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We study various aspects of Abelian and non-Abelian gauge field theories in flat spacetime with
the topology of S')&R" (n =3,4). We first discuss the effective potential for the electromagnetic
field in S' &(R spacetime, with the objective of finding the dependence of coupling constants on the
size L of the compactified dimension. It is first necessary to determine the stable vacuum. In partic-
ular, a charged scalar field satisfies an efFective periodic boundary condition, while a charged spinor
field satisfies an efFective antiperiodic boundary condition at the stable vacuum. Then we study the
effective coupling constants which depend on the size L of the compactified dimension at one-loop
level for @ED in S' XR3 spacetime. In the presence of a charged scalar field, the one-loop correc-
tion of one of the efFective coupling constants for the lowest Fourier component of the electromag-
netic field behaves for small L like 1/L, rather than lnL. This is because the lowest Fourier com-
ponent of the scalar field is constant in the S' direction. The effective coupling constants for higher
Fourier components have logarithmic L dependence, but due to collinear singularities (i.e., singular-
ities in self-energy occurring in the limit of zero mass when the vir'tual particles are on shell and
have parallel momenta) the coef5cient of the lnL term differs from component to component. We
also point out some ambiguities in defining the effective coupling constants. Finally we discuss the
effective potential of non-Abelian gauge theories with a charged spinor field in S')&R spacetime.
We find that if periodic boundary conditions are imposed on the spinor field in the beginning, the
local gauge symmetry will be spontaneously broken in some cases, and we give an explicit model in

which this occurs. This spontaneous symmetry breaking depends on the gauge group and its repre-
sentations, and does not occur for an Abelian gauge field.

I. INTRODUCTION

It was shown by studying the renormalization-group
scaling behavior of the effective action that effective cou-
pling constants acquire logarithmic curvature depen-
dence in curved spacetime. ' This fact was shown also by
using the partially summed form of the Schwinger-
DeWitt proper-time series of the propagator.

These analyses assume implicitly that there is no
significant curvature dependence in coupling constants
due to the infrared behavior of the theory. This assump-
tion is not always satisfied. In fact, exact one-loop calcu-
lations show that models which confirm the above be-
havior do exist, but that models also exist in which in-
frared contributions alter the coefficient of the logarith-
mic curvature-dependent term in the effective gauge cou-
pling constant. Thus, it is interesting to calculate
effective coupling constants explicitly in various simple
spacetimes. It is also interesting to see how the "size" of
the Universe influences effective coupling constants when
the spacetime is not necessarily curved.

With the above discussion as the motivation we study
quantum electrodynamics (QED) in S ' XR s spacetime,
i.e., flat spacetime with one compactified spacelike di-
mension. One can either regard this as a Kaluza-Klein
theory with a compactified dimension, or as a theory of a
field in spacetime between plates with suitable boundary
conditions. In particular, we calculate the renormalized
coupling constants to one-loop order to find their depen-
dence on the size of the compactified dimension. The La-

grangian is

,'FMNF —+—Xm„„,(M, N =0, 1,2, 3)

with

(1.2)

or

X,«„——igy (Bst ie AM
—)f M t7tttt, — (1.3)

where

F „=a A„a„A— (1.4)

Here P is a complex scalar field, g is a Dirac spinor, and
AM(M =0, 1,2, 3) is an Abelian gauge field. The metric
signature is (+———). The third dimension is
compactified; i.e., the spacetime point (x",x +L)
(@=0,1,2) is identified with the point (x",x ). We study
suitably defined on-shell coupling constants because off-
shell coupling constants would reflect the momentum
scale involved as well as the size of the "third"
(compactified) dimension.

We also discuss the one-loop effective potential to
determine the vacuum expectation value (VEV) of the
third component of the gauge potential, i.e., ( A, ), in the
stable vacuum. This is in fact necessary to calculate the
coupling constants. The calculation of the effective po-
tential also provides a deeper understanding of QED with
charged fields satisfying various boundary conditions, a
situation which was discussed by Ford. Spacetimes of
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the type studied here were also studied by Toms. The
dependence of the effective potential on an SU(n) gauge
field was studied by Hosotani, who showed that the un-
stable vacuum can decay to a stable vacuum in which
massless spinors coupled to the gauge field acquire a
dynamical mass. In the general non-Abelian case, the
stability of the vacuum was also investigated by Toms. '

Here we emphasize the fact that the boundary conditions
of the charged matter fields and the value of the VEV,
( Ai ), are closely related to each other through gauge
transformations W. e find (for the Abelian gauge field}
that if one demands that ( A

& ) be zero in the stable vacu-
um, then the boundary condition on the spinor is dynam-
ically determined to be antiperiodic.

We consider the full class of boundary conditions per-
mitted by the form of the Lagrangian of the theory (see
Sec. II), without regarding the field as a single-valued
cross section on a bundle over S'XR" (n =3 or 4). Re-
stricting ourselves to such single-valued fields on this
bundle would allow only the field configurations dis-
cussed in Ref. 6, but would not permit us to explore the
dynamical connection between such configurations, or
the possibility that other configurations may be dynami-
cally favored. In the case of QED, the dynamically
favored configurations are of the type considered in Ref.
6. However, in the non-Abelian case, other
configurations appear to be, in some cases, dynamically
more favorable.

As a natural extension of the Abelian case, we discuss
the one-loop effective potential of non-Abelian gauge
theories in S'XR spacetime. (The dimensionality is in-
creased by one because the calculation here may be
relevant to Kaluza-Klein grand unified theories. Howev-
er, in that case the theory is not renormalizable, although
the eff'ective potential is finite at one loop). Unlike the
case of Abelian gauge theories, we note that the gauge
symmetry can be spontaneously broken by a nonzero
VEV of the "fifth" component of the gauge potential. In
his well-known work, Hosotani obtained symmetry
breaking by introducing a constant phase factor in the
fermion boundary condition. We present a model with
spontaneous gauge symmetry breaking with charged spi-
nor fields satisfying originally periodic boundary condi-
tions, which was not discussed in Hosotani s work.

The rest of the paper is organized as follows. Sections
II—VI deal with QED in S'XR spacetime. In Sec. II,
the close connection between the boundary conditions of
charged fields and the VEV ( A i ) is clarified. In Sec. III,
the one-loop effective potential is calculated with one
charged field (a scalar or a spinor) to determine ( A3).
In Sec. IV the general form of the photon inverse propa-
gator is discussed using gauge invariance. Then the on-
shell coupling constants are defined. In Sec. V the calcu-
lation of these coupling constants is carried out for QED
with one charged scalar Geld. The correction to the mass
of the photon arising from the breaking of Lorentz in-
variance by the compact dimension is also calculated. In
Sec. VI, the same quantities are calculated for QED with
one charged spinor field. In Sec. VII (which can be read
after Sec. III), we turn to SU(2) gauge theories with
charged spinor fields satisfying periodic boundary condi-

Here we discuss the connection between gauge trans-
formations and boundary conditions. First consider sca-
lar QED in this spacetime.

We require that the Lagrangian be single valued:

X(x,x',x,x +L)=L(x,x',x,x ) . (2.1)

Because X is invariant under the gauge transformation

AM{x}=AM(x)+e-'a~W(x),

P'(x) =exp[iA(x)]P(x),

(2.2a)

(2.2b)

there will be a certain latitude in the form of the bound-
ary conditions relating the values of the fields at x =0
and L.

For example, consider gauge transformations with A
depending only on x [if one were to include in X a gauge
fixing term proportional to (B„A"),where p runs from 0
to 2, then only such A would be permitted]. Suppose we
impose the boundary conditions (suppressing all but xi
dependence for brevity)

P(x +L)=exp(ia)P(x ),
A~(x +L)=AM(x ) .

(2.3a)

(2.3b)

The condition (2.3b) follows from (2.3a) and (2.1) because
of terms such as AMP P in X. Periodic and antiperiodic
boundary conditions are special cases of (2.3a), with a =0
and m, respectively.

