies that

dP"+ =B —8(h)" +~. AP' —8(h)" + AP"+

(2.6)

h =m'g+kco, (2.1)
Also, from the definition of the curvature two-form we
have

and the orthonormality condition on our basis, we have (dP"+ )e =dao

and

h; =h(E, ,E )=(n'g)(E;, Ej)=g(E;,Ej):—g; =+5j = ——,
' [co,co]+Q

( ——ca y n+pAp+r+ 1Qa y&Ap )e

B'=o'D@"'p'=—D "'p'=dp'+8(h)'b A p . (2 2)

Similarly, if P', . . . ,P" are one-forms on M dual to
E,, . . . , E„,such that m'P'sr ——P', we have

dy' =B' —8(g)', Ay'

or

dP'=B'(g) —n'8(g)' A Pj, (2.3)

where B'(g} is the pullback with m' of B'~. Moreover, if
the local section o"U~F(M} det.ermined by E„.. . ,E„
is tangent to the horizontal subspace of T ~„~F(M) rela-
tive to 8(g), we have

8(g)(o,E; )= [o'8(g) ](E, ) =8(g)(E; )=0 at x,
and, by virtue of (2.3),

h ~p
=h (E„+,E„+p) =ken( e,e p ):k[co(e —),~(e pn ) ]

=k(e, ep)= +5~ .

Now, let P', . . . , P" +f be one-forms dual to
Ei, . . . , E„+f. We can then write the curvature
QE A (P, 9) of coE A'(P, 0) in terins of the above bases
as Q= —,'Qj($'Ag)e, and the torsion two-form
BEA (P, R"+f) as 6=—,'S'b, (P A P')e„where
e, =—u '(m, E, ) is the usual basis of I"+, and the linear
isomorphism u:IR" + ~T P defines a frame at p E.P. If
we further use the symbol 8(h)=[8(h)]'b EA'(F(P), R)
to denote the real-valued one-form matrix representing a
general connection of F(P) relative to the above choice of
orthonormal fields and dual forms, we can write

where c &y are the structure constants of G.
Comparing (2.6) and (2.7) we get

(2.7}

8(h),b+8(h)b, ——0, (2.9)

which together with the Sb-invariance property of the
metric k, suggests as a natural choice

8(b)n a+]ca yn+P
n+y 2 Py (2.10)

We feel that it is important to underline here that this
choice is not unique. Clearly the factor in front of the
right side of (2.10) is completely arbitrary and is motivat-
ed in our approach only by the reasonable demand that in
the limit of zero torsion our results should reduce to
those given in Ref. 6. This implies, however, that the
components of our Riemann and torsion tensors do not
agree exactly with those given in Ref. 4.

Note that if we now substitute (2.10) in (2.8) and evalu-
ate on (E„+p,E„+„},(E„+p,E;},and (E;,E.} we get, re-
spectively,

6 —8(li)"+ A P' —8(h)" + A y"+'

= —
2 py
cn pn+p A pn+p+ i Q~ p~ A pJ

(2.8}

Furthermore, since the connection one-form 8(h) is
8(r, s) valued, the matrix elements 8(h)'b must satisfy the
constraint

dp'(Ej, Ei, )=B'.k ——S'k . (2.4)
S p

——0,
S p; ——8(h)"+,(E„+p)=0,

(2.11a)

(2.11b)
Observe also that if we write co =co e, we have
co(e~)=ep co (ep)e —— co (ep)=5p. But P"+ (E„+p)

yn+a(en ) 5a ~a yn+a

and

8(k)n+a 1(Qa Sa )p' S ayj (2.12)
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withS; =S; .
The expression for 8(h)'„+ follows immediately from

(2.9) and (2.12); it is given by

The characteristic group that we will need for our de-
velopment in the next section is SO{3). In this case f =3,
and the group metric is given by

8(h)'„+ = ——,'(Q~'J —S ' )Q~+S' (2.13) 1

yA, 2 Pya akP &
(2.24)

To obtain 8(h)', we need to make use of (2.2} and (2.3).
When the expressions for dP' resulting from these two
equations are compared, and (2.13) is substituted in the
process, we get

where e & is the Levi-Civita symbol and greek letter in-
dices range from 1 to 3. The factor in front of the right-
hand side of (2.24) has been introduced in order to have
an orthonormal basis of 0 relative to k, i.e.,

8(h)', =m'8(g)', ——,'(Q '1 —S ', )Q"+' (2.14) k„„=5pv .

and

S'
p
——0. (2.15}

We now have all the ingredients which are needed for
evaluating the components relative to our orthonormal
basis of the curvature tensor for the metric h on P. The
calculation of these components involves substitution
into (2.5) of the different connection matrices [Eqs.
(2.10)-(2.14)] which we derived above. The actual pro-
cedure, although lengthy, is fairly straightforward; there-
fore, we state only the final results in the Appendix at the
end of this paper. We also give there the expressions for
the contracted Ricci tensor and Ricci scalar of (P, h) at p
in terms of their projected components in the base mani-
fold, the gauge field tensors, and the torsion.

