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The interaction of vortex lines with chiral fermions in 3+1 spacetime dimensions is investigated.
We construct Dirac operators relevant to the study of superconducting cosmic strings, obtain condi-

tions for the cancellation of triangle anomalies, and examine properties of the corresponding Dirac
Hamiltonian. Our analysis is applicable to both cosmic strings arising from spontaneously broken

gauged U(1) symmetries and axion vortices in broken global U(1) symmetry groups. We generalize

known index theorems to consider angular-momentum-weighted indices and g invariants of the
Hamiltonian in the background field of a topological vortex. We further obtain explicit zero modes

of the Hamiltonian in a rotationally covariant vortex field. Implications of the results for the quan-

tum numbers of light fermionic excitations and their axial anomalies are discussed. We use the g in-

variants to derive anomaly equations for charges and angular momenta and find discrepancies with

those of effective two-dimensional field theory. Our results indicate a novel anomalous behavior of
the angular momentum and suggest a new mechanism for the transfer of energy and momentum be-

tween axionic strings.

I. INTRODUCTION

The existence of topological objects such as monopoles,
domain walls, and vortices is a spectacular and as yet
unconfirmed consequence of the idea that fundamental
forces are governed by spontaneously broken non-
Abelian gauge theories. Vortexlike objects occur in all
grand unified field theories which have spontaneously
broken U(1) symmetries or non-Abelian gauge sym-
metries broken to discrete subgroups. ' Furthermore,
many non-Abelian gauge theories which support magnet-
ic monopoles also have unstable vortices which would de-
cay by nucleation of monopole-antimonopole pairs. For
various models these could be metastable.

Cosmic strings would be formed as line defects in
phase transitions and have been conjectured to play a role
in the early Universe particularly by providing the
density fluctuations necessary for galaxy formation.
They furthermore have several potentially observable
effects such as gravitational lensing' or emission of
long-wavelength gravitational radiation. "

Several authors have discussed the interactions of vor-
tices with chiral fermions. ' Jackiw and Rossi'
showed that when fermions obtain their masses from a
particular coupling to the complex scalar field the trans-
verse component of the fermionic Hamiltonian in the
background of a rotationally symmetric vortex has zero
modes. This result was later generalized to backgrouL'd
fields with arbitrary vortex profile by Weinberg who
proved the appropriate index theorem.

Zero modes of the transverse Hamiltonian propagate
along the string like two-spacetime-dimensional chiral
fermions and subsequently Witten ' used the two-
dimensional axial anomaly to argue that in particular
grand unified models vortices can act as superconducting
wires. Witten further discussed criteria for anomaly can-
cellation and examined the behavior of cosmic strings in

external electromagnetic fields. These provide several ob-
servable effects of the presence of cosmic strings with
mass densities too small to be observed by their gravita-
tional interactions.

Independently, there have been numerous studies of
the interactions of fermions with vortices in the context
of three-spacetime-dimensional electrodynamics. In the
models studied to date the fermions do not couple to the
complex scalar-field component of the vortex. Fermionic
loop corrections have been shown to induce a Chern-
Simons topological mass term in the effective action
of the gauge fields. This has been demonstrated by per-
turbative calculations ' as well as an analysis of the
role of zero modes of the fermionic Hamiltonian ' and
index-theoretic calculations. ' It is further associ-
ated with induced fractional charges and anomalous
spin and statistics of vortices in these models.

In this paper I shall examine how some of these anom-
alous phenomena could appear in the interaction of
cosmic strings with fermions. We show that the spectral
properties of the Hamiltonian and angular momentum
operators which yield induced quantum numbers in
(2+ 1)-dimensional electrodynamics also yield anomaly
equations in 3 + 1 dimensions. We comment on the issue
of gauge invariance and angular momentum and find
several new index-theoretical results for two-dimensional
Dirac operators. We argue that the (3+ 1)-dimensional
anomaly equations that we derive indicate a new mecha-
nism for transfer of angular momentum between vortices
and antivortices induced by external electromagnetic
fields.

We consider a U(1)U(1) gauge theory where the U(1)
symmetry is spontaneously broken and supports the to-
pological vortex configuration and U(1) is ordinary elec-
trodynamics. The fermions obtain masses from their
interaction with the U(1) charged scalar fields which sta-
bilize the string solutions of the gauge and scalar-field
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sectors of the theory. These models have the virtue of
coupling the U(1) condensate to the fermions in a way
analogous to the Bardeen-Cooper-Schrieffer (BCS) theory
of superconductivity ' and the resulting Dirac Hamil-
tonian is Fredholm. Moreover, when the U(1) symmetry
is gauged the requirement of finite energy per unit length
of the complex scalar field quantizes the U(1) magnetic
flux.

We shall also consider vortices arising in spontaneous
breaking of ungauged global U(1) symmetries relevant to
axion models. ' These have long-range interactions and
in isolation they have infinite energy per unit length.
Since the U(1) symmetries are not gauged these models
have weaker anomaly-cancellation constraints and exhib-
it a richer array of anomalous properties. Gauge and
gravitational anomalies of the effective two-dimensional
field theory have been discussed by Callan and Harvey.

In Sec. II we analyze the properties of the four-
spacetime-dimensional Dirac operator and the transverse
component of the Hamiltonian in a vortex background
field. We show that the model of Weyl fermions coupled
to U(1)SU(1) background fields considered by Witten '

can be written in the form of a Dirac action with cou-
pling to a chiral scalar field. This allows us to identify
the Dirac Hamiltonian, the transverse part of which we
later use for our index theory analysis. We include
several flavors of fermions and review criteria for anoma-
ly cancellation. We identify a gauge-invariant angular
momentum operator which commutes with the Hamil-
tonian when the vortex field is rotationally symmetric.
When evaluated in a rotationally symmetric gauge this
operator reduces to the conserved canonical angular
momentum operator for the fermions. The fact that it is
obtained from a gauge-invariant operator resolves a criti-
cism of the results of Ref. 33 by showing that the
canonical angular momentum operator has gauge-
invariant meaning when the background fields are
presented in a rotationally covariant gauge.

In Sec. III we reexamine and generalize the index
theorem to compute the index and g invariant of the
transverse Hamiltonian. The formulas for the index and
g invariant are for arbitrary, not necessarily rotationally
covariant vortex fields. We find that the index is deter-
mined by the topological winding number of the complex
scalar field. We also compute the angular-momentum-
weighted index and r) invariant for a rotationally sym-
metric vortex. The angular-momentum-weighted ri in-
variant is a bilinear in the winding number of the com-
plex scalar and the magnetic fluxes of both U(1) and
U(1).

