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Massless scalar and antisymmetric tensor iMlds in de Sitter space

Chandra Pathinayake, Alexander Vilenkip, and Bruce Allen
Department ofPhysics and Astronomy, Tufts University, Medford, Massachusetts 02155

(Received 1 July 1987; revised manuscript received 13 August 1987)

The theory of a massless, minimally coupled scalar field P is closely related to that of a massless,

antisymmetric tensor field A„„. It is shown that in de Sitter space the field A„has a de Sitter-

invariant state with a well-defined two-point function, while it is known that no such states exist for

the scalar field P.

I. INTRODUCTION V F~"=0
P (2 3)

Quantum field theory in de Sitter space has recently at-
tracted much attention, mainly because of its relevance
for the inflationary cosmological models. In particular,
there has been much discussion of the peculiar properties
of a massless, minimally coupled scalar field in de Sitter
space. ' It has been shown that no quantum state of
such a field has a de Sitter-invariant two-point function.
One can formally define a de Sitter-invariant quantum
state, but its two-point function does not exist, because of
an infrared divergence. One can also choose a state
which is free of infrared divergences, but such states are
not de Sitter invariant. If the existence of a two-point
function is regarded as necessary for a well-defined quan-
turn state, then we can summarize the situation as fol-
lows: a massless, minimally coupled scalar field does not
have any de Sitter-invariant states.

It has been known for a long time ' that a massless
scalar field is essentially equivalent to a massless antisym-
metric tensor field: A„=—A,„. It is therefore interest-
ing to develop a quantum field theory for such a field in
de Sitter space and to see whether or not it has similar in-
frared problems. This will be done in this paper. It wi11

be shown that, unlike its scalar counterpart, a massless
antisymmetric tensor field has a de Sitter-invariant state
with a well-defined two-point function.

The metric and curvature conventions of the paper are
(+ ———), R"„,=B,I"„—,and R„=R „„.
Thus (b,„h„—b, b,„)V =R' „,V, .

II. BASIC EQUATIONS

and a variation with respect to g„„gives the energy-
momentum tensor

T„=,'F„~,F—"'
,', 5pF—i~,—F (2 4)

The action (2.1) is invariant under gauge transforma-
tions

Aq„—+ A„„+V„A„—V'„A„=A„„+r)„A„—B„A„, (2.5)

where A" is an arbitrary transverse vector field. A gauge
condition analogous to the Lorentz gauge in elec-
tromagnetism is

V„A""=0 . (2.6)

It does not fix the gauge completely; the remaining gauge
freedom is restricted to transformations which satisfy

V,V"A"—V,V"A"=0 .

Using (2.3), (2.6), and the relation

(VqV„V„V„)A,=—R „„Ai,+R,„„A i,

(2 7)

(2.8)

F ] ~ Qv(TT FPvcT ~PvcTTF
P 6 @Ver& T

Then it follows from (2.3) that

(2.10)

we obtain the following equation for A„,:

V V' A„„+2R q„'A, +R„A„~—R„A, =0. (2.9)

To establish the relation between A„, and a scalar
field, we define

The action for a massless, antisymmetric tensor field

APv 1S '

a„F„—ag„=o,
and so F„has to be gradient of a scalar:

(2.11)

S= —,', fF„, Fi'" &gd'x, (2.1) F„=t)„P. (2.12)

where To show that P is a minimally coupled massless field, we
write

F„=V„A +V A „+V A„

=a„A..+a„A.„+a.A„. , (2.2)
V„V"/=V„F"= ,'e"" 'V„V,A, =O, — (2.13)

and g =
~
detg„„~ . V„and B„denote covariant and ordi-

nary derivatives, respectively. A variation of (2.1) with
respect to A„gives the field equations e" 'R =0 .VIT~ (2.14)

where in the last step we have used Eq. (2.8) and the rela-
tion
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III. MODE FUNCTIONS

The metric of de Sitter space can be written as

2g„„=a (ri)ri„„,
where

(3.1)

sion, however, is deceptive: the mode functions are pro-
portional to the flat-space functions only in de Sitter
space and only for a particular choice of gauge.

IV. QUANTIZATION

g„„=diag(+ 1, —1, —1, —1), (3.2)

A ""=ri~ ri"'A, =a A"", 8"=ri""B„=a8", (3.3)

etc. In terms of the barred quantities, the field equations
(2.3) and the gauge conditions (2.6) take the form

B„(a F"' )=0,
B„A ""=0 .