So far our results are completely general, as they in-
volve no a priori choice of the structure group or speciali-
zation of the connection coefBcients that might restrict
the torsion terms. To proceed in this direction, which
suits the specific purposes of this paper as discussed in
the Introduction, note first that

8{h)'„+ (EJ)=—I"
J

——[by (2. 13)]

= ——,'(Q ' —S ' )+S'

8(h)'„+ (E„+&)—=I"
p
——[by (2.13)]=0,

8(h}' (E„+ )=—I", =[by (2. 14)]

= ——,'(Q ' —S,', ),
8(h)"+;(EJ) = I;&——[by (2. 12)]

'(Q
J
—S'V) —SJ

8(h)"+,(E +&)=I',&
—[by (2. 12)]=0 .

(2.16)

(2.17)

(2. 18)

(2.19)

(2.20)

S'=0'. , (2.21a)

(2.21b)

Further choosing

1"' . =(1/n)5' 4 =S' =(1/n)5'. 4~ (n =dimM),

(2.22)

which, because of (2.19), also implies that

r „= (1/n)g, ,e—. (2.23)

If we now assume that I"& ——0, then it follows from (2.18)
and (2.16}that

One remark which has to be made at this point con-
cerns the dimensionality of the structure constants as
they enter in our expressions for the components of the
Riemann and Ricci tensors. This will allow us to relate
the formalism as it usually occurs in the work of
differential geometers and that used by field theorists and
particle physicists, as we11 as to guarantee the appropriate
units of the unified action integral to be presented at the
end of this section and the correctness of the numerical
results given in Sec. III. The units of c &y

can be readily
established by noting that the Riemann tensor has to
have units of (length) i, and the connection coefficients
are in units of (length) '. Consequently, it becomes evi-
dent from (2.10) that c & has to be also given in units of
(length} '. Therefore, to have the proper normalization
for the group metric, we need to write

ac Py
= ~ FaPy~2 (2.25)

where ~ is an as-yet undetermined constant factor of di-
mensions (length) ', which acts as a length gauge in the
theory.

To further relate our formalism to the one used in the
physics literature, we need to use a local section
~„:U~P (i.e., make a choice of gauge) to pull back some
of our expressions to UCM. This is perfectly valid since,
as mentioned previously, the scalars obtained from the
Riemann tensor are constant on the fibers. Thus the pull-
back of the curvature two-form

Q~= —,'Q~,"(t'h PJ =dco + ,'c rem~ A cor, —
T Py (2.26)

(2.28)

where A; = A (8; ) is so far a dimensionless gauge vec-
tor potential.

If we now let ~A; ~eA;, then e will be the usual di-
mensionless coupling constant [e =charge/(Pic)'~ ], and
A; the gauge-vector potential in units of (length) ', as
they commonly appear in physics papers. Note that we
can then write

is

Q„=a „'Q = z' Q;J PM A g~ =d A '+ ,' c &„A
~ A—Ar,

{2.27)

where A~—=o„'co .
Moreover, for the orthonormal basis at each x E U, we

can choose the coordinate basis E;=8;, in which case
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I ~2 apy (2.29}
—17

Rpy —— ,—spy 4 ——5py,2v'2 4
(2.37)

where from here on we will understand that the gauge
field tensor 0; has already been pulled back to U CM,

We next need to evaluate the directional derivatives
which appear in the expressions for the Riemann and
Ricci tensors given in the Appendix. For this purpose
note first that evaluating (2.26) on (E;,E ) yields

0; =dp"+ (E;,EJ)= —p"+ ([E;,E, ]) .

R ps
——— —(5 s5p 5—5pb),

le a a
p~j aPy ij ' Pyi2&2

R jk;= ——6g;,Dk+ +6gjkD ~'

l7 y a
jp~ ~ apygV ' jpy12~ 2

(2.38)

(2.39)

(2.40}

(2.41)

This implies that the commutator [E;,E ] must be verti-
cal and have the value

jkm —jkm + 36(5 mgjk 5 kgjm )@ (( y ~

R'k ——0, R'p ——0.

(2.42)

(2.43)

[E;,E, ]=—0;,E„+, . (2.30)

It is easy to verify that this relation is satisfied if we take

(2.31)

which is suggested by the fact that P"+ (E;)=0 and
co (cr,E;)=A;. In verifying (2.30} from (2.31), with
0," given by (2.28), we also need to recall that from the
properties of the connection one-forms, the Lie derivative
of co, relative to E„+p =—e p, is given by

Note that in the above expressions we use the gauge po-
tentials A; [i.e., properly dimensioned to units of
(length) '], and for Q,J we use the term inside the large
parentheses on the right of (2.29). Also, in (2.35)—(2.43)
we have assumed that n =dimM =6, since this is the di-
mension of the base manifold which we will need for the
development to be presented in the next section.

To complete the summary of the basic expressions that
we will be needing next for the construction of a La-
grangian density, we give the formula for the various
components of the torsion tensor, which already incorpo-
rate the assumptions discussed above:

(X aco )p= —c pyNt ) ~

and that

(2.32) S py 0 S p:0 S jk

~j&a ij a 6gij+as ai 6

(2.44}

(2.45)

E„~p[co'(o,E )]=(X,co )(o,E )= —c'pygmy; .