In Sec. IV we find explicit solutions for zero modes of
the transverse Hamiltonian for the special case of rota-
tionally covariant background fields. Results for both the
index and the angular-momentum-weighted index are
shown to agree with the index theorems derived in Sec.
III.

In Sec. V we argue that the zero modes of the trans-
verse Hamiltonian propagate along the string as massless
two-spacetime-dimensional fermions which carry U(1}
electric charge and angular momentum. We find that the
signs of their angular momenta are determined by their

direction of motion and the magnitudes are independent
of their wave number. The axial anomaly for the two-
spacetime-dimensional electric charge results in the
string superconductivity. It also results in superconduc-
tivity of the angular momentum. For the case of the ax-
ionic string the gauge anomalies of the effective two-
dimensiona1 model do not cancel. Since currents which
couple to gauge fields must be conserved in the full four-
dimensional theory, the string anomaly must be canceled
by higher-dimensional effects.

!n Sec. VI we discuss the relationship between the g in-
variants and the induced vacuum charge and angular
momentum. We argue that the charge and angular
momentum densities are ambiguous due to linearly diver-
gent momentum integrals. We show how they can be
used to derive anomaly equations and compare these with
the two-dimensional anomaly equations found in Sec. V.
We find a discrepancy when the U(1) magnetic flux does
not obey the flux quantization condition necessary to give
the vortex finite energy per unit length. This is particu-
larly important for the axion string and implies that
whenever the flux quantization condition is not satisfied
the two-dimensional anomaly does not accurately
represent the charge conservation law for the fermion-
vortex system.

We find an anomalous conservation law for the
ground-state expectation value of the angular momentum
and argue that anomaly cancellation requires a flow of
angular momentum onto the string from its exterior. We
point out that this anomaly which is an effect of the non-
trivial topology of the gauge and scalar fields is different
from the energy-momentum anomaly discussed by Callan
and Harvey which was due to cancellation of gravita-
tional anomalies and was driven by an external gravita-
tional field. We shall also discuss how the angular
momentum anomaly implies an induced current for the
full angular momentum operator with gauge and Higgs
field contributions included.

II. THE DIRAC OPERATOR

+X&o "[iB„+qA&+(s+e)R ]Pl.

&(4'& 0iAip+—0'& PL&ip)) (2.1)

where cr"=( l, o ) and o are the Pauli matrices. We shall
consider the general case of several fermion flavors with
differing charges and also several flavors of similar pairs
of left-handed fermions with charges (Q, s ) and
( —Q, —s+e) interacting with the complex conjugate of
the scalar field:

We consider the model studied by Witten ' of a pair of
four-spacetime-dimensional left-handed Weyl fermions
interacting with U(1)SU(1) gauge fields A& and R„, re-
spectively. The ferrnions have charges (q, s) and
( —q, —s —e} and also interact with a scalar field P of
charge (O,e):
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S~ =fd x [ f I o
"(i8„q—A„s—R„)fl

+X L o "[i8„+qA „+(s e—)R„]XL

i —(P'e QLPLp+$e ~fLPI p)I . (2.2)

gq (2s +e)= gg&(2s& —e),
a P

g (3s2+3es +e )= g(3s &
—3es&+e ) .

a

(2.3b)

(2.3c)

gq2 gg2
a P

(2.3a)

It is necessary to adjust the charges of the fermions to
cancel chiral gauge anomalies. There are four kinds of
triangle anomaly: A A A, A AR, ARR, and RRR. The
charges have already been chosen to cancel the AAA
anomaly for each pair of fermions separately. %hen we
consider nontrivial coupling to both gauge fields A„and
R„we must choose the charges so that the A AR, ARR,
and RRR anomalies cancel:

The minimal model with anomaly cancellation and not
all q and q& equal to zero has two pairs of left-handed
fermions and q =q, s =s +e or Q = —q, s = —s. We shall
remain with the most general case of several flavor copies
of the actions (2.1) and (2.2). If we set R„=O and consid-
er the string as arising in an axionlike model with
ungauged global U(1) symmetry, (2.1) and (2.2} has a
U(1) gauge-invariant renormalization with no restrictions
on the charges q and q&.

With charge conjugation XL
——o XL and cr "=(1,—o )

we can rewrite (2.1) and (2.2) as

and

s, =fd'x(y,',XL.'}
o "(id„qA„——sR„)

o "(i8„qA—„—sR „)

o "[iB& qA„——(s +e)R&] XL,
(2.4)

S2 d x o "[iB„gA„——(s —e}R„] X L
(2.&)

0 1

0
0 —0 1 0

0 r'= 0

and the definitions

L

Using the chiral representation of the Dirac matrices

(2.6}

(2.7)

I

P(x) equal to its vacuum expectation value. When

~

P(x)
~

=
~

((
~

„=const (2.9) and (2.10) describe Dirac
fermions with mass

~ P „coupled to vector and axial
gauge fields.

As
~
x

~

~oo a topological vortex configuration ap-
proaches the ground state

~
P(x)

~

=
~ P ~ „, A(x)

=R(x)=0. A single vortex with winding number n is
characterized by

P(x)=p(x)e' '"', (2.8)
1

ydl
y' a4

2m'
(2.11)

we can present (2.4) and (2.5) in the form of a Dirac ac-
tion with coupling to a chiral scalar field:

S, =fd x 4(x)[iy"D„—p(x)e'r '"']4'(x), (2.9)

S2 ——fd x 0'(x)[iy"D„—p(x)e 'r '"']4(x),

where

lDp =EB —qA —s +

where the integration is over a loop which encircles the
string. [P(x) must have a zero inside the loop. ] If the en-
ergy density

6~(x}=
~
(iB+eR)P(x)

~

(2.12)

damps rapidly enough in directions transverse to the vor-
tex (-r 'as r~ ao ) so that the energy per unit length
is finite we would have the following additional condi-
tion:

(iB+eR)P(x)=0(r ' ') . (2.13}

i8„=ia„qA„s——'—+—'y—' R„. This would quantize the U(1) magnetic flux of the vortex

Anomaly cancellation implies that the gauge sym-
metries are realized at the quantum level. When the
Higgs-boson field P(x) has a vacuum expectation value
the U(1) gauge symmetry and also the corresponding
phase symmetry are spontaneously broken. The theory
whose fermionic sector is governed by (2.9}and (2.10}ex-
hibits a superconducting phase where P(x) is either a fun-
damental or a composite field representing the pair con-
densate. The fermion spectrum is obtained by setting

fdl R= n, —
2m-

(2.14)

where the loop encircles the vortex and is outside the re-
gion where

~
P(x)

~

differs from its constant vacuum
value

~ P ~
„.Although this constraint could be imposed

by a finite-energy requirement in the bosonic sector of the
theory it is unnecessary when we restrict our attention to
the fermions. In the following we shall remain with the
more general case of arbitrary U(1) magnetic flux and
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P(r) =e '" f (r),

eR'(r) =e'~r JR (r),
A '( r ) =e'jr ' A ( r) .