(3.4)

(3.5a)

As we already mentioned, Eq. (3.5a) does not fix the
gauge completely. It is shown in the Appendix that in a
conformally fiat metric of the form (3.1) one can always
impose an additional condition:

A "=0. (3.5b)

Note that Eqs. (3.5) give only five independent con-
straints on the six components of A„,. [Equation (3.5b)
reduces the number of components to three, and the
three conditions of (3.5a) are not all independent due to
B„B,A ""=0.] The remaining degree of freedom corre-
sponds to the scalar field P. The gauge specified by the
conditions (3.5) can be called the Coulomb gauge.

With gauge conditions (3.5), the field equations (3.4)
take the form

CIA;J —2(a/a)A, .
J =0, (3.6)

where latin indices take values from 1 to 3, dots stand for
differentiation with respect to ri, and O=ri""B„B„.The
solution of Eqs. (3.5) and (3.6) for the mode with a wave
vector k is

a(ri) = —(Hri) ', and g is the conformal time, which is
related to the comoving time t by ri= —H 'exp( H—t).

To simplify certain equations, it will be convenient to
introduce "barred" contravariant tensors A "",F"",and
an operator 8" which are obtained from their covariant
counterparts using the flat-space metric g":

(4.1)

where the mode functions gz are given by Eq. (3.7). az
and a& satisfy the usual commutation relations

[a„,aq. ]=5' '(k —k'),
[a„,a„]=[a„,a„.]=0 .

(4.2)

To fix the normalization constant N, we demand that A;
should satisfy the equation

[A „(x,ri), H(ri)]=id „(x,ri),

where H(ri) is the canonical Hamiltonian:

H(ri)= f ( ,'A;, n" X—)d'x—.

(4.3)

(4.4)

Here X= ,', F„„F""—~g is the Lagrangian density and
~'J is the canonical momentum conjugate to A;:

Hence

=a A 'J.
AiJ

(4.5)

—2

H(q) = ' f ( A 'J A,, a'A —J"a, A,„)a'x . (4.6)

From (4.1), (4.2), and (4.6}we find

[A „(x,ri), H(ri)]=iN H A „(x,ri), (4.7)

and thus X=0
The equal-time commutation relations between A; and

m; are

[7r'(y, r/), A /(x, r/)]= f ti3k e'"'" "'5"J /(k),
(4.8)

[+'(y ri) ~mr(x ri)]=[A "(y, ri), A i(x, ri)]=0,

To quantize the field A;. , we first expand it in annihila-
tion and creation operators a& and a&.

A;i=(2n. ) f d k[a&(Pz) J+H. c.],

—ikg i(k x —kg)
(g&);.=Ne; (k)e'" " — =Ne;'(k)

&kq
(3.7)

where

&"/(k) =—(&' Sf —5(S' )+ (5' k, k'+5~)k k'

In general, one could write a linear combination of solu-
tions with exp(hike}), but we shall see that the simplest
choice of the mode functions (3.7) already gives a de
Sitter-invariant state. A possible choice of e;J is

ej(k}= — ej&k
1

(3.9)

where e;.
&

is the three-dimensional Levi-Civita tensor.
The form of the functions (3.7) creates an impression

that the field A„„ is conformally invariant. This impres-

where k =
~

k ~, N is a normalization factor, and e;J(k) is
a three-dimensional antisymmetric tensor satisfying

(3.8)

—5~ k(k' —5(k kj)

(4.9)

Here, we regard the components of k as contravariant
and obtain the corresponding covariant components us-
ing ri;, so that k. = —k~. Note that Eq. (4.8} does not
have a standard canonical form. In fact, it is easily seen
that the canonical commutation relations are inconsistent
with Eq. (3.5a). Our quantization procedure here is simi-
lar to the quantization of the electromagnetic field in the
Coulomb gauge. In Minkowski space, the commutation
relations (4.8) have been obtained by Kalb and Ra-
mond. '
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V. TWO-POINT FUNCTIONS

The two-point function for A; is

2 ~ —1 3

( A, .(x ) A i.(x ) ) =I (H gi} } d ik (x. x—)ik'(v —7J') ), (n;—n,( n—i&,
(2m. )

1+ (rji j&m &i+rAm &Pi gi j—&j&m gjm—'"i&i') (5. )
2k

It is a bitensor with unprimed indices belonging to point x and primed indices to point x . After performing the k in-
tegration, we obtain

(&ij(x)& mi(» )~=
3 t)(am irjji gm—'jrlii)(2&+B)+(3&+B)(pije e +g 'ejei rji'e—je ' gj —e ei )]

(H rjri')

2(2n )

(5.2)

where

2w hg hg+ hx
ln

hx hg —hx

e=hx/bx, e; = —e' .