(2.33)

S'=0'
Choice of a general Lagrangian density

(2.46)

Equations (2.31) and (2.33}are all we need to evaluate the
directional derivatives which occur in the Riemann and
Ricci terms listed in the Appendix. Thus, since the scalar
field 4 derives from a connection, it must transform by
means of the adjoint representation of G, i.e., according
to (2.33), and we therefore have

The most general Lagrangian on P that can be con-
structed, up to quadratic terms in the Riemann, Ricci,
and torsion terms as well as the Ricci scalar, is of the
form

g [&+ &g (p gabc+t3 gcab+p+acgb)
V 4 abc 1

I

E„[e ]=@ „=a„e +c p
aP„ey—=D„a (2.34) —&R (a,R abed+& Rcdab+& R acbd}

abed

j =R j 36gj ~ @y

R aj 6 Dj @a~ Rj a 0
(2.36)

Consequently, with the metric (2.24) and structure con-
stants (2.25), the choice of connection coefficients and
torsion components contained in Eqs. (2.15)—(2.23}, and
the additional assumption that torsion is zero on the base
manifold (S'Jk ——0), Eqs. (Al}—(A14) in the Appendix
yield (for typographical simplicity, from here on we make
the change of index notation n+a~a, etc., in the
Riemann tensor components)

(2.35)

4R„(a4R "+a~—R—")+abR ], (2.47)

where S —=S, ', and VI is the volume of the internal
coordinates of the base manifold, as described in Sec. III.

Note that our Lagrangian density has been divided by
R so that everything on the right-hand side has units of
powers of length. Thus the torsion tensor components
are in units of (length) ', the arbitrary parameters
Exp P~ Pp P3 have units of (length), while the remaining
(also arbitrary) parameters are dimensionless.

If we now substitute Eqs. (2.35}—(2.46) into the above
expression, we get
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—g Pi
yl

(a,—-'a,d)R — -'a, + P, P3 a r' ar

3 a,r azr a3r a4r as'
4 16 16 32 16 16

—
—,'r a6 r

5 a3

2
J

T

a3 a3
at+a&+ R zk

R'J" —,'(a4—+a5)RJ R J + a&+a&+ + —,'a4+ —,'a5 —60a6 R@r4
36 2

5 a3
y 2a, +a&+ +—,', a4+ —', a5 —60a6 (4 dr) (2.48)

The action integral from which we will set up a unified
variational principle for the Einstein-Yang-Mills-Higgs
system in the following section, is given in terms of (2.48)
by

Xp,
U

(2.49)

where p is the element of volume of our six-dimensional
base space M, and the subset U CM is assumed to have
compact closure.

III. SPONTANEOUS COMPACTIFICATION
OF THE BASK MANIFOLD

The Lagrangian density given by (2.48) describes a gen-
eralized Einstein- Yang-Mills-Higgs system, with a poten-
tial containing quartic terms of the form leading to spon-
taneous symmetry breaking. The Higgs fields in this for-
malism have a geometrical origin since they are derived
from the connections on the principal fiber bundle P,
when one assumes that torsion on the fibers is nonvanish-
ing, and acquire a dynamical character when quadratic
terms in the curvature tensor are admitted. In addition,
the theory is of the Kaluza-Klein type, since our base
manifold M is a spacetime of six dimensions. For this
scenario to be considered appropriate to describe the real
physical world, it is necessary that the extra dimensions
of M compactify into a size of the order of the Planck
length via spontaneous symmetry breaking of the Poin-
care invariance of M, so that the symmetries of these ex-
tra dimensions can then correspond to internal sym-
metries.

Although spontaneous compactification of space for
the Einstein-Yang-Mills-Higgs system with the usual Ein-
stein gravitational Lagrangian has been considered by
Cremmer and Scherk, no such study has been undertaken
for quadratic Einstein-Cartan gravitational Lagrangians,
and it is not obvious, a priori, that compact solutions do
exist for such a case. We have already commented in the
Introduction that theories with quadratic curvature
terms in the Lagrangian on a six-dimensional space have
attracted interest, since they seem to occur as the bosonic
low-energy limit of superstring theories (four-dimensional
Minkowski spacetime can be obtained by compacti-

aH azr
96 96

2m
as ——a16 4

(3.2)

(half of the Compton wavelength associated with the
mass of the Higgs boson),

a~ a4r
ao+ a, +a~+

(the cosmological constant),

as
16 ,'a6r H=—A—

(3.3}

S a3
432

a )+a2+ +—'a4+ —'as —60a6 ——A,
2 2 2

(3.4}

(the parameter in the quartic term in the potential), to fix
the physical parameters, and

Pi ai 1

4 2

(e the dimensionless coupling constant of the Yang-Mills
field),

(3.5)

fication). This consideration and the fact that in our for-
malism there is no need for nongeometrical fields to
trigger compactification, and that some of the so far arbi-
trary and most physically interesting parameters in the
theory may be fixed by geometrical arguments, provides
in our view a good motivation for undertaking such a
program.

We therefore proceed by first making the obvious
identifications which are needed to bring (2.48) into the
usual form of Einstein-Cartan gravity coupled to Yang-
Mills and Higgs fields. We take

(ao ——,'a6r )=Ir (3.l)

(the proportionality factor in the Einstein Hilbert La-
grangian),

&z

24 4
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a3
a, + +—a45 36

2 2 5
(3.6)

in order to normalize the free Lagrangian of the Yang-
Mills and Higgs fields to their customary values.