(2.15a)

(2.15b)

(2.15c)

The vectors are two dimensional in the x-y plane,
r=(r cos8, r sin8) and the asymptotic conditions are

f (r)~fpr I" I, R (r)~0, A (r)~0,
as r~0, and

(2.16a)

comment on the effect of the constraints (2.13}and (2.14).
Furthermore, we shall apply our analysis to the case
where the U(1) symmetry is ungauged by setting R„=O
and consequently 4R ——0.

Particular rotationally covariant field configurations
for a vortex lying along the x axis have the zeroth and
third components of all vectors vanishing, all quantities
independent of x and x, and

where we take the string to lie along the x axis, for later
reference we have included a wave number K for propaga-
tion in the longitudinal direction, and vectors are from
now on two dimensional and in the x-y plane. Both h

and f„share the property

ah„a = —h (2.19)

(r X85' +e' ) A, (r) =8'v„(r),
(r X d5"+e")R,(r) =d'v„(r),

r X B(()(r)= —ievit(r)p(r)

(2.20)

(2.21)

(2.22)

[when r and 8 are restricted to the x-y plane rX 8 is the
third component of the three-dimensional vector (r X8)']
with the asymptotic conditions

and when ~=0 their spectrum is symmetric, i.e., if
hp PE =E%s hpa 0 s = —Ea

A field configuration is rotationally symmetric if a ro-
tation generates a gauge copy of the field

f(r)~ i(()i „, R(r)~—,A(r)~—
r

(2.16b)

v (r} 0 as
~

r
i

oo ,

n
vs ( r } —as

~

r
i

oo .

(2.23)

(2.24)

as r~00. Here

@'R =
This symmetry of the background field implies a con-
served Noether charge and the single-particle Hamiltoni-
an h „commutes with the rotation generator

are the U(1) and U(1) magnetic Aux, respectively. The
finite-energy condition (2.12) and (2.13} would set
4R ———n.

The single-particle Hamiltonians corresponding to (2.9)
and (2.10) are and f„with

(2.25)

J =irXd 'y a———qv„(r) —s+ ———
y vs(r}5 3 e e

2 2 2

and

h = a iB—q A — s+ ———y R +ppe'r
2 2

+gAp+ s+ — y Rp

f= a id qA — s ———+ —y R +13pe
2 2

(2.17a)

J=irXd ya ———qv„(r) — s ——+—y vii(r) .5 3
2 2 2

(2.26)

The first terms in (2.25) and (2.26) effect a rotation of the
coordinates about the x axis, the second is the spin
operator and the third and fourth terms implement com-
pensating gauge transformations. Solving (2.20) —(2.24)
for v„and vR leads to

+qAp+ s ——+—y Rp, (2.17b)
s 3 s 1 1 sJ= irXD ——'y a — —+———y n

2
,
e 2 2

where a=y y and P=y . Note that (2.17b) is obtained
from (2.17a) by setting q, s, e, o(x)~Q, s, —e, cr(x) Th—e.
transverse Hamiltonian is

+ q I, , d'x'eel,
A,

2m x &r

2m' x (r (2.27}

h„= a. iB qA —s—+———ys R +a~a+a'2 2

and

(2.18a)

and

s 1J= irXD ——,'y a — ———+—y n
e 2 2

J, ,d'x e'ia, A,
7T x (r

h„= a iB qA —2———+—y R +a x+Ppe
2 2

(2.18b) 277 x (r (2.28)



2842 GORDON W. SEMENOFF 37

rX A(r)= f, , d x e'JB, A, (x)2' x (r
(2.29)

and

These operators are manifestly gauge invariant.
However, they are not uniquely determined by the

Noether prescription. Indeed we can add to them any
constant times the unit matrix which also commutes with
the single-particle Hamltonian and represents the con-
served electric charge. The particular mixture of angular
momentum and charge that we consider here is deter-
mined by the boundary conditions (2.23) and (2.24). The
implicit assumption is that the electromagnetic field A(r)
can be brought to a rotationally covariant form by a
gauge transformation with compact support. If this is
not possible we would have to modify the boundary con-
dition (2.23) and a further constant would appear in J and
J.

For rotationally symmetric fields in a rotationally co-
variant gauge,

the transverse Hamiltonian ho and a computation of the
spectral asymmetry and the angular-momentum-
weighted spectral asymmetry of h, . We shall find that
they are determined by asymptotic properties of the
background fields. Zero modes of the two-dimensional
Dirac operator in background magnetic gauge fields have
been known for some time' ' and those of Hamiltoni-
ans of the type discussed here were first discovered by
Jackiw and Rossi. ' Index theorems for the model con-
sidered by them were proven by Weinberg and by
Niemi and SemenoK The results we derive are in full
agreement with those found previously when specialized
to the appropriate models and applicable to the more
general cases relevant to cosmic strings.

Since ho anticommutes with a it has a symmetric
spectrum and its zero modes are also eigenstates of a .
Furthermore, the interaction of fermions with the com-
plex scalar field renders them massive and the continuum
spectrum of the Dirac operator is bounded away from
zero. Consequently the zero modes of ho must be square
integrable in the x-y plane.