Before proceeding further, we should discuss our
viewpoint concerning boundary conditions with arbitrary
values of a. We are taking the viewpoint that the physi-
cal requirement is Eq. (2.1), and that no values of a in Eq.
(2.3) are forbidden. If Eq. (2.1) were not satisfied, then
physical amplitudes would depend on the coordinate
patch one uses (i.e., whether it contains x i =0 or L) Ifin.
addition, one were to require that the field P(x } is a
single-valued cross section of a fiber bundle with a U(1)
structure group and with base space S '

)&R, then it
would follow that for a scalar field the only value of a is
0 and for a spinor field the only values of a are 0 and m..
In order to dynamically study the relation between
boundary conditions on P and vacuum expectation values
of A3, we take the viewpoint that a can, in principle,
take any value. In terms of fiber bundles, the field P(x) is
a single-valued cross section of a fiber bundle with a U(1}
structure group and with base space being the covering
space R of S'XR . Then a is the angle of twist associ-
ated with each change of x by L. Alternatively, one
could say we are working on a bundle with base space
S' &R and a multivalued cross section. To interpret the
configuration of p on S'XR, it is our view that one can
use the values of the field on [O,L) XR to calculate phys-
ical results [provided Eq. (2.1) holds]. The physical re-

tions. The one-loop effective potential is calculated to
determine whether or not the gauge symmetry is spon-
taneously broken. In Sec. VIII, the results of the paper
are summarized and discussed. In the Appendix some
formulas used in the paper are presented.

II. GAUGE INVARIANCE AND BOUNDARY
CONDITIONS
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suits, which are gauge invariant, are unchanged if the in-

terval [O,L) is translated by a constant value in the x
direction, since that would only change the phase of P
everywhere by a fixed constant. It is interesting that the
minima of the effective potential with a single scalar or
spinor field correspond in QED to bundles considered in
Ref. 6. (In the non-Abelian case that will no longer be
true in general. ) We will find that the effective potential
V depends on a particular linear combination of a and
A3. This follows from the direct evaluation of V, which
we carry out in Sec. III. One can also deduce the depen-
dence of V on a and A3 from the following argument.

A gauge transformation (2.2) with A(x }=Ex gives
new physically equivalent fields P' and Asr satisfying the
boundary conditions

P'(x +L ) =exp[i (a+XL ) ]P'(x ), (2.4a)

Asr(x +L)=As'(x ) . (2.4b)

As(x)=A3(x)+e 'E . (2.5)

Thus, the boundary conditions for P and the field A 3 are
not separately invariant under the above gauge transfor-
mation, but the following combination is:

aL ' —eA3 . (2.6)

This is because the phase a changes to a'= a+KL when
A 3 changes as in (2.5).

If E is chosen to be 2nnL ' with. n an integer, the
boundary conditions on the fields are unchanged, while
A3 is shifted by 2mn(eL) '. As this is a gauge transfor-
mation in the sense that it is an invariance of the La-
grangian, it implies, for example, that the gauge-invariant
effective potential (or more generally, the effective action)
must be periodic in A3 with period 2m(eL) '. Because of
the interplay described above between boundary condi-
tions and gauge transformations, we can regard the phase
a in (2.3a) as arbitrary. Then the vacuum expectation
value, ( A~), will be dynamically determined [modulo
2ir(eL) '] by the minima of the effective potential, as we
show explicitly in the next section. (Alternatively, one
could regard ( A3) as freely chosen and the boundary
condition, a, on P as dynamically determined so as to
minimize the effective potential. The physical conse-
quences are the same. %'e adopt the viewpoint in which
a is freely chosen and ( A3 ) fixed by the dynamics. ) The
possible objection that configurations with different glo-
bally constant values of ( A& ) cannot be dynamically
connected because they differ by infinite energy, can be
met in the same way as in the usual Higgs mechanism.
Namely, in an actual physical system the field
configuration reached dynamically will be such that

(The transformation with A=Kx does not have period
L, so strictly speaking it is a gauge transformation on the
fiber bundle with base space being the covering space of
S')&R, rather than S'&(R itself. ) At the same time, the
gauge transforination of the vector field is A ~(x)= A„(x)
(p, =O —2) and

( A 3 ) is constant (at a value which minimizes V) over a
large but finite region of space, and ( A&) may corre-
spond to different minima of V in widely separated
domains.

When there is more than one charged scalar field
present, the relative phases in the boundary conditions
will also be gauge invariant and physically meaningful.
The case of more than one charged scalar field will not be
discussed further in this paper.

Fermions may also be present, in which case the La-
grangian has additional terms of the form

X =i/(g ie—A )g Mf—g . (2.7)

The previous discussion is also valid for the fermion field

P, if one simply replaces P by f in Eqs. (2.3a) and (2.4a).
Before turning to the calculation of the A 3 dependence of
the effective potential we remark that because A3 is tak-
en to be constant in the effective potential, by definition,
we cannot expect the result obtained for V [i.e., Eq. (3.4)]
to be manifestly invariant under gauge transformations
A(x) which make A 3 nonconstant. However, we can ex-
pect manifest invariance of V under gauge transforma-
tions with A=Ex which change A3 to a new constant
value. In the case of QED, the dynamics will not give
rise to symmetry breaking. However, as we show in Sec.
VII (which may be read after Sec. III), the dynamics can
give rise to spontaneous symmetry breaking in the non-
Abelian case.

P'DP, —

where

D =ri""B„B„—(B3 ieA3) +M—

(3.1)

(3.2)

Upon Euchdeanization (x ~ix ), the eigenvalues of the
operator D are

p + —(2~m+a}—eA3 +M (m =0, +1, . . . ),

(3.3)

where p =p~"=5""p~ . Here a appears in the bound-
ary condition of Eq. (2.3a) on the scalar field. The Gauss-
ian functional integral for the effective potential gives
V =Tr lnD divided by the spacetime volume, or

III. EFFECTIVE POTENTIAL FOR A 3

The minima of the effective potential V for A3 deter-
mine the vacuum expectation value ( A~ ) (Ref. 11). The
lowest Fourier component of the field A3 is a scalar field
in the three-dimensional spacetime having coordinates
(x,x', x ). A nonzero value of ( Ai) would shift the
value of the dimensionally reduced mass of the charged
fields present in the Lagrangian. This wi11 also give rise
in the dimensionally reduced theory to massive vector bo-
sons when the gauge field is non-Abelian.

In calculating V, we take A3 constant and A„=O
(p=O —2). Then X of Eq. (1.2) is quadratic in P and to
within a four-divergence has the form
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V=(2m) L ' g f d3p ln p2+
m = —oo

2

12

=(2~) 'L ' g fd'pin I. CX

~~+ m — eA3+2' 2m.
(3.4)

where d p =dpodp~dp2. Here co =(p2+M2)'~2, and an
infinite constant term has been dropped, since it will not
affect the value of A3 which minimizes V. The periodici-
ty of V in A 3 with period 2n ( eL ) is manifest in Eq.
(3.4).

Also, note that V depends only on a/L —e A 3, not sep-
arately on a and A3, as discussed in Sec. II. Therefore,
we will set a=0 below without loss of generality. A
nonzero a would only shift the value of A3 at the
minimum of Vby a/eL.

By using the identity [see Eq. (A5) in the Appendix]

Iln[x +(m —a) ]—lnm ]+ln(x +a )+2 inn
m = —oo

(m ~0)

=ln sinh[n(x —ia)]+ln sinh[m(x +ia)],
(3.5)

up to an infinite constant. From

=(2n) e Im d p coth —(co ie—A3)
BV 3 3 L

3

(3.7)

for A3 ——0, (3.8)

or

a'V = —(16n3) 'e L f d p[cosh (Leo&/2)]
3

we find that V has extrema at A3 =0 and A3 =a(eL).
As we mentioned above, the lowest Fourier component of
3 3 after dimensional reduction is a scalar in the three-
dimensional spacetime. Its (mass) is

8 V = ( 16m. ) 'e L f d p [sinh (L co /2 ) ]
3

we obtain
for A3=n(eL) (3.9)

V=(2m) L ' f d p lnsinh —
(co& ieA3)—I.