For the sake of convenience we also set

a3
p=a, +a&+

2

The final action becomes

(3.7)

m+ 1(Dk@a)(D @ ) @a@ 12' @a@ +g(@a@ )2 d6x (3.8)

Note that since we have chosen dimM =6, and
6=SO(3), lower-case latin indices will have the range
0(i,j,k, . . . (5 while lower-case greek indices will have
the range 1 & a,P, y, . . . & 3. Recall that the Yang-Mills
gauge field tensor 0; was defined as the term inside the
large parentheses on the right of (2.29), while DI, C1 is
given by (2.34) in Sec. II. An interesting point to notice
is the existence of the term —", A,R 4a4, a curvature
"mass" term where the coefticient —2A, is given by the
dimensionality of the fibers and base space in our fiber-
bundle approach. This term will be important in our
later development of the theory. Given the action (3.8)
we can carry out the calculation analogous to that of
Cremmer and Scherk which is based in turn, on the
magnetic monopole solutions of 't Hooft, van
Nieuwenhuizen, Wilkinson, and Perry. Thus our metric
will be given by

ds2=g, dx'dx~

I

where

m

8m
I

——(4 4a) ri„„, (3.11)

where A, B =4, 5, and dx =Rod8, dx =Rosin8dg;

G g —87TT (3.12)

216 25 5 1

25R
( —~+ —~6+ —P)+-A gAB =8~TAB,54 108 2

0

(3.13)

which is satisfied identically as both sides are zero, and

=ri„gx"dx +Ra(de +sin 8dg ), (3 9) where

i.e., four-dimensional spacetime is taken to be Hat Min-
kowski space, while the two extra internal dimensions
have the geometry and topology of a two-sphere of con-
stant radius Ro. Note that in separating ordinary space-
time from internal coordinates in (3.9), we use the indices

p, v=0, 1,2, 3 to denote the former. We will maintain this
notation for the remainder of the paper and reserve the
letters p, v for four-dimensional spacetime, while internal
coordinates will be designated by capital latin indices and
use, as we have so far, indices from the beginning of the
greek alphabet to denote group-related components of
our fields. Also note that with the metric (3.9},
Vi =4m.R o

If we now vary the action (3.8) with respect to g;., we

get the following set of equations of motion:

5g,,~G,, =8m.T,,
which breaks up naturally into three equations:

K 216
9 2 4( +54 6+ ID8i

Ro 25Ro

1
TgB

16m. ,'0 cDQ' —+—,'(D 4 )(Dc@—)

m 4 4 +A(4 4a) gAB

+
8

I. 4~ CA+a B I(DA@ )( aB@ }]

(3.14)

a„(n.'"v' —g)+ "
e,.BW'„n '"

2 2 r

The field equations resulting from varying A; are essen-
tially the same as those given in Refs. 2, 8, and 9 except
for a relative factor and sign which stem from our some-
what different definition of the gauge potentials
[ (i /&2) A—; = W;, where W; is the quantity used in
the references cited above]. Thus we get

12 A,

, 4 @ +-,'A =8~T„. , (3.10}

C1B(D'C1~)=0 . (3.15)Bra B

Finally, variation of (3.8) with respect to 4 yields
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—akakc. + " a"(A pke,.pe, )—2

akim g
v' —g

le
ak @a . A k eyaP@y

— ' eA'"e.
YP akey —"

A'kesykes —2,'ARC. —m'e. +4Ae.(ePCP)=0. (3.16)

Continuing along the lines of Cremmer and Scherk, we
assume that both the gauge and Higgs fields are indepen-
dent of the first four spacetime coordinates while their
dependence on 8 and P is of the form

A =0,P

A 'e —— i &—2a e( —sin((), cos$,0),
(3.17)

A
&
—— i sa—&(

—cos((t cosP, —sing cos8, sin8) sin8,

P =p(cosP sin8, sing sin8, cos8),

where az, a&, and p are constants since in the ansatz for
the internal coordinate metric no radial variables have
been included. Substituting (3.17) into (3.15) it is clear
that this field equation is identically satisfied for i, k =p, v
( A „=0)and, given the explicit dependence of the A „
and 4 on 8 and P of Eqs. (3.17), the i, k = A, B equations

I

reduce to algebraic conditions on the constants az, a&,
and p. A solution only exists if a& ——a&, and p is given by

p = (2—eRoa ),Q

eR0
(3.18)

where we define a =a z
——a &.