We define

(2.30)

3 Sho
index( h 0 ) = lim tra e

$~ oo

—5hoJ —index(ho)= lim tra Je
$~ oo

(3.1a)

(3.1b)

are the magnetic fluxes inside radius r and (2.27) and
(2.28) reduce to

J =ir&(B——'y a—5 3
2

s 1 1+ — f n
e 2 2

(2.31)

s 1 1J=irXB 'y a ——————+—y n .
2 8 2 2

(2.32)

III. INDEX THEOREMS

In this section we present a proof of the index theorem
and the angular-momentum-weighted index theorem for

Finally we note that spectral properties of operators
similar to (2.31) and (2.32) were shown in Ref. 37 to
represent the vacuum matrix elements of the full
angular-momentum operator of the gauge and fermion
fields which is constructed from the symmetric gauge-
invariant energy-momentum tensor in (2 + 1)-
dimensional electrodynamics. We expect that this result
generalizes to the four-dimensional cosmic-string models
we consider here and the J and J weighted spectral asym-
metries which we shall introduce in Sec. III represents
the eigenvalues of the full angular-momentum operator
on the Fock vacuum of the second-quantized fermions.
The operators (2.31) and (2.32) have gauge-invariant
meaning only when the gauge is fixed to be rotationally
covariant.

The limit 5~co projects on the zero modes and a or a J
in the trace weights them by their a eigenvalue or their
a eigenvalue and J expectation value. (This would be
the J eigenvalue when the vortex is rotationally sym-
metric. ) The latter quantity (3.1b) is an example of a
character-weighted index.

In this section we consider only h„and J. In Sec. V we
shall deduce the pertinent quantities for f„and J by the
substitution e, q, s,o(x)~ —e,g, s, —o(x). For computa-
tion of index (ho) the profile of the vortex fields need not
be rotationally covariant. However, in calculating J-
index (ho) we shall need to assume that [J,ho]=0, i.e.,
that the background fields are rotationally symmetric. In
that case, for convenience, we also choose a rotationally
symmetric gauge.

The Atiyah-Singer index theorem is applicable to
Dirac operators on compact rnanifolds. If the present in-
dex problem were defined on a compact space, or if the
background fields were suitably short ranged so that they
could be projected on a compact space by conformal
mapping, the traces in (3.1a) and (3.1b) could be shown to
be independent of 5 and evaluated in the limit 5~0
where they are accessible to asymptotic expansion of the
heat kernel. The index would be proportional to a
characteristic class, the U(1) magnetic flux.

However, vortex fields are long ranged and the index
problem must be considered on the open infinite space.
The relevant theorem is a generalization of the Atiyah-
Patodi-Singer index theorem considered by Callias
and Niemi and Semeno6' and contains besides the
characteristic classes of the gauge fields a contribution
from the asymptotic surface. This can be isolated by
rewriting (3.1a) as
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ho 1

2 3e= lim lim Tra e +—,
' d x intr x aa

05

—eh 2
0—

who
2

3 e=lim Trae '+ ,'f—dxiBtr x aa
e~p hp

—&ho ~ d
index(ho)= lim lim Tra e '+ dv Tra e

p~p $~ oo V

—
who

—5h o
2 2—e

ho
X

(3.2)

(3.3)

(3.4)

X

Both (3.4) and (3.5) can be evaluated by straightforward methods. We shall return with details after we examine the

g invariant of h „,

where Tr represents a function-space trace and tr represents a pointwise trace over spinor indices. The second term is a
surface integral. This justifies taking 5 to infinity in (3.3) since the zero modes of ho are L functions and do not con-
tribute to the trace when integrated on the asymptotic surface.

Similarly, with explicit use of [J,ho]=0 for rotationally symmetric fields,
2

ho

J-index(ho}= lim Tra Je + ,' f d—xiB tr x aa J (3.5)
e~p hp

—eh 2

ri(h„)= lim Trsgn(h„)e
e~p

and the J-weighted g invariant

—eh
rij(h„) = lim TrJsgn(h„)e

e~O

where

(E) 1, E)0,
—1, E&0.

(3.6)

(3.7)

(3.g)

These measure antisymmetric moments of the spectrum of h„and are regulated by a manifestly gauge-invariant ex-
ponential cutoff.

Using the identity

sgn(h„)= f
A „+co

we rewrite (3.6) as

(3.9)

—eh
r)(h„)= lim f Tr 2e

A„+N

dQ) K 3 K +N2 2 2

lm r a e
0 77 K +~ /&+K +CO

(3.10)

(3.11)

= lim Trae + —,
' dxiBtr x aa e 'x

6—+0 7T K +Q) 6 0+K +CO
(3.12)

where we have used the fact that a anticommutes with ho. Similarly, assuming [J,ho] =0,
T

dM K 3
—~ho 0 —

who
i)J.(h„)= lim Tra Je '+ —,

' dxid tr x aaJ . e 'x
K +CO A 0+K +CO

The similarity of (3.12), (3.13) and (3.4), (3.5) is explicit in the limit ir~0 with the identity

K
lim =sgn(z)n5(co),
x~p K +~

which implies

(3.13)

(3.14)

—eh 2
0—eh

lim g(h„)=sgn(a) lim Tra e + z' f d x iB tr x aa
x~p e~p hp

X (3.15a}
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and
—

who
2

—eh
lim riJ(h )=sgn(a. ) lim Tra Je + —,

' f d x ig tr x aa J
a~O e~O hO

(3.15b)

By comparing with (3.4) and (3.5),

lim i)(h„)=+index(ho),+a~O—

lim rij(h„)=+J-index(ho) .
~-O+

(3.16a)

(3.16b)

The e~O limit of the trace of the heat kernel can be evaluated using an asymptotic expansion. %e first represent the
trace pointwise and in a plane-wave base:

—~ho(x, i&)Trae = x limtrae ' x —y
g~Z

dxlim trae ' '
Se

d k —eh (x,i8)

(2m )

d k 3
—nh (x, 8+k)

d x tra e
(2ir)

where J is the unit matrix,

h (x, iB+k)=k +2ik D+h (x, iB)

(3.17)

(3.18)

(3.19)

(3.20)

and

ho(x, iB)=(iD) +y a e' qB;AJ+ s+ ———y d;R~ +p Pa. —(iB+ey R)pe' (3.21)

Consequently,

'"0 f z f dk «'g( —1)—&

(2n }
tra ho+2i D

e
(3.22)

and

—eh
lim Tra e = fd x e'JB;R
e~O 277

(3.23)

which is the U(1) magnetic fiux of the string. When the finite-energy asymptotic conditions (2.13) and (2.14) are
satisfied it also is proportional to the vortex number n. However, in the absence of that constraint it is an arbitrary real
number. On a compact two-dimensional space it would be an integer.