4m—2, B=,hx=x —x', j)).g=rj q', bx—=
~

hx
~(hx) —(hg)~

An obvious improvement compared to the scalar field case with a similar choice of state is that the two-point func-
tion (5.2} is finite. However, it does not have a de Sitter-invariant form. This is not surprising, since our choice of
gauge (3.5b) breaks the de Sitter invariance. The two-point function for the field A„, is gauge dependent, and in Sec. VI
we show that in the Feynman gauge it takes a completely de Sitter-invariant form. The gauge-invariant object (F&F~ )
is de Sitter invariant. To show this we write

(F„(x)F (x')) = ,'E E—,~"a,a., ( ~„,(x)~ir, , (x') & . (5.3)

(Here, the covariant derivatives have been replaced by ordinary derivatives because of the antisymmetry of e„,k,.) Sub-
stitution of (5.1) into (5.3) gives

(F (x }F (x ) ) (32~3~2)—1& ij v& m'I'gg g (~~ )
—I e ik j)g+—ik hx~ +d k, . 2

(5.4)

and after performing the k integration we obtain

(F (x)F .(x')) = B2+—
4(2m. )

B j)).x Bg'g1+ e e„

8 b,x+ ('hei ')4 o
—9 ea 9) o }+29) o'9a oB (5.5)

where

7e 7 ep g 7 e ~

(F„(x}F (x')) = z z „
H2 z —2

8~'(z —1)'

)M(x, x') =0 'arccosh(2z —1},
where

(5.6)

z(x,x')= (q+ q') —hx
4gg'

Then

(5.7)

To express (5.5) in a manifestly de Sitter-invariant
form, we introduce the geodesic separation p(x, x') be-
tween the points x and x' (Ref. 5)

(5.8)

indicating that the state we have chosen is indeed de Sit-
ter invariant. We note that Eq. (5.8) coincides with the
scalar field function ())}„(x}P,(x') ) calculated for the
formally de Sitter-invariant state with a divergent two-
point function (P(x)P(x )). This is not surprising, in
view of relation (2.12).

The two-point function (5.8) can also be expressed in
the form
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—H(F„(x)F .(x')) = I[2(1—z) '+(1—z) ]g„32%.2

+[2(1—z }

+4(1—z) ]n„n ~ I,
(5.9)

where g&a. (x,x') is the bivector of parallel transport and
the vectors n„and n ar~ e defined by n„=V~(x,x') and
n =|}' p(x, x').

Sst ———f ( A '., ) &g d x . (6.1)

The action can then be written in de Sitter space as

S+Sst ,' f A——,d—[—DA'"+2(A, —1)A "['.b' ]

VI. TWO-POINT FUNCTION IN THE FEYNMAN GAUGE

The two-point function ( A;~ A .&. ) (5.2} is not de Sitter
invariant because the gauge condition Ao„——0 breaks de
Sitter invariance by picking out a preferred time direc-
tion. In this section, we show that in the Feynman
gauge, which does not break de Sitter invariance, the
two-point function is de Sitter invariant, and gives rise to
the same expectation value for (F,Fb ). To show this,
we make use of the formalism of Allen and Jacobson'
with the metric signature changed to (+ ———).

~e assume that ( A,b(x ) A, ,d (x') ) is (1) de Sitter in-

variant, (2) has the same x —+x' behavior as in fiat space,
and (3} has only one singularity, when x approaches the
light cone of x' (plus possibly singularities at infinity). In
the case of a massless minimally coupled scalar field in de
Sitter space, these assumptions lead to a contradiction,
because there is no vacuum state which is de Sitter invari-
ant. In the present case, we will see that they are entirely
consistent and lead to a unique propagator.