Similarly, substituting (3.17) into (3.16) yields, for each
component of 4, the unique solution

2

2 [(1 eR—oa) ——541,]=—2Ap + (3.19)

The remaining algebraic constraints on the constants that
appear in the model come from replacing the expressions
for A, and 4 given in (3.17) into (3.10)—(3.14) which
thus reduce to the following set of equations:

216 12 A. 2, a 2
2 P

2
2 ] 2 2 1 4

R2 25R4
( —A, +—p+ —o.,)—

0 0
108 54 5 R 2 2 4R 2p +—A= — (2—eRoa) — (1 eRoa) —+—m p ——Ap, (3.20)

0 0 2R 0
4 2

R 0 216 5 25 3 2 2 ] 2 2 2 ] 2 4 2 2

2 25R2
A+ ( —A+ —p+ —a6)= ——a (2 eRoa) +——m Rap ——Romp —p (1 eRoa)—

108 54 4 4 2

0
(3.21)

The set of Eqs. (3.18)—(3.21) must be solved for p, a, Ro, and A in terms of the rest of the constants of the problem.
Since a is relatively unimportant, we will not give the final solution for it, although it may be easily found from the solu-
tions for p and Ro which are

and

p
2

2a — ( —A, +—p+ —a6)
216 5 25

25R 108 54
0

1+—4A,

2(e —2A. )v m

1+ 24k, 2

(3.22)

(3.23)

%'e will consider the eosmologieal constant A and the additional contribution to it which arises from the spontaneous
symmetry-breaking process in the next section.

For comparison purposes we reproduce the analogous solution of Cremmer and Seherk for 1/Ro, which in our nota-
tion reads

1 2 I
2

=2e K+
Ro

—4A,K

It is evident from this that the analysis of compactified solutions is somewhat more complicated for our case. In fact, if
we rewrite (3.18) as

p = [1—(1—eaRO) ],
e Ro

(3.24)
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it follows immediately that p & 0 (1—eaRO) & l. On the other hand, substituting (3.24) into (3.19), gives an alterna-
tive expression for p:

m
z (1——", A, )—
0

e —2A,

which when combined with (3.22) yields

(3.25)

1

R0

(e —2A, ) 2~— 216 5 25

25R
( —X+—p+ —a, }108 54

0

(1+—,4X)(1——", A, )

m

2(1——", A. )
(3.26)

If we now substitute p from (3.22) in (3.24) and make use of (3.26) in the result, we find

[1—(I —eaRO) ]

2~
2 (1+ '54k, )m

r

2e ( 1 A ) 2IC ( A + ~ggp+ 58 as)5 25R02

(3.27)

1 —IA, &1—2~
e

m(1+—", A, )

2a — ( —A, +—p+ —a6)
216 5 25

25R 108 54
0

(3.28)

Finally, multiplying (3.28) through by

e 2a' — ( —A, +—p+ —as)
216 5 25

25R 108 54
0

dividing by (1——54k, )(l+ —", A. ) and comparing the result
with (3.26), we conclude that

z
+ s4 216e

g 5 25
)

1 —"A, 2

Ro &, 1+
25(1 —"A) 08

2Ke + 54

(3.29)

Note that the expressions corresponding to (3.28} and
(3.29) in the inode of Cremmer and Scherk are

2A, m 11&1—,+,, R0&
e 4Ke 2e K

Consequently, provided e is not extremely small,
compactification of the radius of the two-sphere follows
in their case and its dimension is determined by the in-
verse of the Planck length.

In our case the combination of constants
( —A, +—„',p+ —,",a6) plays an important role, and if this
combination is allowed in principle to have any value,
there is little if any restriction on the size of R0. As we
mentioned in the Introduction, an interesting combina-
tion of the quadratic curvature terms is the Gauss-Bonnet
form, R' " R;-k —4R' R, .+R, which in our model im-

plies additional restrictions on A., p, and a6. If we impose

We thus see that since (1—eaR0) & 1 the right-hand side
of (3.27} must be larger than or equal to 1, and we have
the inequality

the Gauss-Bonnet form on the quadratic curvature terms
in our Lagrangian, then we have

p= —4as and —"'(—A. ——„',p+ —'„'a6)=4as,
25

from which it follows that

(3.30)

a6= —,8k . (3.31}

IV. THE GAUSS-BONNET FORM
FOR THE GRAVITATIONAL LAGRANGIAN

It is well known for four-dimensional spacetime the
term

R "'R '&=R~ p R —4RI" R +R'~xA. 7 g—pv —pa — —pvpfr ——p, v

is a topological invariant, and that its variation relative to
the metric leads only to a total divergence.

For dimensions higher than four this is no longer true
however, as has been noted by Zwiebach; the above
Gauss-Bonnet combination of quadratic terms in the cur-
vature is still special, since it is the only action of this
type found so far which is free of ghost particles, and it
also forms an important part of a series pattern for the
bosonic low-energy limit of superstring theory.

These arguments provide a strong justification for the
choice of parameters as given in Eqs. (3.30}and (3.31}at
the end of the last section. We now consider some fur-
ther physical implications in our model which derive
from these choices.

First, Eqs. (3.22}, (3.23), (3.28), and (3.29) reduce to

2K
& =

1+&4'
5

(4 1)

Substituting (3.30) and (3.31) in the combination
( —A, ++p+ —'„'as) we find that it becomes zero. We will

devote the next section to exploring the consequence of
this restriction for our solution.
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and

R0 ——
7

2(e —2A, )a. m

1+-",k +
2

m (1+—", A, )
1 ——", A, &1—

e 4Ke

(4.2)

(4.3)

Lagrangian, we cannot as yet relate some of our parame-
ters such as the gauge coupling constant e and the con-
stant K to observable quantities. In order to be able to do
so, we adopt the same line of reasoning as that followed
by Cremmer and Scherk, that is, we consider fluctuations
of our fields around the solutions given in Sec. III. Thus
for the gravitational field we examine the perturbations in
our solutions induced by the metric

1+—", A,

R0&
2KB

(4.4)

Thus the internal space becomes properly compactified
provided e2 is not extremely small (the same requirement
as in Cremmer and Scherk), and A, is not extremely large.