Similarly, it is straightforward to evaluate

«2 d2k & ( 1 )nen —1 ktra Je '=fd xf e "g tra J+rX
(2~)' v'e ho+2i D

'n

(3.24)

and
T T

lim Tra Je = d x ne' qB;Aj+ s+ 8 R' +e s+ —r)(Re'B,.R.+eqe'~B;A rXR1 e e
e~O 4m 2 2 1 I J

s 1+eqe'~B R r X A — —+—n 4I J R (3.25)

where we have used a rotationally covariant gauge. Note that (3.25} is invariant under rotationally symmetric gauge
transformations. Here and in the following we indicate the contribution of the term in J which is proportional to the
unit matrix [and (s/e + —,)n] by writing it separately and at the end of the formula. It is this term which is sensitive to
the boundary condition (2.23).

For rotationally covariant background fields the identities (2.32) and (2.33) yield
2

1 2;. 1 1f d x rXRe'~d;R. =— f d x e'JB,R.2' 2 2m
(3.26}
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Using a similar identify for the R- A cross terms we obtain the gauge-invariant result

—eh
lima Je =(n+4&) q4z+ —+-
a~0 2

s 1
n4~ .

e 2
(3.27)

By similar methods, the surface terms in (3.12) and (3.13) are

—eh 2
0

2
hOe

lim d xiBTr x aa x
e~O h O+K +6)

1
gdI

P*(l8+R)P
/+K +Cia

I 0 I
+K +CO

(3.28)

and

—
@ho

2

2
hOe

lim dxiBTr x aJa x
e~O hO+K +N

s 1 1 s
(n +Os ) q4„+ —+—4„—————n4„s A 2 R 2 2 R

Using (3.4a), (3.4b), (3.12a), (3.12b}, (3.28), and (3.29) we deduce
1/2 ' 1/2

(3.29)

K
i)(h„)=sgn(a. ) ~'+ 101'.

—n 1— K

~'+
I 0 I

' (3.30}

s 1
ilz(h„)=sgn(a)(n +4+ ) q4z+ —+-

e

K

I
{t' I'. + '

' 1/2
—+—nr)(h„),s 1

e 2
(3.31)

and using (3.16a) and (3.16b) we obtain

index(ho) = —n

and

(3.32)

J-index(ho) = —+-s 1

2

s 1
n index(ho) .

2
(3.33)

i)(h, )~ „= nsgn(a. )— (3.34)

and

gJ(h„)c, „———+—n sgn(v} .
s 1 2

e
(3.35)

If the asymptotic conditions (2.13) and (2.14) were
satisfied we would have

I

fields. The index always depends only on the winding
number of the string n. The g invariant also can depend
on the magnetic flux. When the finite-energy condition
(2.13) and (2.14) is satisfied g and i)J are proportional to
the index and the J-index, respectively. On the other
hand, when the U(1) magnetic flux vanishes they remain
nontrivial functions of K and are linear and bilinear in the
winding number n.

Note that q is proportional to the index when K~O
and is proportional to the characteristic class 4z when
K~00. Furthermore, these limits are identical when

4z ———n and the vortex is localized.
Finally, notice that the J-index obtains nontrivial con-

tributions only from the unit matrix component of J pro-
portional to (s/e+ —,')n. In the next section we shall

confirm the present results for the index and J-index by
explicit solution of the zero-mode problem. No such ex-
plicit confirmation is available for the g invariants we
have computed.

il(h„)„o=—sgn(~)n 1— K

141'.+~'

and

K
7)J(h )„o= sgn(~ }

141' +~'

1/2

nq4~

s 1—+—ng(h )z =o .
e

For axion strings 4z ——0 and we would have
1/2

(3.36)

(3.37)

IV. EXPLICIT SOLUTIONS

In this section we shall present explicit solutions for
the zero modes of the Dirac Hamiltonian with a rotation-
ally symmetric vortex background field. We shall find

that, regardless of the value of the gauge fields, as long as
they decrease at reap at least as r ', the number of
zero modes and their angular momentum eigenvalues de-
pend only on the winding number of the scalar field.

This is in contrast with the zero modes of the Hamil-
tonian in the absence of coupling to the scalar fields. In
that case, consider the zero-eigenvalue problem for the
2 X 2 Hamiltonian:

We note that the indices and g invariants are deter-
mined by the asymptotic properties of the background o"[i8 A(r)]go(r—)=0, (4.1)
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where (r =(o'', (r ) are the first two Pauli matrices. The
gauge field is transverse and can therefore be written

A'(r)=e'J(). A (r), (4.2)

where

A(r)= B(r)= Jdr ln
~

r —r,
~

B(r, ) (43)
1 1

217

and where B = e'~B; A is the magnetic field. Asymptoti-
cally, as r~ oo,

modes are given by the largest integer which is less than

~

4
~

and their helicity by sgn(4). This agrees with the
index theorem for the Hamiltonian operator on an open
space and explicitly verifies a vanishing theorem —the
zero modes are all of a given helicity. In the special case
of rotationally symmetric gauge field this result was ob-
tained in Refs. 15, 16, and 28.

We now consider the transverse Hamiltonian (2.18a}
with the rotationally covariant background fields (2.15)
and (2.16). With the identities

A (r)—+4 lnr (4.4) (4.9a)

with magnetic Aux 4. Using the identity o'e' = —io cr

the eigenvalue problem (4.1) can be rewritten R '= e'JB&%(r), R(r) = —
2 Bs (r), {4.9b)

cr [8+BA (r)]f()(r)=0 .

This equation is solved by

(4.5) and, since i,j =1,2,

a'e' = —ia X3 X3—f Q3 (4.10)

and

e -""'u(r)
0 e A(r)u(r)

&~ (r)=

a, + —a u(r, 8)=O,l
(4.7a)

the Hamiltonian (2.18a) can be presented as

h =K[ 8 pf( )
~r'~0 2q&—z3+(~~+~)+z3]K

where

K =exp qAX2+ s+ ———y AX23 2 2

(4.11)

Equations (4.7a) and (4.7b) have the solutions

(4.7b) and the zero-eigenvalue problem for ho reduces to

i nP —2 AX —(2s+e)%'X
(4.12)

u (r, 8)=e'" r",
u(r, 8)=e '" r",

(4.8a} With

(4.8b) u,+(r)
where v is an integer. Regularity at the origin requires
that v&0. (Regularity, rather than integrability, is re-
quired at the origin so that the Hamiltonian is self-
adjoint. ) Since by (4.4) e*"("'~r* as r~ ~, normal-
izability requires that v&4 —I for u(r, P) and
v& —4—1 for u(r, 8). Therefore the number of zero

I

u( (r)
g(r) = g e'~ +

u( r

v( (r}

(4.12}reduces to the coupled equations

(4.13)