L
+lnsinh —(co +ieA3)

(3.6)

Thus, the minimum of V occurs at A 3
——0 and there is no

shift of the dimensionally reduced mass for the scalar
field at the tree level. The general shape of V will be as in
Fig. 1. Notice its periodic dependence on A 3.

For a charged Dirac spinor g with boundary condition
g(x +L)=exp(ia)g(x ) one has the same result as for
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FIG. 1. The effective potential V with massless charged scalar 6eld.
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the scalar case except for a factor of 2 coming from the
spin degrees of freedom and a minus sign coming from
the functional integration over anticommuting Grassman
fields. Thus, the effective potential for a spinor Geld with
periodic boundary conditions is

V&y2 = 2V (3.10)

where V is given by Eq. (3.6). As before, with a=0, one
has extrema of V, &2 at A3=0 and A3=m(eL) ', but

V&&2 has a maximum at A3 ——0 and a minimum at
A 3 —m ( eL ) ', with (mass) given by

Vi/2 =(2n. ) e L f d p[cosh (Lro /2)]
3

for A3 n.(eL)——' . (3.11)

By a gauge transformation (Sec. II}, this minimum of
V&&2 with the same mass would occur at A3 ——0 if we
were to impose antiperiodic or twisted boundary condi-
tions on the spinor field. This agrees with Ford who
found a positive (mass) for A3, with ( A3 ) =0, in the
presence of a twisted spinor Geld.

However, from the general shape of V in Fig. 1 and Eq.
(3.10) it is clear that if we impose periodic boundary con-
ditions on the spinor field then A3 ——0 is an unstable ex-
tremum, so that the vacuum will spontaneously develop a
nonzero expectation value, ( A3) =m(eL) ', or one phys-

F =(2m) Tfd p{lnsinh[(2T) '(co —eAO)]

+ In sinh[(2T) '(co+ e Ao) ]),

where co = ( p2+ M )
' ~ . The charge density is

(3.12)

ically equivalent to that value. Therefore, A3 does not
develop a negative (mass) and become tachyonic, even if
periodic boundary conditions are imposed on the spinor
field. Instead, it develops a nonzero vacuum expectation
value, rendering the vacuum stable and the (mass) of A3
positive. Later, we will show how this mechanism leads
to spontaneous breakdown of gauge symmetry in Yang-
Mills theories.

Finally, we mention in passing the correspondence of
this problem to one in thermal plasma physics. By well-
known methods, ' the free energy F of a charged scalar
field in thermal equilibrium in four-dimensional Min-
kowski space in the presence of a static, but spatially
slowly varying electric potential Ao can be obtained from
the previous effective potential V by making the changes
A 3 ~ i A—

O and L ~T ', where T is the temperature (in
units with Boltzmann's constant = 1). The periodicity of
the scalar field in the Euclideanized x direction imposes
the necessary thermal averaging. Thus, from Eq. (3.6),
we have

p= =16m. 3e f d p {coth[(2T) '(co+eAO)] —coth[(2T) '(co —eAO)]]=aA, =

=8m e fd p({exp[T '(ro+eAO)] —I {
' —{exp[T '(co —eAO)] —I )

')

= —16mT'e Ao.f d p{sinh[(2T) 'co]] (3.13)

The Maxwell's equations give

7' Ao ———p=An Ao,

where

A, n
——16m T 'e f d p{sinh[(2T) 'co]]

(3.14a)

(3.14b)

non-Abelian gauge field with massless fermions having
SU(n) symmetry can acquire a nonzero VEV in the stable
vacuum state.

IU. THK DEFINITION OF THK EFFECTIVE
COUPLING CONSTANTS

The quantity A,z is the Debye screening length. If a point
charge Q is placed in the medium, then the modified Eq.
(3.14a) has a solution'

Ao=(4vrr) 'Q exp( r/A, n) . —(3.15}

Thus, the (mass) or 8 V/BA3 is related to the Debye
screening length in the corresponding thermal problem.
In the case of a charged spinor field, one uses antiperiodic
boundary conditions in the corresponding thermal prob-
lem. The (mass) in that case is similarly related to the
Debye screening length. The effective potential for the
thermal plasma problem with a non-Abelian gauge field
was calculated by Gross, Pisarski, and Yaffe' and was
applied to S')&R" by Hosotani, who showed that a

QED in S XR spacetime is renormalizable at least up
to one-loop order. To dispose of ultraviolet (UV) diver-
gences one may use the same renormalized coupling con-
stant as in Minkowski spacetime. The renormalized cou-
pling constant ez is related to the bare coupling constant
e& by e& ——Z3ez, where Z3 is the on-shell wave-function
renormalization constant for A~ in Minkowski space-
time. '

In S')&R spacetime physical quantities such as cross
sections depend on the size of the compactified dimension
L. Although the renormalization of the coupling con-
stant described above is enough to eliminate UV diver-
gences, it is expected that some portion of the L depen-
dence of physical quantities will be expressed in terms of
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L-dependent efFective coupling constants, which are
analogous to running coupling constants introduced
when a large momentum transfer is involved. ' (These
are analogous to the curvature-dependent coupling con-
stants studied in Refs. 1 and 2.) We will define such L
dependent effective coupling constants in this section and
calculate their explicit L dependence in the following two
sections to one-loop order.

To define the effective coupling constants we consider
photon emission by a classical current J (x). Thus we
introduce the following term in the Lagrangian:

where

M) ~ r A( +, n)(X il)ei(2 nn/L)x
3x

(n~o)

A ( —n),(Xp)e i(2nn/L)x ]3

Then we find

A2(x )=A'+' '(x")+A' ' '(x")

(4.7)

(4.8)

&l=ei) Aa JsrM (4.1) The Lagrangian becomes

where the subscript 8 indicates bare quantities. We re-
quire that Jsr be conserved, i.e., 8 JM ——0. Then in Min-
kowski spacetime the production probability of a photon
with momentum in the range k to k+ d k and with polar-
ization e (with e e'er = —1) is given to the lowest order
by

——F'"'(x )F'")&"(x )4 pv

'2

+—1 2nn
A ~(n) (X a) A ~(n))l(X a)

2

d2k
dP=e2)

~

e Jsr(k, k)
~2k (2m)

where

(4 2)

where

+ 'a A,'-"(x )a~A'(0)(x ) (4.9)

J (k,k)= fd x e(k'»' l"'*J (x (4.3)

(F FMN (4 4)

Let us expand the gauge potential AN(x ) as follows:

00
n Lx

~ A (+ n)( )l) l (2nn/L)x

A ( —,n)(X p)ei(2 n/L) n]x (4.5)

where Az+'"' and AN
'"' consist of positive- and

negative-frequency modes, respectively. First we notice
that A

&
"'(x ) with n&0 can be gauged away without

changing the boundary conditions, as follows. Define the
new field AN(x ) by

A„'(x")= A„(x")—DNA(x M), (4.6)

and k =
~

k
~

. At one-loop level one finds that ei) in (4.2}
is replaced by the renormalized coupling constant ez. In
fact it is possible, theoretically, to define ei( through this
process. Thus we are led to define the effect coupling
constants for QED in S'XR spacetime by using this
process.

In the process considered above, the photon is "on-
shell, " so that any L dependence of the coupling constant
in S' XR must come only from the size of the spacetime.
Also the coupling constant approaches the Minkowski
value ez in the limit L ~ ao. Thus we find this definition

natural. However, it should be kept in mind that other
definitions are also possible and may be appropriate in

some cases (an example will be given later in this section).
Before proceeding to give the formulas for the efFective

coupling constants, we need to clarify the particle con-
tent (from the 3+ 1 Kaluza-Klein point of view) of QED
in S')(R spacetime. To this end we study the free
theory given by

A l(n)(xa) A ~(+, n)(xa)+ A l( —,n)(xa) (4.10a)

F(n)( a} g A (n)(xa) g A (n)(xa) (4 10b)

In Eq. (4.9), terms which do not contribute to fd x X
have been dropped. Thus this theory consists of one
massless vector and one massless scalar field (n =0) and
an infinite number of massive vector fields with

(mass) = 277n

L
(n =+1,+2, . . . )

dP =e„(L)
~

e J~(k, n)
~L (2m. )

where

(4.11)

J~(k, n)= fd x exp ik x i x —J~(x} . (412)
L

at the tree level when regarded as a three-dimensional
field theory in the spacetime with coordinates x, x ', x .