This point is where the curvature "mass" term in our
Lagrangian becomes decisive since it leads to rather
definite predictions on the values of A, and the coupling
constant e. Indeed, from the inequality (4.3) we get

rn'
2

4K 2 ——e ——,42 6m
5 K

(4.5)

Hence, unless we set

26 m
2 ——e

5 K

2
P7l

K

the parameter A, will turn out to be extremely small (we
assume that m «~). However, I, need not be so small.
For example, in the electroweak model and for the lower
search limit for the masses of the Higgs bosons A, -0.005.
Consequently, we take

5Is = Ic+
~

—
~ AP v —gRqd x

r

4, ——", Ap &—gR, d x .
0

(4.9)

Hence, the quantity to be identified with the inverse
square of the Planck length ~(4) (—:c3/16MGN
=0 762X10 cm ) is

4a6
K+

2
—

~ Ap =K(4)
R0

By (4.1), (4.16), and (4.18), —", Ap =a/4o'=a/2, so

(4.10)

ds =g„„(x)dx"dx "+Ra(de +sin~ed/~} .

In this case we will have R =R, +2/Ro, where R, is
the ordinary spacetime Ricci scalar. Moreover, noting
that changes in the action of the gravitational field can
originate only from terms in (3.8}containing R or R (the
Gauss-Bonnet terms in four-dimensional spacetime con-
tribute only with a total divergence to the action princi-
ple), we get

2,42 6m
2 ——e

5

2

0 m

K

K 72
(4)

0

which in turn implies that

5 m2
e = —cr

12
(4.6)

The lower limit of o is determined when one substitutes
(4.6) back into (4.5) to get

5

24(4o —1)
(4.7)

e=( —')' =0.64512 (4.8)

for the coupling constant e.
This is remarkably close to the value of the coupling

constant g for the SU(2)XU(1) electroweak model, for
which one gets g=0.637+0.005. However suggestive
this agreement might seem to be, it is important to re-
mark at this point that some of our assumptions leading
to it require additional justification. More specifically,
since our Lagrangian is not a four-dimensional effective

Since A, &0, we must have 0. & —,'. We will have more to
say about the upper limit of 0. later on. What we find in-
teresting here is that to zeroth order in m /a, Eq. (4.6)
predicts the value

This means that our assumption m &&K would be physi-
cally reasonably provided that a-4a /6Ro K[4]~ It turns
out that such a situation can be made possible and com-
patible with the constraints on the cosmological terms
discussed below by fine-tuning the parameter cr which we
still have at our disposal.

As for the gauge coupling constant, note that if instead
of taking A

&
——0 as in (3.17), we introduce a nonzero and

spacetime-dependent value for these components of the
Yang-Mills fields, then an argument similar to the one
used for the gravitational field leads to the conclusion
that e=e(4), i.e., the value given in (4.6) for our gauge
coupling constant is indeed the observable value for this
quantity.

In light of these arguments and the fact that even
though our model is based on the structure group SO(3)
and not SU(2)XU(1}, the factor SU(2) is a covering of
SO(3), so one might reasonably expect that some of the
salient features of the electroweak model should already
be contained in ours.

In particular it would be worthwhile to test whether
the agreement in the value of the coupling constants not-
ed above would be maintained by a generalization of our
formalism to SU(2}X U(1 }as a characteristic group of the
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2K
2 2

2

~ (e —2A, ) am

1+ 24/ 2
A——(1+—'4A, )
2

(4.11)

Comparing this expression with (4.2), we find

2a(e —2A. )(3+—", A, )

+m '(1+—", A, )1+ 24k,

(4.12)

where we have set

principal fiber bundle, and possibly allowing for a more
general spacetime dependence of the gravitational, gauge,
and Higgs fields. If this were so, then we would have a
unified theory where some of the most important physical
parameters would be determined solely by the geometry
of our structures. [Recall that the factor —,', which ap-

pears in (4.6), originates from the curvature "mass" term
—", A,R4 4 in our Lagrangian (3.8), and that its value is

fixed by the dimensionality of the base space M and the
structure constants of the group. ]

In contrast, note that in the linear curvature case of
Cremmer and Scherk, one gets A, (m /8a(4} instead of
(4.5). Thus A, will be extremely small and, since the e
factor cancels out, no further constraints on its value can
be derived from that model.

We now give an argument for fine-tuning the value of
cr in (4.6) and (4.7) which will allow us to determine the
values of all but one of the remaining arbitrary parame-
ters originally introduced in (2.48). In the end we will

have both the mass m of the Higgs boson and the cosmo-
logical constant A as functions of the undetermined pa-
rameter a5 or, inverting the argument, given az we will

have a relation between the cosmological constant and
the mass of the Higgs boson.