+ u
—(r)+f (r)e 2qA(r) (2s+e—)R(r) —+u( ) 0L

r
4

i ()„—— u,
+ „,(r)+f (r)e '"'+' '+' '"'u( (r)=0,I+n —1

r

(4.14a)

(4.14b)

i () —— u,+(r)+f(r)e" '"'+'"+' '"'u( „)(r)=o,L (4.14c)

1+n+1—l a+
r u, „,(r)+f (r)e " ' '+' '"'u(+(r) =0 . (4.14d)

Asymptotically,

+[2q~(r)+(2s+e)%(r)] kf2q4 &+(2s/e+1)4R je -r at r~~,
(4.15a)

*~2q&( )+(2 + )&( )j t t p (4.15b)

Each pair of equations [{4.14a), (4.14b), and (4.14c),
(4.14d)] has two solutions and the normalizable solution
for u*, U* near r~ (x) has the asymptotic form e
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modified by powers of r. Near r =0,

"l ( } " Ul+n —1

—I 1+n —1 (4.16a}

or

u+(r)-r', u, +„+,(r)-r (4.16b)

1 n—&i&0 ifn)1 (4.17a)

or

0&1& n ——1 if n & —1,
respectively. Therefore, if n & 1,

0
e "t'u, (r)-

g, (r, ltd) =K '(r)
e Ul+„1(r)

0

(4.17b)

(4.18a)

Since we can choose only one solution at ao, we must
have both solutions regular near 0. Then either (4.16a) or
(4.16b) (but not both) yield solutions with

0
4 (r,x, t)= g g l(r)u l(x, t), (5.1a)

dex. Proof of a vanishing theorem for the more general
case of arbitrary background fields remains an open prob-
lem. (Note that the results of Sec. IV for the Dirac
operator with no coupling to the scalar field imply both
the index theorem and vanishing theorem for that opera-
tor. )

Here we shall consider a rotationally symmetric vortex
lying along the x axis and with winding number n ~0.
We assume that the transverse components of the gauge
fields and the scalar are independent of x0 and x3 and
that RO ——R 3

——0 and we take account the possibility of a
longitudinal U(1) electric field by the time-dependent but
r-independent gauge potentials Ao(x, t) and A3(x, t)
and Ro(x, t) and R3(x, t).

The transverse Hamiltonian ho has n zero modes with
negative helicity and ko has n zero modes with positive
helicity. We shall consider the low-energy effective dy-
namics of the fermions. If we assume that only the zero
modes of the transverse Hamiltonian are relevant and
with

with l =1—n, 2 —n, . . . , 0. If n & —1,

e'~u +(r)

1=1—n

n —1

Vp(r, x, t)= g (pl(r)upi(x, t),
I=O

(5.1b)

gl(r, ltd) =K '(r)
0

ei(l+n+ 11/ —
( )V(+n +1

(4.18b)

1 —n —2l s 1—+—n l=1—n. . . 0

with l =0, 1, . . . , —n —1. These are eigenstates of a3
with eigenvalues —1 and + 1, respectively.

Furthermore (4.18a) and (4.18b) are eigenstates of J
with eigenvalues

S„=fdx'dt
0

u, l(x, t)iD u l(x, t)
a, l =1—n

n —1

+ g u pl(X, t)lD +upi(X, t)
P, l =0

where g l and (pl are the zero-mode wave functions, the
effective action resulting from (2.9) and (2.10) represents a
collection of right- and left-handed two-spacetime-
dimensional fermions

or

—n +1+21 s 1—+—n, 1=01,. . . , n —1—,
e

respectively. We see that the eigenvalues of J+(s/e
+ —,

' }n are symmetric about zero in both cases.
These results agree with the index theorems which

state that index(ho) = nand —J-index(ho) = —(s/
e + ,' )n index( —h0 ).

V. SUFERCONDUCTING COSMIC STRINGS

The index determines the difference between the num-
ber of zero modes with positive and negative eigenvalues
of a . In the absence of a vanishing theorem which
would imply that all zero modes have the same helicity
there can be further nongeneric pairs of zero modes
whose existence are not guaranteed by the index theorem
and whose energy is therefore susceptible to perturba-
tions of the vortex background. For a rotationally sym-
metric vortex the explicit solution found in Sec. IV indi-
cates that the number of zero modes is given by the in-

(5.2)

where

iD+ i( akoa——)3—q [Ao(x, t)+A3(x, t)],

iBP =l(a,*a,) —qp[A, ( xt)~A, (x', t)] .

(5.3a)

(5.3b)

The anomaly equation for j, is

a.j'= —" yq'. (a,A, —a, A, )
2K .

and for j, is

(5.5a)

Chiral gauge anomalies for this effective theory are
guaranteed to cancel by the conditions (2.3) for the four-
dimensional theory. The gauge fields couple to the eon-
'served two-dimensional right- and left-handed currents j,
and j„respectively, where

0j.(x', t}= g q.u'. ,(x', t)u. ,(x', t)(1,1), (5.4a)
a, l =1—n

n —1

Jb(x, t)= g qpu pl(x, t)upi(x, t)(1, —1) . (5.4b)
P, l =0
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g,j '= g q p(BpA, —B,Ap) .
2r p

(5.5b)

a, (j +j ) B3(—J'+J')= — gq + X'Op2' p

X(&pA3 —&3Ap) . (5.6)

In particular, for Ap=0 and constant electric field
I

The anomaly for the gauge current j,+j, would vanish if
condition (2.3a) is satisfied. Equations (5.4a}, (5.4b),
(5.5a), and (5.5b) also imply

A3 ——Et,

B,[j3(&)+j3(i)]=— gq2+ gg~p E,
a P

(5.7)

which implies superconductivity of the vortex. In an
electric field the electric current changes linearly with
time:

j3(&)+j3(r)=— gq + gq& Et+const .
7T a P

(5.8)

The fermions also carry angular momentum with the
left- and right-handed charge currents:

0

8,(x, t) =
a, l =1—n

1 —n —2l s 1 f 3 3
n u, (x, r)u i(x, t)(1,1),

2 8 2
(5.9a}

n —1

8,(x,t)=
P, l =0

—n +1+21 &p 1

2 8 2
u &&(x,t)u&I(x, t)(1, —1), (5.9b)

which have the axial anomalies

Bg(P=—n sa 1g q +—(BpA3 —B3Ap),
27T 8

A Pg Sp
a.e'= gy, ——(a,A, —a, A ) .2''

p 8 2

(5.10a)

(5.10b)

I

angular momentum of the fermions and is induced by
external electromagnetic fields.