Lorentz invariance guarantees that the on-shell renor-
malized coupling constant is independent of the momen-
tum and the polarization of the emitted photon in Min-
kowski spacetime. In S'XR spacetime this is no longer
the case. The effective coupling constant is expected to
depend on n (since the number of nodes is invariant) as
we11 as on L. Moreover, for n =0, the effective coupling
constant for the scalar modes is expected to be different
from that for the vector modes.

The effective coupling constant for the nth Fourier
component with n&0 will be denoted by e„(L) That for.
the vector modes of the zeroth Fourier component will be
denoted by e„(L), and that for the scalar modes by e, (L ).
We define these coupling constants in such a way that the
production probability dP for photons with momenta in
the range (k', k, 2nn/L) to (k'+dk', k +dk, 2mnlL)
and with polarization e is
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W"(q , n) W (q , n)
WN( ', n)= m3"(q, n) n. (q, n)

(4.13)

(n is replaced in this definition by v or s for the zeroth
Fourier component. )

To calculate e„(L), or to find the relationship between
e„(L) and eR (the measured coupling constant in Min-
kowski spacetime} at one-loop level, one needs the photon
propagator. The photon self-energy due to coupling to
charged scalars or spinors may be written in a matrix
form as

whereq =g„~"q . Let

e'W (q2, n)=(Z, ' —l)(A( I) (q', n), (4.14)

where Z3 is the on-shell renormalization constant for the
gauge potential in Minkowski spacetime and
(E~OI) (q, n) is the lowest-order inverse photon propa-
gator (minus the gauge-fixing term) given by

(g —1)MN(q2 n)
27Tll

'2

~v 27m p

q
(4.15)

(W is the self-energy in Minkowski spacetime near
q =0.)

The subtracted self-energy m „(q,n ) can in general be
written in the form

URN(q2, n}=WN(q2, n) mMN—(q2, n)

A„g""+B„q"q" C„ql"
(4.16)

C„q D„
where A„, B„,C„, and D„are functions of q and are UV
finite. Now recall that

I

(These relations are valid to all orders. )

To discuss the propagator one needs to introduce a
gauge-fixing term into the Lagrangian. We choose it to
be

(4.20)

Notice that this is different from the usual gauge-fixing
term taken in Minkowski spacetime, which is

(4.21)

W (q, n) =i f d x (0
~
T[j™(x)j (0)]

~

0)

. 27M
&(exp iq x —i x (4.17)

We find the gauge-fixing term (4.20) more convenient
especially in discussing gauge symmetry breaking in Sec.
VII (Ref. 17).

For n =0, Eq. (4.19) becomes

where j™(x)is the conserved electromagnetic current
operator in the theory. The conservation of j™(x),i.e.,
BMj™(x)=0 implies

Ao ———q 80,2

Co ——0.
(4.22a)

(4.22b)

q„W (q, n) W(q, n—)=0 .

Hence we have (since qNm „=0)
A„+B„q — C„=O,

(4.18)

(4.19a)

(4.19b)

AM —Z —& j'2AM
R 3 B (4.23)

By substituting Eq. (4.22) in (4.16) we find the bare in-
verse propagator for n =0 with the gauge-fixing term
(4.20) as

To dispose of UV divergences we perform the renormal-
ization

1(Z,—'+eiIBO)(q&q" q'1" ) q—"q"— —
(g —1)MN( 2 0) CX

Z3 q +egDp
(4.24a}

Then the renormalized propagator for n =0, EMN(q, 0), is obtained by inverting this matrix and dividing the result by
Z3. Thus

~MN(q

1

1+eRB,
qpqv—'g „I &(lR+ RBe)0—pv 2 q

1

q +eRDp

(4.24b)
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where exp =Z 3 cK.
—1

In order to identify the effective coupling constants, note that the squared S-matrix element appearing in (4.11) is

~
( 1 photon, out

~

Oin)
~

. Using the Lehmann-Symanzik-Zirnmermann (LSZ) reduction technique' ' at one loop, one
finds that the effective coupling constant defined by (4.11) is e,(r ——(residue of pole of bare propagator at q =0)e2). Then
from (4.24b) with EM)v=Z3 '(62) )MN we obtain

2

e, (L}=
1+e„B0

2

e, (L)=
1+e„'D,' '

where

B =Bp+B1q2+

Dp =Dp +Dpq +

(4.25a)

(4.25b)

(4.26a)

(4.26b)

Recall that we have found in the previous section that a finite mass is generated for the scalar modes at one-loop level
by studying the effective potential. Thus Do is nonzero and the (mass) is given by ea Do.—

For n +0, C„and D„can be expressed in terms of A„and B„ in the self-energy (4.16) by using (4.19). Thus we have

A „vi)'"+B„q"q"

W~ "(q', n) =
(A„+B„q )q"

277n

where

(A„+B„q )q"
27Tn

D„
(4.27)

D„= q (A„+B„q2) (n&0) .
27Tn

(4.28)

Then using the same methods as before, the renormalized propagator is calculated to be
'2

h„„(q,n) =— qpqv
2

q—2 277'n

L
2 pqv

( 2)2
(4.29a)

b3 (q, n)=a+ q„(q ) (4.29b)

1 2~n
b 33(q, n) = —a„

+eg D~
(q2)2 (4.29c)

Near the mass-shell this becomes to one-loop order

e")Mb, „(q',n)J"(q, n)

(i)Jv(qa n)

277n

L
(1—eR2A„') q'— —e~ An

2 0

where

A„—:A„+ A„'Q„+
'2

2&n

LQ. —=q—2 2

By taking the Landau gauge az ——0, we find that the
propagator 5„,( q 2, n ) corresponds to a massive vector
field for each n in three dimensions which has two polar-
ization states for each momentum. The physical polar-
ization vectors are e'M' (i =1,2) and satisfy E„"q"=0,
e3 ——0, and e&'E""=—1 (not summed over i) This.
agrees with the analysis at the tree level earlier in this
section. Unlike the n =0 case, the propagator b,33(q, n)
does not correspond to a physical scalar particle in three
dimensions. '

When the rate of production of real photons by a clas-
sical current is calculated using the reduction formula,
the relevant part of the propagator is

(4.31)

(4.32a}

(4.32b)

E(i)Mi)( (q2 n)JK(qa n)

q— 27Tn

L
—e~ A„2

e"J"(q,n)
'2

(4.30)

In the same way as in the case with n =0, we find
2

e„(L)=
1 —e~ A„'

The shift of the (mass), bM, is given by

(4.33}
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AM =e~ A (4, 34) where

which will turn out to be nonzero in general.
As we have mentioned before, other definitions of the

effective coupling constants are possible. Let us give an
example below for n&0. First note that by letting
AM~1/e& AM we have

1

2 FMNF
4e~2

(4.35)

Then the lowest-order inverse propagator (minus the
gauge-fixing term) is

P, v P,v 2 0
(g~ —1)MN( 2 n)q, n

eg

1+ 2
eg

2 IT'n

L

2m.n

'2
2%n

q

(4.36)

Notice that the first term corresponds to
—( I/4ei) )F„„F""and the second to —( I/4ei) )F„3F" in
the Lagrangian. The one-loop contribution to the inverse
propagator is

E„=D„ /q (4.38)

2

e (L}=
+e

2

e (L)=n(2) 1+ 2EO+eR n

(4.39a)

(4.39b)

where

B„=Bn
I g& () ~

n

E„=En
I g2 0

Jf

(4.40a)

(4.40b)

The coupling constants e„(,)(L) and e„(2)(L) may be re-
garded as the on-shell effective coupling constant for F„,
and that for F„3, respectively. [For n =0 eo(()(L) coin-
cides with e„(L) whereas eo(2)(L) cannot be defined. ] We
will find below that the efFective couplings in (4.39a) and
(4.39b) differ from the e„(L)defined earlier.