Observe first that substituting (3.18) and (3.21) and us-

ing (4.1) yields (for the Gauss-Bonnet Lagrangian)

(4.13)

Note that A' has units of (length), so it is this quantity
which we should appropriately call a cosmological term.
On the other hand, A' is not the only contribution to the
"observable" cosmological constant, there is also a con-
tribution given by

m2 12
4~ 5R

(4.14)

where the quantity m /4A, +12/5R o is just the vacuum
value of 4 4, resulting from the spontaneous
symmetry-breaking process in the quartic term A,(4'4 )2

in the effective Lagrangian and using our unperturbed
solution for the Ricci scalar. In addition, there are other
terms that contribute to the cosmological constant which
arise in the effective Lagrangian from all the terms in
(3.8) which are four-spacetime independent.

We thus have that the "observable" cosmological con-
stant is given by

2 4z(e —2A )

R' (1+ '4A, )'
(4.15)

we find

cr') o
5

24(4cr' —1) ' (4.16)

It is known, ' however, from estimates on small clusters
of galaxies that

l A,b, l

~ 10 cm . We will show next
that if we require that A,b, =O(m /s)', for sufficiently
large r, we can satisfy this constraint and simultaneously
have that a-8a6/Ro -v(~}, by additional fine-tuning of
the value of 0..

In fact, substituting (4.2) into (4.15) making use of (4.6}
and taking

'2
5 4o' —1 6, , m (4o' —1)

6 1
4o' 24 m, 2 (4o' —1)

3 (4o') ' a. (4o')(4o' —2) 4o' —1 5 a (4o') (4o' —2)

(4.17}

One obvious solution to this expression is to take o =—,.
This however implies that A, = 00, so it must be discarded.
Another solution comes from substituting into (4.17) the
series expansion

m m~ =—+r& +V2
K K

+ ~ ~ ~ (4.18)

y, =—,'(2o —1}(lk—', ) . (4.19)

Proceeding in a similar fashion, one can get solutions for

and equating to zero the coefBcients of the various
powers of m /K, up to a suSciently high order in this pa-
rameter. In this way, the zeroth-order contribution from
(4.17) gives a quadratic expression for y„with the follow-

ing two possible solutions:

I

the remainder of the parameters in (4.18) expressed in
terms of o.

Note however that if we substitute (4.18} into (4.16)
and use the result in the expression for the vacuum value
of the Higgs fields

1/2

@o= I(@ ~' )ol'"= +
4A, 5R 02

we get

2

—,y, —2o+1+ (10yt —12cry, +8y, )
3K lO m

10y i K

Consequently, no sensible solutions for the vacuum are
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9' 3
40—— — +—m

5 2
(4.20)

Furthermore is we substitute (4.6), (4.16), and (4.18) into
(4.2},we find that

obtained unless we discard the smallest root for y j, and
get

For the purpose of constraining our system a bit more,
we can set p, =p2 ——ps=0. In essence this involves as-
suming that torsion does not occur explicitly in the La-
grangian and that it only appears through its contribu-
tion to the curvature terms. Our theory would then be
akin to the more commonly used Einstein-Cartan models,
but with a Gauss-Bonnet form for the curvature terms.

Adopting these restrictions, we find that

4a,
12(2a —1)

(4.21) m 5 1 3 99 29

2 6 48e2
K+ +—+—A, ——as (4.27)

Thus this term is indeed of the same order of magni-
tude as x., and by virtue of (4.10) of the same order of
magnitude as the inverse square of the Planck length pro-
vided (2o —1}is not very small.

Recalling that (4.16} and (4.18} allows us to set
—,", ~o g —,

' as the acceptable range for the values of 0, and

"I4i
7 5—+
2 4(2o' —1}

11 1

32 4 (4.22)

To conclude this section, we now outline the procedure
for obtaining the values of the as-yet undetermined pa-
rameters in our Lagrangian (3.8).

To derive r, note that (3.14), (3.17), and (3.30) together
imply

a4+as =+A, , (4.23}

which, in turn, enables us to simplify (3.3) to the form

(4.24)

Comparing (4.24) with (4.12) and making use of (4.16),
(4.18), and (4.19), yields

1/2

I+ 1+—', (8o' —1) (2o —I ),'~ —
—,",

27'
32

m
(2o —1),'~

(4.25)

Thus, to first order in m /K, the length factor introduced
in (2.25) has the following two possible values:

K) 2

m
—,'(8o —1)

2
(4.26)

Substituting (4.26} back into (4.24} gives a relation be-
tween the mass of the Higgs scalar and the cosmological
term A'.

As for the mass term itself, recall that it was given in
(3.2) in term of the parameters p„p2, p&, a&, a2, a4, and
a6. We can use (3.5), (3.6), (3.7), (3.30), and (3.31) to solve
for some of these parameters in terms of the others and A..
We do not have, however, any relations for p2 and p&.

and replacing in this expression the values previously
found for X and r yields (to first order in m iv)

(as», 2—- .

480
29(8o' —1) m~

m
15.62+ (6.884 —10.704cr ) .

K

(4.28)

Clearly the two alternative solutions in (4.28) for as cor-
respond to the two possible values for the length gauge
found in (4.26).