Finally, in the case of the axionic string where the
anomaly cancellation constraints (2.3) need not apply the
angular momentum would have a two-dimensional anom-
aly. We shall discuss this e8'ect in more detail in the fol-
lowing section.

With the anomaly cancellation constraint (2.3b) the angu-
lar momentum current would be conserved:

B,(cP+8 ') =0 .

The dual to 8'+ cP
' has the anomaly

(5.11)

n
i3, e' (CPb+d"b)= — gq,2P' 8

Sp

X(BpA3 —B3Ap) (5.12)

which results in superconductivity of the angular
momentum.

Note that both anomalies for the angular momentum
in (5.10a} and (5.10b) arise from the component of J pro-
portional to the unit matrix; i.e., it is a result of the par-
ticular mixture of kinetic angular momentum and
charges required by the boundary conditions (2.23} and
(2.24) and is therefore a direct result of the axial anomaly
for the charges. Also note that this differs from the re-
sults of Callan and Harvey who discussed a gravitation-
al anomaly for the covariant energy-momentum tensor
and therefore also the covariant angular momentum in a
background gravitational field. Theirs is an anomaly for
the covariant energy-momentum tensor of the fermions
and is induced by an externa1 gravitational field. The
present case is an anomaly for the conserved canonical

VI. DISCUSSION

~IV i~x (6.1)

whose spectrum is given by the continuous parameter a.
The wave function for a fermion .with energy and
momentum a. is a plane wave, g„=exp( iax), and the—

We have considered the dynamics of fermions in the
background gauge and complex scalar fields of a cosmic
string. We have shown the existence of fermion zero
modes by proving an index theorem and finding explicit
solutions. Our results agree with previous analyses when
specialized to the appropriate models.

We have also obtained the g invariant and J-weighted

g invariant of the transverse Harniltonian. These contain
information about the quantum numbers of the fermionic
ground state. The close relationship between g invari-
ants and indices indicates a similar relationship between
ground-state expectation values of the electric charge and
angular momentum and the anomalies of the effective
two-dimensional currents. In this section we shall use the
results of Sec. III for the g invariant and J-weighted g in-
variant to obtain anomaly equations for the electric
charge and angular momentum densities, respectively.

In two spacetime dimensions the chiral anomaly has a
well-known physical interpretation. Massless fer-
mions propagate at the speed of light with direction
determined by their helicity. An external electric field
flips helicities resulting in nonconservation of the electric
charge for each helicity separately. For example, consid-
er the one-dimensional Weyl Hamiltonian
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p(x, ~)=qO( —~) . (6.2)

A natural alternative definition of vacuum charge density
would be the antisymmetric average over the positive-
and negative-energy states

probability density is a constant g„(x)P„(x)de=de. The
vacuum charge of a one-dimensional system of fermions
is obtained by summing the charge of the filled Dirac sea.
The charge density per unit length per unit wave number
is given by

constant electric field in Ao =0 gauge

h~ ——i 8„—qEt (6.5)

—qE
[p(x, oo ) —p(x, —oo )]

277

has the time-dependent spectrum K—Et and the time
derivative of the charge density is

dK
p(x ) = p(x, K—qEr )

dr 2m Bt

p(x, a)= — sgn(s) .
2

(6.3)
q 2E (6.6)

This is odd under charge conjugation, K~ —K and corre-
sponds to a commutator normal ordering of the second-
quantized charge-density operator:

p(x)=& —,'[1{(x),g(x)]) . (6.4)

In either case the total charge density per unit length is
undefined, in (6.2) it is infinite, in (6.3) it is the ambiguous
difference of two linearly diverging integrals over K.

However if we consider the same Hamiltonian in a
I

using either definition (6.2) or (6.3) of p(x, v). This is pre-
cisely the chiral Schwinger model anomaly equation for
constant electric field.

In general the expectation value of the electric charge
operator is proportional to the g invariant of the Dirac
Hamiltonian. (For a review of how this is derived see
Ref. 30.} In a static rotationally symmetric vortex field
the charge per unit length of the vortex and per unit of
wave number K is

&Qo(a)) = ——,'q ri{h„(q ))

= ——,'q sgn(~) . 4a
K

' 1/2

—n 1— K
1/2

(6.7)

& Qii(s. ) ) = ——,'gpri(f„(gii))
1/2

—n 1— K
1/2

(6.8)

qzE
[ri(h „)—ri(h „)]

Similarly

2m
{6.9)

(6.10)

Note that (6.9) and (6.10) are just what we would ex-
pect from the mixed anomaly equation

Bp"(x, t}= E(x, t) Bz(x, t)
4m

The charge per unit length is obtained by integrating
(6.7) and (6.8) over the wave number a. This integration
is ambiguous —it is essentially the difference of two
linearly divergent quantities.

In a constant longitudinal electric field we would re-
place the wave number K by the time-dependent eigenval-
ue of the covariant derivative i83 —q, A3, x qEt. Then-
the time derivative of (6.7) and (6.8) has a well-defined in-
tegral over K and yields

which we would obtain for the A AR triangle anomaly.
The total electric charge is conserved because of the

anomaly cancellation condition (2.3a) B,(go & Q (r) )
+ g& & Q&(t) ) ) =0. For the electric charges of individu-

al species of fermions (6.9) and (6.10) agrees with what we
would expect from the two-dimensional anomaly compu-
tation (5.5) only when the asymptotic conditions (2.13}
and (2.14) are satisfied and 4a — n When t—he a. symp-

totic condition is not satisfied the discrepancy between
the anomalies (6.9), (6.10},and (5.5) must be compensated

by four-dimensional effects. This is particularly impor-
tant in the axion model where 4z ——0 and

(BIBt)&Q (t})a 0——0. Our results imply that when

4z& —n the anomaly of the effective two-dimensional
model does not accurately represent the chiral anomalies
of the full theory. In particular the effectiv two-
dimensional field-theory analysis is inadequate to con-
clude that the axionic string superconducts electric
charge.

The vacuum expectation value of the angular mornen-

tum per unit length and per unit of wave number is pro-
portional to the angular-rnomenturn-weighted g invariant

(6.11)

and, in a constant longitudinal electric field E,
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B, &8 (r)&= (n+4a) q'4„+q

E sa 1
q +—n4& .