Then it seems natural to define effective coupling con-
stants as

MN 2~(, ) (q, n)=
Z3

—1 (6(())') (q, n)+n„(q, n),

1+e~2E„
+

2mn
&

2mn

L
~

L,

27Tn

I. q

(4.37b)

(4.37a)

where W~ (q, n } is given by (4.16). By summing the tree
and one-loop contributions we find the inverse propaga-
tor (minus the gauge-fixing term) to one-loop order as

q "q"—g""q 0
( gi —1 )MN( 2

2

V. SCALAR-LOOP EFFECT

In this section we calculate the effective coupling con-
stants defined in the previous section as well as the mass
shift to one-loop order for the case where the electromag-
netic field is coupled to a scalar field with mass M. [See
Eq. (1.2).] We explicitly evaluate the self-energy nMN for.
this theory to one-loop order, thereby obtaining the
coefficients in Eq. (4.27). We then identify the L depen-
dence of the effective coupling constants and mass shifts
using Eqs. (4.25), (4.33), (4.34), and (4.39).

Let us start with the vector modes having n =0.
W'(q, O) is the sum of the two Feynman diagrams shown
in Figs. 2(a) and 2(b). The contribution from the diagram
in Fig. 2(a) is

2l
m(,")(q,O) =—g f (2n. } p— 27Tm

L

2

—M +is
(5.1)

where d p =dp dp'dp . We first perform the Wick rotation p ~ip . In order to use dimensional regularization we
change the dimensionality of the integral from 3 to d =3—2e, where e is an infinitesimal positive number. Then we
have

~v( 2 0) 2p y I ddp

(2~)"
(5.2)

where p =g„~"p and a momentum scale p, has been introduced to make the dimensionality of H"(q, n) independent
of d. This integral can be evaluated as
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W(,")(q,O) =v 2 2I
r 1 ——d

2

(4~)'"
2 27TmM+

'2 d/2 —1

(5.3)

For some purposes it is also convenient to use Eq. (Al) to write (5.2) as

(5.4)~v( 2 0) 2ef P +2f P Pv
dd d 1

(2m) a) (2m) co

where co~ is given by co& ——v p +M and d has been set to 3 in the second term. In a similar manner the contribution
from Fig. 2(b) can be evaluated for small q2 as

77(b)(q 0)=v 2 2I
L

I 1 ——d
2

(4~)'"
2 277mM+

' 2 d/2 —1

r 2 ——
26 2

3L (4~)d/2
2 27TmM+

'2 d/2 —2

(q"q"—q ri"")+O(q ) . (5.5)

Hence, it follows that

W"(q, O) =Bo(q"q" qadi""), —

where

(5.6)

By using Eq. (A4) we find

—0 p d p
12 (2 )d 3

I 2——
26 2

~p P
(4n. )

2 27TmM+
2 d/2 —2

1 d3p 1 1 1

6 (27' ) co e P 1 4cop h2
2

(5.7)
Now the first term is

(5.10)

By using Eqs. (4.14), (4.16), and (4.26a), we find

Bt——Bo+(Z3 ' —I)/ea . (5.g)

p2E' d dp 1I
(2n ) P

1 1 M——y —ln
48~' 4~p

'2 2 (5.9)

To separate the second term, which is the L~(x) limit
(the Minkowski-spacetime limit) of Bo and find Bo, we
cast this equation back to the form involving a momen-
tum integration as

(5.11)

where y is Euler s constant. This is the Minkowski-
spacetime limit of 80. Hence0

egjM 1 M2
Z ' =1+ ——y —ln (5.12)

48~2 p 4~p 2

and the second term in Eq. (5.10) is Bo. By using spheri-
cal coordinates in momentum space and integrating by
parts, we find

o 1 " dy 1

24~' «y(y+ I) e~~~+'
oo

g Eo(ma),
12m

(5.13)

(bj
FIG. 2. (a) The Feynman diagram corresponding to

m~,")(q,0). (b) The Feynman diagram corresponding to
7T(b)(q ~0).

where a=ML and ICO(x) is a Bessel function of imagi-
nary argument. Equation (All) has been used. Now we
are interested in the small-L behavior of the efFective cou-
pling constants, which would be characteristic of theories
with microscopic compact dimensions. By using (A12)
we have
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M L
80 = +ln, +2@+0(M'L')

48 ML (4n )
(5.14)

for small L. Hence we have, from Eq. (4.25a),
2

e,'(L) = (5.15)
M2L 22

1+ +ln +2y48~' ML (4~)'

where e& is given by ea ——Zalea with Zi in (5.12). ' The
logarithmic dependence of Bo, and hence that of e„(L),
on L is of the form which follows by assuming the ab-
sence of logarithmic singularities in 80 defined by (5.6) in

the M —+0 limit (i.e., no lnM term). Thus the logarith-
mic dependence of e„(L) on 1/L is of the same form as
that of the ordinary effective coupling constant on the
(momentum) in Minkowski spacetime. This logarithmic
term is overwhelmed by the term which behaves like
1/L. Also notice that 80 given by (5.13) is always posi-
tive and therefore e„(L) is always smaller than e„.

The origin of this singular term can be explained as fol-
lows. When L is very small, from Eq. (4.9) one can see
that the modes of the scalar field with n &0 become very
massive and can be dropped from the effective low-energy
Lagrangian, which is then independent of x . Then the
theory reduces to (2+1)-dimensional QED with e/~L
as the coupling constant, with A3' ' acting as a scalar
field. The dimensionless constant that characterizes the
theory is e /ML. Therefore the n-loop contribution to
the kinetic term of the gauge field in the effective La-
grangian behaves like (e /ML)". This also implies that

I

the one-loop result cannot be trusted if L is so small that
e /ML is of order 1.

The quantities D0 and D0, which are necessary to find

e, (L) and the mass shift for the scalar modes, can be ob-
tained by calculating ir (q, 0). After some calculation,
one finds

(2n }
P

D'=80 — L f ~ dP
0 0

48m sinh —co
2

(5.16a)

(5.16b)

where Eq. (A20) has been used. Hence by using (4.25b)
we have

e, (L)=
2e

eZ M2
1+ ln, +2y

48 (4m )

. +0(M'L') . (5.17)

Notice that the term which behaves like 1/L is absent
and that the logarithmic dependence of e,~(L) on L is the
same as that of e„(L). The (mass) obtained from Do
agrees, of course, with the one from the effective poten-
tial.

Let us go on to calculate e„(L) with n =El, +2, . . . .
By calculating W"(q, n) one has

(2ir) ~z (2ir) co& e

I 1 ——d
22

(4~)""

'2 d/2 —1

+I„Q„',f dx M + (m xn) x(1—x)Q„— —
0 Lm = —oo

(5.18a)

r 2——
1 2

8 =—
'2

f dx (1—2x) M + (m xn) x(1——x)Q2—
0 L

m = —oo J

d/2 —2

(5.18b}

where

Q2 q2

'2

(5.19)

I

the mass shift b,M follows from (4.34) as

d322
(2ir)'co

(5.22)

First using the obvious formula

f dx f(xn —m)= f f(y)dy, (5.20)

which is valid for an arbitrary function f (x), we find

d p 1

(2n) co
(5.21}

where A„' (i =0, 1, . . . ) is defined in Eq. (4.32a}. Then

oo

Ko(ma),
4~4n 2 m' (5.23)

Notice that this mass shift is different from that for the
scalar with n =0 but that it is independent of n (for
n ) 1). The positivity of hM ensures that these modes
are not tachyonic. That is, the four-momenta
(q",2m n /L) of these modes are timelike.

Next, we find, for n &0,
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where a=ML and we have used Eq. (A13). We also have

n m=1 m
(5.24)

where B„ is defined by Eq. (4.40a). Then by using (A18)
we find, for small L,

e„~2~(L)=2
2

eR

e„11— ln
24~' n' g(2}—n

(5.28)

e„(L)=

where

2

eg1+
2

ln — g'(2)
48 n

(5.25)
These are different from e„(L}in an important respect.
That is, while e„(L) is always larger than ez, e„~,~(L},
and e„~2~(L}are always smaller than e„.

g'(2) = —g
m=2 ~ (5.26)

Notice that e„(L) approaches ez for n ~ oo. This is
reasonable because the modes with large n are expected
to be affected only by the local properties of spacetime.