To fix the gauge, we add to the action (2.1) a gauge-
fixing term

d2
, +3A —[2(A —C)' —4H']P=O .

dp dp
(6.6b)

Here A =H coth(Hp)and , C = Hcsc—h(Hp) differ from
Ref. 10 because the metric signature is different. The
general solution to these equations may be written as

a =Ci [——,'(z —1) '+ —,'z + —,'z '+ —,
' (z —1) lnz]

+C2[ —,'z ——,'(z —1) ]

+C3[—(z —1) '+2z '+z +2z ln(1 —z)]

+C4(z ),
P=C[[2(z —I) ' —z ' —2(z —1) zlnz]+C2(z —1)

(6.7a)

(6.7b)

where C, , C2, C3, and C4 are arbitrary constants, and
z(p) is defined by Eq. (5.6). For comparison, the
minimally coupled massless scalar field propagator, obey-
ing the equation of motion HG=O, has a de Sitter-
invariant solution:

6 =d, [z '+(z —1) '+2 ln(z —1)—2 lnz]+dz, (6.8)

where d, and d2 are arbitrary constants.
One can now see that conditions (2) and (3) above

determine a unique solution (i.e., unique values of
C, ~C4 ) in the antisymmetric tensor case. Near z = 1

(corresponding to x on the light cone of x') and near
z =0 (corresponding to x on the light cone of the antipo
dal point of x') one finds

a = ——,
' C2(z —1) —C3 (z —1) (6.9a)

Using the method of Allen and Jacobson' one can show
from (6.5) that the coefficient functions a and P of (6.4)
obey the ordinary differential equations

d2
+3A —[2(A+C) 4—H ]a 2—ACP=O,

cfp 8p

(6.6a)

4H A' ]&gd—x . (6.2)

(H+4H') A "=0 (6.3)

In the Feynman gauge (A, = 1) the equation of motion
satisfied by A 'is then

p=C2(z —1)

near z=1 and

a=( —,'C, +—,'C2+C3+C4)z +—,'Ciz

P= —C,z ' —2C, lnz+

(6.9b)

(6.9c)

(6.9d)

This equation of motion is also obeyed by the two-point
function.

The assumption of de Sitter invariance implies that the
propagator can be expressed as

( A ah A
c'd') a[c' d']b+p [a b][c' d'] (6.4)

where a and P are functions of the geodesic distance
p(x, x') from x to x'. The unit vectors n'=V'p and
n' =V' p are tangent to the geodesic joining x to x', and
point away from the geodesic. The bivector of parallel
transport is denoted g,b (x,x ).

The equation of motion obeyed by the propagator is

near z=0. Thus, the condition that a and P have their
only singularities at z = 1 implies that C, =0 and
C4 ————,

' C, ——,
' C2 —C3. The condition that a and P have

flat-space behavior near the light cone implies that C2 ——0
and C3=(Sn. ) 'H, because for small p one finds that
p =4H (1—z).

Thus one obtains a unique solution for the two-point
function

2

( A' A' )i i
—— [(1—z) '+2z

8m.

+2z ln(1 —z )]g'[' g

(a+4H')( A'A'"
& =0 . (6.5) (6.10)
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For comparison, in the case of a massless minimally cou-
pled scalar field, these three conditions lead to a contra-
diction: absence of a singularity as z~0 implies that
d, =0, but flat-space behavior as z ~1 implies that
d, = —(16&) '0 . This contradiction is how the lack of
a de Sitter-invariant state manifests itself; in the present
case there are no such difficulties.

In the complex z plane, the two-point function (6.10)
has a branch cut along the real-z axis for 1 (z ~ 00. One
may obtain different correlation functions by evaluating
(6.10) above or below this branch cut. The Feynman
function is obtained in this way, as the limiting value
above the branch cut

lim G(z+ i e ) .
e~O+

(6.11)

The symmetric function is the average of the values
above and below the cut

lim —,
' [G(z+i e)+ G(z i e—)] .

o+
(6.12)

This has the effect of replacing ln(1 —z) in (6.10) by
ln

~

1 —z
~

. The commutator function is given by
F(t, t')b G(z) where b G(z) is the discontinuity across the
branch cut

EG(z)=lim —,'[G(z+ie) G(z —ie)]—.
a~0

(6.13)

VII. CONCLUDING REMARKS

Despite a very close connection between the massless
minimally coupled scalar and antisymmetric tensor fields,
there are also some important differences. We have seen
that in de Sitter space the field A„„has a de Sitter-
invariant quantum state, while it is known that no such
states exist for the scalar field P.

We note that the massive theories of the two fields are
entirely different. In the presence of interactions, no
symmetry prevents the scalar field P from acquiring a
mass, while the field A„„cannot become massive without
breaking the gauge invariance. This makes the antisym-

Note that although (6.10) does possess a singularity at
z=00, this point does not lie on the spacetime since

~
z(x,x')

~

is finite (although unbounded) for any choice
of points x and x' in de Sitter space.

The two-point function for the field vector F„(x ) cal-
culated from (6.10) using Eq. (5.3) coincides with Eqs.
(5.8) and (5.9) as expected. Thus we have shown explicit-
ly that in the Feynman gauge the two-point functions of
the potential and the field are well behaved and de Sitter
invariant.