2K e

Similarly,

E 2 Sp

2m
(n +@a )

e 2

e s&+ g&
——n4z .2' e

(6.12)

(6.13)

spatial angular momentum current which must enter Eq.
(6.16). To do so, we must first consider the difference be-
tween the canonical angular momentum which we have
studied here and the more familiar gauge-invariant sym-
metric angular momentum operator. Both are Noether
currents corresponding to a rotation of the spatial coordi-
nates. If we consider the spacetime transformation

5~x"=f"(x), (6.17)

where the condition that f"(x) is a Poincare transforma-
tion is that it obeys the Minkowski-space Killing equa-
tion Bg„(x)+Bg„(x)=0,the gauge field transforms by
its Lie derivative

When 4z ———n these agree with the anomaly formulas
(5.10)—(5.13) according to which angular momentum for
each species of fermions is created along the string. For
the gauged cosmic string anomaly cancellation (2.3a) and
(2.3b) implies that the total angular momentum is con-
served

5I A„(x)=f"(x)B„A„(x)+Bg "(x}A „(x)

and the scalar and the fermion by

5gg(x }=f"d„P(x),

5g P(x )= (f"8„+BQ„X"")f(x),

(6.18)

(6.19)

8, g &8 (r)&+ g &J&(r)&
' =0.

a
(6.14)

However for the global axionic string we set 4z ——0
and the anomalies do not necessarily cancel:

where X""is the spin matrix. The fermionic component
of the resulting Noether current is the canonical energy-
momentum tensor (here we consider a single flavor of fer-
mions)

g & +.(r) &+ g & J,(r) &

8,'"f„=f(x)y"5IP(x) . (6.20)

a The transformations of the fields in (6.18) and (6.19) are
not gauge invariant. However, they can be augmented by
a gauge transformation so that the resulting total trans-
formation refers only to gauge-invariant quantities:

Nott: that this result is insensitive to the value of the term
in J in (2.31) and (2.32) proportional to the unit matrix
and is therefore independent of the boundary condition
(2.23) and (2.24). Furthermore since the anomaly persists
we do expect that the axion string superconducts an an-
gular momentum current.

Since the full four-dimensional angular momentum
current must be conserved, B„cP=O, and by translation
invariance in the x direction B3d' =0, the anomaly (6.12)
implies

and

8I A„(x)=f'(x)B„A„(x)+Bg"(x)A,(x)

—8„(f"(x)A, (x) )

=f '(x)F„„(x)

Sgg(x) =fI'D„p(x),

SIQ (x)=[f'(x)D„(x)+Bg„(x)X""]g(x).

(6.21)

(6.22}

(6.16)

and there must be an angular momentum flux through
the asymptotic surface. This is a result of the long range
of the vortex field.

It is intriguing that U(1) electric and magnetic fields
aligned with the string would induce a transverse angular
momentum flow resembling an angular momentum Hall
e8'ect. We conjecture that this would yield a mechanism
for the transfer of energy and momentum of the vortex
and the external fields into radiative modes of the elec-
trornagnetic and fermion fields. It would further provide
a mechanism. where angular momentum is transferred be-
tween partners in a vortex-antivortex pair with an accom-
panied absorption of the energy of external electromag-
netic fields.

It is straightforward and instructive to demonstrate
consistency of our result by estimating the asymptotic

The corresponding Noether current is the symmetric
gauge-invariant energy-momentum tensor whose fer-
mionic component

8,'"(x)f„(x)=8,'"(x)f„(x)+gf"(x)A„(xj)"(x) (6.23)

difFers from the canonical energy-momentum tensor by
the generator of the gauge transformation. The sym-
rnetric energy-momentum tensor is not conserved but has
the continuity equation

d„ot'"(x)=qj „F""(x), (6.24}

where j"(x) is the total electric current. For the canoni-
cal energy-momentum tensor this implies

B„P,'"(x)f (x)= j"(x)5IA„(x)—. (6.25)

The canonical energy-momentum tensor of the ferrnions
is conserved if the gauge field is symmetric.

It has been argued that it is the matrix elements of this
canonical generator of rotations which are relevant to



37 INDEX THEOREMS AND SUPERCONDUCTING COSMIC STRINGS 2851

2

I.,tr Jd4x—— o(x}e""PF „F&
327r2

( 8,'"f ) =q [rX A(r)], ( jp)
(6.26)

i d—"p F [rX A(r)], .
16&

Using lim„„qrX A=4„, Fo& E, (()~——
~ p ~

„e
and considering several flavors of fermions we get

fdl (d)(= gq~ —gqp n4„
p 2' (6.27)

in agreement with (6.15}and (6.16}.
We have assumed the specialized case of a straight-line

vortex aligned with the x axis. However our results de-
pend only on global characteristics of the field

the induced quantum numbers of the fermionic vacu-
um. (The matrix elements of the full gauge-invariant
symmetric angular momentum operator of the gauge and
matter fields in a semiclassical approximation are given
by the expectation value of the canonical angular
momentum operator of the matter fields. ) It has also
been argued that the induced symmetric angular momen-
tum vanishes in the pertinent limit of infinite mass.
With this result, an asymptotic form of the canonical an-
gular momentum current can then be deduced from
(6.23) and a result quoted by Callan and Harvey for the
asymptotic induced current:

(.„) . q' „,,0' 8-4~.(()'
16m

A,p

which can be derived from the standard axion coupling

configurations, the winding number, and the magnetic
flux. We therefore expect that an analysis similar to that
in Ref. 37 could be used to show that our results are more
general —it is likely that for arbitrary background fields
the quantum numbers of the fermionic sector of the
theory do not depend on the details of the gauge field

configurations but only on their topological characteris-
tics. Furthermore, we expect that the semiclassical argu-
ments of Ref. 37 can also be applied here. If we take as a
semiclassical ansatz for the ground state a direct product
of the fermionic Fock vacuum and a Gaussian wave func-
tional of the gauge and Higgs-boson fields centered about
a rotationally symmetric vortex configuration, we would
expect that ( 8(t) ) is the expectation value of the full an-

gular momentum operator constructed from the gauge-
invariant symmetric energy-momentum tensor of the field

theory including gauge and Higgs-field contributions.
Finally, we have not considered gravitational interac-

tions of the fermions with the string. Recent studies of
the gravitational fields in topologically massive three-
spacetime-dimensional gravity have uncovered
several interesting features common to the gravitational
field of a cosmic string ' and which may also be in-

duced by interactions with chiral fermions. These are
currently under investigation.
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