If there were no singularities at M =0 in the loop in-
tegral, the logarithmic dependence of e„(L) on L would
be the same as that of e„(L) and e,2(L). There are indeed
such singularities in the x integration for A„(n&1) as
can be seen from Eq. (5.18a). These singularities reflect
the fact that the intermediate scalar particles can be on
shell and collinear in the limit M ~0.

The effective coupling constants defined differently, by
means of Eqs. (4.39a} and (4.39b), are found to have the
following values:

2

VI. SPINOR-I. OOP EFFECT

pM pp (m+ i)277
(6.la)

gM p 27Tn
(6.1b)

In Sec. III we have seen that the spinor field obeys an-
tiperiodic boundary conditions in the stable vacuum in
the Abelian gauge field theory with one charged Dirac
spinor field when the VEV ( A3 ) is gauged away. We use
this representation with antiperiodic boundary conditions
on the spinor field from the beginning here in calculating
the effective coupling constants and the mass shifts.

The spinor-loop integrals can be expressed in terms of
integrals already considered in the scalar case. Let

«(1)
2

2 2
R 1

1
M L 6 ((2)

24~2 n2 4

(5.27}
piM PM+gM

Then we have, for the spinor self-energy,
I

(6.1c)

t " d'
~N( 2 } y f P T M N

(2m) P' —M+ie P —M+ie

2i " d p (P+P') (P+P') 2g
(2m ) (P' M+i e)(P —M+i e) —P M+ i E—

(2~)d (p2 M2+i&)(p~2 M2+i&)
(6.2)

1

e ' —1

1

cosh —co
2L

2
Now define

The first term is —2 times the bosonic one-loop contribution with antiperiodic boundary conditions. It can readily be
obtained from the results in the previous section by letting co ~co +irrIL. For example,

L L 1 1
coth —~ —+tanh —u,s' Lcc) L+ 1 sinh2 —co

2

2i 2, ~ d p 1

(2m ) (P M+i s)(p' M+i e)— — (6.3)

(Recall that there is an implicit n dependence in Q .)
We find

1 1 M
Jo —— ——y —ln

8~' 4mp

1 1 MJ„= ——y —ln
8H & 4mp

(n &0), (6.4b)

oo

g ( —1) +'Eo(ma),
m=1

(6.4a)

where a =ML.
Now let us proceed to find the effective coupling con-

stants. For n =Oone has
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W"(q, O) = 1 1 M——y —ln
12m' 4~p

3
~M'=4 2 d P 1

(2m. ) co e ") +1
(6.11)

oo

g ( —1) +'K()(ma}
m=1

Note that this quantity is positive as in the case of scalar
QED. Similarly, A„' can be obtained as

Hence we find

X(q"q ri"—"q2)+0(q4) . (6.5)

00
( 1)m+1

A„'=
4 2 g K()(ma) .2n-'n', m'

For small L we find, using (A18),

(6.12}

oo

B(0)—— g ( —1) +'Ko(ma) .
m=1

(6.6)

1 ML 24
A„' = ln +2y+ )(,

48~ n 4

where

(6.13)

From Eq. (A17) we find, for small L,

o 1 MLB =
z ln

&
+2y

12m (4m )
(6 7)

Then we have

2

e„(L)=
eg M~L ~

1+ ln +2y
12)r (4ir )

(6.8)

There is no term proportional to 1/L and the logarithmic
term is dominant when L is small. This is because the
spinor field obeys antiperiodic boundary conditions in the
gauge with ( A& ) =0. The logarithmic dependence of
e, (L) on 1/L is of the same form as that of the usual

effective coupling constant on the (momentum) in Min-
kowski spacetime. In contrast with the case with a
charged scalar field in the previous section, Bo in (6.6) is

always negative and e„(L) is always larger than ez.
Next the calculation of n (q, O) yields

( —1) +'lnm = ——,'[g'(2)+g(2)ln2] . (6.14)
m =2 Nl

Hence from Eq. (4.33) we have

2

e~ 241+ ln +2y+
48~2n 2 4 7r'

e„(L)= (6.15)

e„(,)(L ) =2
2

eg M~L ~ 24
1 — ln +2y+

2477 n 4 7T'

(6.16)

A„approaches 1/6L when L becomes small. Thus,

The qualitative features of e„(L) are the same as those in
scalar QED.

Finally, let us give e2(1)(L) and e2(2)(L), defined by
(4.39a) and (4.39b), in this model. The forinula B„=2A„'
is valid here as well. Hence we have

D'=L, J "~
(2m) 2Lcosh —co

2
oo

D(') = — g ( —1) +'K()(ma)
m=1

(6.9a) n(2) (L)2 eg

eg 24+2y+, A, —n'
24a2n 2 4 7T'

(6.17}

p
24~ o 2 L

cosh coP

(6.9b)

These effective coupling constants are quite different
from e„(L) in L dependence as in the case of scalar QED.

where the Do are defined in (4.26b). From Do we find
that the mass of the scalar modes coincides with that ob-
tained in Sec. III from the effective potential. The second
term in (6.9b) approaches —I/12)r in the L~O limit.
Hence we have, according to Eq. (4.25b),

2e
e, (L)=

eR M2L 2

1+ ln +2y+ 1
12 (4m. )

(6.10)

The effective coupling constants e„(L) and the mass
shift EM2 of Eq. (4.34) can be obtained in a similar
manner. One immediately obtains the mass shift, which
is n independent, by following the rules given above Eq.
(6.3):

VII. GAUGE SYMMETRY BREAKING

In Sec. III, we showed that if periodic boundary condi-
tions are imposed on the charged spinor field, then the
gauge potential A„ in 5')&8 spacetime develops a
VEV. If this VEV is gauged away, then the spinor field
obeys antiperiodic boundary conditions.

In this section, we discuss a similar phenomenon in
non-Abelian gauge field theories. Aspects of this
phenomenon were first discussed by Hosotani for SU(n)
gauge theories. Here, in contrast with electrodynamics,
we show that it leads to spontaneous breakdown of local
gauge symmetry, in the sense that the originally massless
modes of the gauge field become massive in some cases if
we initially impose periodic boundary conditions on
charged spinor fields. (This possibility was not discussed
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where

1
(a A'") i—a"c '(D c)',

2a
(7.1)

(Dsrit)'=aiirg' ie (—T')' AM

D c)~=a co+ef~ ~A cP P p

F'„=a A„' a„A„—'+f"A' A„',

(7.2a)

(7.2b)

(7.2c)

and M, N =0, 1,2, 3 or 5 and p, v run from 0 to 3. The
field c' and c are the Faddeev-Popov ghosts. The struc-
ture constants f' ' of the gauge group and the generators
(T')J satisfy

[T~ Tb j—if~s~T~

The spacetime point (xl', x'+L) (@=0,1,2, 3) js
identified with the point (x",x ) and both A and g'
satisfy periodic boundary conditions.

Let us define a matrix AM by

in Hosotani's work. ) We study this phenomenon in
S')(R spacetime with its possible relevance to Kaluza-
Klein-type grand unified theories in mind.

The theories we study here are given by Lagrangians of
the following form:

,'—F~—~F +if;(gP)™g,P'

AM(x +L)=AM(x ),
P'(x +L)=—g'(x ),

(7.10a)

(7.10b)

which are antiperiodic in the fermion field P'.
One can see this as follows. Consider the term in the

Lagrangian having the form

i7iy (al ieT'A—M')Q',

Hence the gauge-invariant effective potential is single-
valued under these changes in A5. It follows that the
effective potential must be a function of

g ( A ~, L) =exp( ie—T'A &L)

since this has the desired single-valuedness and any func-
tion having that property can be expanded as a general-
ized Fourier series in positive and negative powers of
g ( A5, L).