We note that in addition to the gauge-fixing term (6.1)
a compensating ghost field must also be added to the ac-
tion. This has been shown to be equivalent to canonical
quantization. " The ghost field is a Maxwell field which
obeys fermionic statistics, and subtracts four degrees of
freedom from the action. One of the remaining two de-
grees of freedom then decouples automatically. Because
the ghost field (like the electromagnetic field) possesses as
de Sitter-invariant ground state, it does not adversely
affect de Sitter invariance.

metric tensor representation particularly useful for
describing Goldstone bosons in theories with spontane-
ously broken global symmetries. The simplest theory of
this kind with a spontaneously broken U(1) symmetry has
classical solutions describing cosmic strings. " ' In this
case the Goldstone field is a phase variable which
changes by 2~ around a string. In the scalar representa-
tion, the Goldstone field is multiple valued in the pres-
ence of strings. The antisymmetric tensor representation
does not have this problem; it has been recently used to
describe the interaction of cosmic strings with Goldstone
bosons in Ref. 13.

It was shown by Duff and van Nieuwenhuizen' that
the theories of a minimally coupled scalar field P and an
antisymmetric tensor field A„„are inequivalent if the to-
pology of the spacetime is nontrivial. More precisely
if the integral of the Gauss-Bonet invariant
R 'b'"R,

b,d —4R ' R,b +R does not vanish, then the
equivalence between P and A„, fails to be one to one, and
the integrated trace anomalies of P and A„„differ by an
integer, corresponding to the missing mode.

The inequivalence can arise in two ways. If the first
Betti number b, is not zero, then a vector with vanishing
curl (2.11) is not necessarily the gradient of a scalar
(2.12). In this case F" contains additional "harmonic"
modes beyond those of P. However, in de Sitter space
where b, =0 this complication does not arise.

The second way in which the scalar and antisymmetric
tensor theories can fail to be equivalent occurs in space-
times with compact spatial sections, as in de Sitter space.
In this case the scalar mode (()=const has no antisym-
metric tensor equivalent. Thus F" lacks one discrete de-
gree of freedom in comparison to the scalar case. Of
course both theories contain (roughly speaking) one de-
gree of freedom at each point of spacetime and they are
therefore equivalent in the sense that 00 = 00 —1.

The antisymmetric tensor field forms a representation
of the de Sitter group with one mode left out, relative to
the scalar case. One might think that the representation
is not complete in the absence of this mode, but this is
not the case. While it is no longer complete over the set
of scalar square-integrable functions, it is complete over
the set of square-integrable antisymmetric tensors. Thus
the demonstration that the de Sitter group has no com-
plete massless scalar representation' does not apply to
the antisymmetric tensor case.

The infrared properties of a minimally coupled mass-
less scalar field in de Sitter spacetime are similar to those
in a flat two-dimensional spacetime, ' and one can
wonder whether or not such a similarity exists for the
field A„„. The answer is very simple. All totally an-
tisymmetric tensors of rank greater than 2 vanish identi-
cally in a two-dimensional spacetime. Hence, F„„=—0
and the theory of the form (2.1) does not exist in two di-
mensions.
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APPENDIX

a.~~ =0.
Then the field equations (3.4) can be written as

(Al)

Here it will be shown that in a conformally flat metric
of the form (3.1) it is always possible to choose the gauge
condition (3.5b) in addition to the "Lorentz condition"
(3.5a). Suppose we have already imposed the gauge
(3.5a),

k'c, =k'd, =0 . (A5)

To impose the additional gauge conditions (3.5b), let us
consider the gauge transformation

A„'„=A„.+a„A„—a~„ (A6)

a„($~X"—a "A ~)=0 .

One of its solutions is AD=0 and

(A7)

with A„satisfying Eq. (2.7), so that A„' is still in the
gauge (Al). Equation (2.7) can be rewritten as

Hence, the components A ' satisfy

(A2)
A;(x ) =f;(k)e '" "+h;(k)e'"'"

with

k'f; =k'h, =0 .

(A8)

(A9)
ClA '=0, 8;A '=0. (A3) If we choose

The general solution of (A3) is a linear combination of
terms of the form

Ao, (x ) =c;(k)e '"'"+d;(k)e'" ",
where c; and d; satisfy

ikf, =c„ ikh, =d;,
where c; and d, are from Eq. (A4), then

Ao;(x)=0 .

(A 10)
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