V. CONCLUSIONS

We have studied the compactification of the extra di-
mensions in a six-dimensional Kaluza-Klein theory by
means of a calculation similar to that of Cremmer and
Scherk where the six-dimensional geometrodynamics is
driven by Yang-Mills and Higgs fields. The i@ternal
group of the gauge fields is SO(3). We difFer from Cram-
mer and Scherk in that we use a geometric theory of the
coupled gravitation, Yang-Mills, and Higgs fields based
on principal fiber bundles with torsion that was
developed by Cho and Katanayev and Volovich. The
geometrical character of the theory leads naturally to La-
grangians quadratic in the curvature. The modifications
of the Einstein-Yang-Mills equations have interesting
consequences, even though the calculation is only slightly
more difficult than the original one of Cremmer and
Scherk. Our result, if no conditions are imposed, implies
that there is essentially no compactification of the extra
dimensions. If, however, the Gauss-Bonnet combination
of R terms, R

13 ~R ~~ —4R ~R p+R is taken in the
Lagrangian, a number of arbitrary constants in the
theory can be determined, including the dimensionless
coupling constant of the Yang-Mills field. The value we
obtain for this last constant is extremely close to the
present experimental value for the electroweak model.

The prediction of the Yang-Mills coupling constant
seems to imply that the fiber-bundle Lagrangian with tor-
sion that we have derived is a candidate for a realistic
model of the gravitation-Yang-Mills-Higgs systems, espe-
cially if the Gauss-Bonnet form for the curvature squared
terms is taken. The major difficulty in proposing our ex-
act Lagrangian as the true one is that the fundamental
group which we used is not the usual SU(2)XU(1)
characteristic group of the electroweak models. It should
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be possible, however, to redo the calculation for this
second group and compare the new value for e to that ob-
tained above.

Another possible way of extending the present work
would be to investigate the more realistic possibility of
"dynamic" compactification, where one takes the four-
dimensional "external" manifold to be a cosmological
model and the "internal" space to be a compact manifold
whose "radius" is large near the singularity of the four-
dimensional cosmology and then decays to small values
as the external universe expands.

APPENDIX: THE RIEMANN CURVATURE TENSOR
COMPONENTS ON THE PRINCIPAL FIBER BUNDLE

Relative to the noncoordinate bases E&, . . . , E„+f in-

troduced in Sec. II, the components of the curvature term
for the metric (2.1) on the principal fiber bundle P de-
scribed in that section are obtained by substituting Eqs.
(2.10)—(2.14) for the one-form-valued connection ma-
trices into (2.5) which relates these connections to the
Riemann tensor components on P. The resulting expres-
sions, in a notation that closely follows that of Ref. 6, are

g n+a a
n+P n+5 n+A, = 4C PyC 5

n+a ] a y & a k a k a k a kR n+pij TC pyQ ij 4(Q k[iQ ~p~ j] Q k[iS ~p~ j]—S k[iQ [p~ j]+S k[iS
~ p j])

+—,'[S";p(Q k
—S k ) —Sk; (Qp" —Sp )]

+ —,'[S" (Q ";—S ";)—S" (Q „—S „;)]—Sk[; S"
]p

(where we have made use of the conventional notation Q „[,Q p~ "j]——Q k, Qp"j —Q k, Qp", ),

n+aR n+P„+; ——0,
R"

jk; ——,(Q j; k
—Q jk;)——,'(S j, k

—Sajki) (Sj; k
——Sjk;)+—,(Q ji —Saj()S k;

—Sji S k;

(where Q j;,—:E, [Q j;] (i.e., directional derivative) ),

R"+ .„p; ,'(Q;——p—S;p —2S; p—)+ ,'(Q „;——S„;—2S„; )(Qp" —Sp".)+ ,'c p (Q—y;—Sy; —2S;y),
n+a

jn+P n+y

jkm —jkm+2(Qa j aj }Q mk 4(Qy[k y [k [k ~y~
)(Q

~ j ~m] ~j ~m]
~ j ~m]

[where R 'jkm are the components of the curvature tensor of (M,g)],

jkn+a p(Qaj, k a j,k } &

jn+pn+a p(Q[a ~j~,p] [a ~j~,p] +z pa(Qyj y j +4(Q[p ~k~ [p ~k~ (Qa] j a] j

(Al)

(A2}

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

To evaluate the Ricci tensor of (P, h) at p relative to E, . . . , E„+f,note that R =R', +R "+,„+ . Thus, making
use of (A5) and (A7), we find

+ 2(Qy'j —Sy j }Q mi 2Sji (Qy m Sy m }

Proceeding similarly with the other components of the Ricci tensor, we find

Rn+aj= —T(Qa ji —Sa ji )+(S ja i S iaj ) —2(Qakl Saki)S j+SklaS j

jn+a Z(Qaj, i a j,i }

Rn+y n +k4(Qyki Syki 2Skiy)(Qk
' —Sk"')—S iy k 2CykpS i + 4C yp ak,

Finally, for the Ricci scalar we have R =gj R +kpyR„+ „+p, and inserting (A10) and (A13}leads to

(A10)

(Al 1}

(A12)

(A13)

(A14)

Note that this last expression generalizes to the case of nonzero torsion the theorem by Cho relating the scalar curva-
ture of a principal fiber bundle to the resulting projected function on the base manifold.
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