The next step in our argument is to show that if the
gauge group is such that there exists a choice of E'=K'
for which g(K,L)= —1, then one can make a gauge
transformation from the initial periodic boundary condi-
tions for which the minimum of the effective potential is
at a nonzero value of A &, to new boundary conditions
such that the absolute minimum of the effective potential
is at A

&
——0. These new boundary conditions are

AM =iT'AM (7.4)

Then the Lagrangian (7.1) is invariant under the follow-
ing gauge transformation:

AM g AMg gaMg
—1 ~ —1

e
(7.5a)

(7.5b)

where the spacetime-dependent matrix g is an element of
the gauge group and g is a column vector having com-
ponents g' in this representation.

A natural initial choice of boundary conditions is that
g and AM be single valued (i.e., periodic in x with
period L). Then under a gauge transformation (with K'
constant}

(7.6)g(K,x )=exp( ieT'K'x ),—

the gauge transformation of AM is

A„'(x)=g(K, x )A„(x)g '(K, x ) (p=0 —3),
A ~ (x ) =g (K,x )

A 5(x)g '(K, x ) i T'K' . —
(7.7a)

(7.7b)

The boundary conditions of the new fields AM and P' be-
come

g(x )—=exp( ieT'( A')x ) . — (7.11)
A~(x +L)=g(K,L)A~(x )g '(K, L),
f'(x'+L) =g (K,L)it'(x 5),

(7.8a)
Then the new boundary conditions are

(7.8b)
AM(x'+L) =g (L)A~(x')g '(L),
g'(x'+L) =g (L)P'(x') .

(7.12a)

(7.12b)
where the coordinates x" are suppressed.

If K'—=K+ is such that g(K+,L)=1, the boundary
conditions are unchanged while A5 changes in accor-
dance with Eq. (7.8a) as From Eq. (7.12a), we find that if g(L) is not in the

center of the group then the boundary condition on AM
is not periodic, so that some massless modes of the gaugeA' = A —iT'K' (7.9)

with Axr' constant. The value of A„' (Ju=0 —3) can be
gauged away with no physical consequences. By di-
agonalizing the Hermitian matrix T'A5' one can write
the M = 5 term in the above expression as a sum of terms,
each having the form of a fermion kinetic term with cou-
pling to an Abelian gauge field. As shown earlier, the
minimum of the effective potential with these antiperiod-
ic boundary conditions on g' occurs at A 5 =0. It is also
true, as we will see later, that the part of the one-loop La-
grangian involving only the gauge field also has its
minimum at A

&

——0. In this case, massless modes of the
gauge field A „' remain massless and there is no symmetry
breaking.

Suppose now that there exists no choice of E' for
which g(K, L) is —1. Then in the theory with initially
periodic boundary conditions on the gauge and fermion
fields, we can no longer state in general where the
minimum of the effective potential occurs. That will de-
pend on the gauge group and the fermion representation
(we will consider examples below).

Let ( A ~ ) be the VEV of the gauge field with periodic
boundary conditions. One can make ( A 5 ) =0, by means
of the gauge transformation
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( yi + i.q2)
2

where p' and f, the first two components of the adjoint
representation, are each Dirac spinors. Then the quadra-
tic part of the fermionic Lagrangian in Eq. (7.1) becomes

&f I ...~=il+y"a„p++ip+y'(a, +ieA', )g+ My+q+-

+f yap + f y(a A)/-
—

MAL(t

Q + t p7y"a„g 'M@$3,— (7.14)

field A„' become massive; i.e., the gauge symmetry is
spontaneously broken. Hence, if one considers the theory
with periodic boundary conditions and finds that ( A ~ ) is
nonzero at the minimum of the effective potential, then
this implies symmetry breaking if and only if g (L) of Eq.
(7.11) is not in the center of the gauge group. We consid-
er next two examples, one in which g (L) is in the center
of the gauge group which was considered earlier by Hoso-
tani, and a new one in which g (L) is not in the center of
the gauge group, thus implying spontaneous symmetry
breakdown.

Let us take SU(2) gauge theories (f' '=e' ') with one
charged spinor field. First we study the case where the
spinor field is in the adjoint representation of SO(3) (for
which —1 is not in the group) and then the case where
the spinor field is in the fundamental representation of
SU(2) (for which —I is in the group). In the former, the
gauge symmetry will be broken whereas in the latter, it
will remain unbroken.

If the spinor field is in the adjoint representation, we
have (T')i= ie"J in Eq—. (7.2). One may assume that
the VEV ( A 5 ) is proportional to 5' without loss of gen-
erality because of the gauge invariance. To evaluate the
effective potential to one-loop order we need only the
quadratic terms in the Lagrangian with respect to the
quantum fields ( A 5 will be treated as a constant classical
field since quantum effects due to A 5 can be neglected at
one-loop level).

Now let

where y here is i times the ordinary Hermitian y . The
part of the effective potential due to the spinor loop can
be calculated in the same way as in Sec. III. The result is

V = —— lnsinh —(co ie—A~)
4 d p . L

f L (2 )4

+ln sinh —(coq+ie A q ) (7.15)

(A5 +i A5),
1

2
(7.16a)

A„*=— (A„'TiA„) .1
(7.16b)

Then the quadratic part of the Lagrangian in (7.1)
relevant to our calculation is

X(ad'p —a5A " ieAS—A ")

—,(a„A+ —a„A+ )(a&A
——a"A -~)

—'a A "a A„- .
a

(7.17)

Note that the Faddeev-Popov ghosts do not contribute to
the effective potential because the gauge-fixing term has
been chosen in such a way that the ghost Lagrangian
does not have A

&
dependence.

Now the above Lagrangian can be written in momen-

tum space as follows:

up to an infinite constant. Here co&='(/p +M with

p =5„~"p . In addition there is a contribution to the
effective potential from the gauge-field loop. To calculate
that contribution, define

r

—q ~" + 1 ——q"q + +eA, g~ q" +e
1 p 2mn 3, 2mn

A+rC~~A —=—(A+ y+)
v 2' n 3

q +eA5 q

A
(7.18)

up to a factor of order unity. The determinant of the ma-
trix K is

2'3 m = —oo

detK= —(q ) —q + +eA5z z z 2~n
a L

(7.19) ln sinh — p —ieA 5

3 d p . L . 3

L (2'�) 2

Hence the part of the effective potential due to the
gauge-field loop, which is the sum of ln detE for all five-
momenta (q",2vrn/L) in the Euclidean spacetime, is

+ln sinh —(
i p ~

+ ieA 5 )
L 3 (7.20)
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up to an infinite constant. The effective potential V is the
sum of Vf and Vg. If the mass M of the spinor field is
small enough, the effective potential Y takes its maximum
value at A ~ =0 and its minimum value at A ~ =m /eL. In
particular, if M =0 we have

V= —— lnsinh — p —ieA5
1 d p . L . 3

L (2n) 2

+lnsinh —(
~ p ~

+ieAs) . (7.21)

Then the fie}ds g* and AM obey efFective antiperiodic
boundary conditions, and the massless modes of A&
disappear while those of A„remain intact. That is, the
local SU(2) gauge symmetry is spontaneously broken to
U(l), in the sense that the gauge fields A„* acquire mass.
(In the present gauge, the mass is a consequence of an-
tiperiodic boundary conditions on A„; in the original
gauge with A„' periodic, the mass is generated by a
nonzero VEV of A5. )

Next let us consider the case where the spinor field is in
the fundamental representation. Then (T'}J in (7.2) is
(r'}~./2 where r' is the Pauli spin matrix. In particular

1
T ——

0 (7.22)

Writing the spinor field as a column vector in isospin
space

(7.23)

we have

(Dsg)*= Bq W —A s2
(7.24)

Hence the ferrnionic contribution to the effective poten-
tial is

V = —— lnsinh —co ——A5
4 d'p . L ie

L (2~)' 2 ' 2

+lnsinh —co +—A
L ie

2
(7.25)

Then the absolute minimum of the effective potential is at
A~ =2m/eL since both Vf and Vg have their minima
there. At this minimum the field f' defined by (7.8b)
satisfies antiperiodic boundary conditions while the field
A~ defined by (7.8a) satisfies periodic boundary condi-
tions. Therefore all the massless modes of the gauge field
remain massless and the gauge symmetry is unbroken.
Also g (K,L) is —1 as expected.

The VEV ( A ~ ) =2m /eL breaks the global SU(2) sym-
metry corresponding to the (non-gauge-invariant) con-
served current

j' =e' (F A' +B A A'5" )

+(fermion-bilinear terms) . (7.26}

If one considers the analogy with the Higgs mechanism,
this fact would appear to be in contradiction with the ab-
sence of local gauge symmetry breaking. However, al-
though local gauge transforrnations do not alter the
length of a scalar Higgs field, we do have available in the
present case a nonperiodic gauge transformation which
takes (As) to zero. Any current obtained from j in
(7.26) by a gauge transformation with a parameter de-
pending only on x is also conserved. We want the
current thus obtained to satisfy periodic boundary condi-
tions, so that the charge obtained from it is independent
of which interval of length L we choose to integrate over
in the x direction. In the present case, the unbroken
global SU(2) symmetry is generated by the charge that is
obtained from Eq. (7.26) through the gauge transforma-
tion (7.5) with the matrix g (K,x ) given by Eq. (7.6).

VIII. SUMMARY AND DISCUSSIONS

In this paper we first studied the one-loop effective po-
tential of QED in S'XR spacetime. In particular, the
"vacuum" state with noncausal propagation of the pho-
ton, which occurs when periodic boundary conditions
are imposed on the charged spinor field and ( A 3 ) is tak-
en to be zero, is unstable and can decay into the stable
vacuum where, with a suitable gauge, ( A 3 ) is zero and
the spinor field satisfies antiperiodic boundary conditions.

We then studied the "on-shell' coupling constants for
QED with one charged field in the same spacetime.
Especially we found that the one-loop correction to the
coupling constant for the three-dimensional vector modes
of the lowest Fourier component of Asr behaves like 1/L
(L is the size of the "third" dimension) for small L for the
case with one charged scalar field. This behavior is due
to the modes of the lowest Fourier component of the sca-
lar field.

We showed that there are more than one possible
definition of "on-shell" coupling constants for higher
Fourier components. Two seemingly natural definitions
led to different coupling constants. Their dependence on
the size L of the compactified dimension was found to be
logarithmic, but in each case different from the logarith-
mic dependence expected from the UV divergences, due
to collinear singularities. Also these coupling constants
were found to coincide with that in Minkowski spacetime
in the limit where the number of nodes in the
cornpactified direction is infinite.

For the lowest Fourier component in both the scalar
and spinor cases, the logarithmic dependence of the
effective coupling constants on L is the same as that ex-
pected from the UV divergences. In the spinor case, and
for the three-dimensional scalar mode of A~ in the scalar
case, this logarithmic dependence is the leading behavior
for small L.

We did not extend our analysis beyond one-loop order.
It wi11 be interesting to find whether the logarithmic
dependence of some of the "on-shell" coupling constants
on the size of the compactified dimension is valid in the
leading-logarithmic approximation.

Then we turned to non-Abelian gauge theories and
pointed out that spontaneous symmetry breaking can
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occur with single-valued, or periodic, boundary condi-
tions imposed on the gauge and fermion fields. If ( A& )
minimizes the effective potential, then spontaneous gauge
symmetry breaking occurs if g(L)=exp(ieT'( A 5 )L) is
not in the center of the gauge group. We also showed
that if —1 is an element of the gauge group in the repre-
sentation to which the spinors belong, then ( A ~ ) will be
such that g (L ) = —1 (in which case no symmetry break-
ing occurs).

Finally, as examples we discussed SU(2) gauge theories
with charged spinor field satisfying periodic boundary
conditions. We showed that if the spinor is in the adjoint
representation, the gauge symmetry is spontaneously bro-
ken.

Bars and Visser have proposed a mechanism for gen-
erating a small coupling between matter fields and the
gauge boson which is part of the metric tensor in five-

dimensional Kaluza-Klein theory. In their mechanism,
another gauge field is introduced. It obeys periodic
boundary conditions and is assumed to have a small VEV
of the "fifth" component, which generates a small cou-
pling between the matter field and the Kaluza-Klein
gauge field. The mechanism discussed here would gen-
erate a VEV for the extra gauge field considered by Bars
and Visser. This VEV would, of course, be too large for
their purpose, but may be relevant, for example, for
breaking SU(5) at the grand unification scale in Kaluza-
Klein grand unified theories.

It is interesting that it is possible to impose a non-
periodic boundary condition

APPENDIX: USEFUL MATHEMATICAL FORMULAS

and

1 m=—cothmx
x +m

(A2)

oo 1

„x +(m —a)

1 x —ia x +ia+
(x ia)—+m (x+ia) +mz

By differentiating Eq. (Al) one obtains

CO
1

„[x +(m —a)2]2

[cothm(x ia ) +—cothm (x +ia )]4x

(A3)

7T2 1 1+ . 2 +
4x sinh n(x ia} —sinh n.(x +ia)

(A4)

The reference for this section is Ref. 25. In Sec. III we
used

1
[cothm. (x —ia )„x +(m —a}

+cothm. (x +ia)] . (Al)
This can be shown by using

AM(x", x'+L)=ga A~(x",x )gii ', (8.1) Multiplying (Al) by 2x and integrating it from x =0 to x,
one has

where g& is a constant matrix in the gauge group, from
the beginning. In other words, one can introduce gauge
symmetry breaking discussed in Sec. VII by hand. We
expect that no inconsistency will arise by imposing such a
boundary condition since the Lagrangian and the bound-
ary condition are still invariant under gauge transforma-
tions with g (x",x ) satisfying the boundary condition

Iln[x +(m —a) )—ln(m —a)2j

=ln sinhm(x —ia)+ln sinhm(x +ia) —ln sin na .

(A5)
Now

g(x",x +L)=grig(x", x )ga (8.2)

This class of gauge transformations would thus replace
the class of periodic gauge transformations under which
periodic boundary conditions on A~ are invariant.

sinma =ma
k=1

Hence

Q
2

1 — =ma
k2

m = —oo

(m~0)

/m —a
/

/m /

(A6)

I ln[x + (m —a) ]—"lnm "I
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where "lnm "is defined by

"lnm "=lnm (m &0)
= —21nn (m =0) .

In Sec. V we need to evaluate the following integral:

(Aga)

(A8b)

1 y
—1/2

1f„(a)= dx x (1—x) dy
o o v'y +1 exp(a&y +1 2ninx) —1—

1
—1/2 oo

= f dx x(1—x) f dy g exp( —ma&y +1+2mmnx) .
0 0 vy+I

(A9)
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For n =0, we immediately find

f&& (a)= —,
' g Eo(ma},

m=1

by using

x 'exp( —a&1+x ) 2 af

dic
=

0 &1+x 2

1/2 —v

I (v)Ety2 &(a)

(A10)

(Al 1)

The infinite sum on the right-hand side may be reexpressed as

00 1 a 77 1g Eo(ma)= —y+ln + +m g
m=1 2 4m' 2a

1 1 [a +(2ln) ]'
1

2ln.
(A12)

For n &1 one can perform the x integration first and then the y integration in (A9). Thus one has

f„(a)=—
2 g E11(ma) .

1 " 1

n m=1 m2

The integral defined by

1
—1/2

1f„+(a)= dx x(1—x) dy
y+1 exp a y+1 —2n.inx +1

(A13)

(A14)

can be calculated in a similar manner and one has

fo+(a)= —,
' g ( —1) +'Eo(ma)

m=1
(A15)

The Bessel function Eo(z) of imaginary argument has the
following expansion:

and

ao
( 1)m+1

f„+(a)=—
2 g Eo(ma) .

7T Pl m ) N2

(A16)

2k
Z

Eo(z) = g „ l((k + 1)—ln-
22k(k 1)2

where

(A18}

The right-hand side may be reexpressed by using

g, ( —1) Eo(ma)
m=1

1 a
y+ ln

2 4m

d 00

g(x) = lnl (x)= —y —gdx k 11
x+k (A19)

1

k+1

00
1 1

(a +[(2/ —1)n.] I'

(A17)

One has the following expansion for 1/sinh x:

1 1 " x —~k
sinhx x (x +rrk )

+2+ (A20)
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