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It is well known that when two precisely plane-symmetric gravitational waves propagating in an
otherwise flat background collide, they focus each other so strongly as to produce a curvature singu-

larity. This paper is the first of several devoted to almost-plane gravitational waves and their col-
lisions. Such waves are more realistic than plane waves in having a finite but very large transverse
size. In this paper we review some crucial features of the well-known exact solutions for colliding
plane waves and we argue that one of these features, the breakdown of "local inextendibility" can be
regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-
wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of
singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently
constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane sym-
metric and thus do not satisfy the conditions and the conclusion of Tipler s theorem. Our alterna-
tive proof of Tipler s theorem emphasizes the role and the necessity of strict plane symmetry in es-

tablishing the existence of singularities in colliding plane-wave spacetimes. However, we argue on
the basis of previous work that the breakdown of strict plane symmetry as exhibited in the
Chandrasekhar-Xanthopoulos solutions is a nongeneric phenomenon. We then propose a definition
of general gravitational-wave spacetimes, of which almost-plane waves are a special case; and we de-

velop some mathematical tools for studying them. An old result of Dautcourt implies that the only
gravitational-wave spacetimes with a Killing propagation direction are plane fronted waves with

parallel rays (PP waves); and we prove a new, related result, that only the gravitational-wave space-
times with a precisely sandwiched curvature distribution are PP waves. These properties imply that
almost-plane waves cannot propagate without diffraction, and that as opposed to the case for pre-
cisely plane waves, the curvature in an almost-plane-wave spacetime cannot be precisely sandwiched
between two null surfaces (i.e., the wave must have tails). We also prove a "peeling theorem" for
components of the Weyl curvature in general gravitational-wave spacetimes.

I. INTRODUCTION AND OVERVIEW

This is the first of a series of papers describing work
aimed at understanding the nonlinear interaction of col-
liding gravitational waves in general relativity. It has
been known since the early 1970s, from work on exact
solutions of the Einstein field equations, that when two
gravitational plane waves propagating in an otherwise flat
spacetime collide, they interact so strongly as to eventual-
ly cause a curvature singularity to develop in the future
of the collision plane. It is natural to ask whether this
singularity is an artifact of the unphysical idealization
that the waves are precisely planar and thus extend
infinitely far in the "transverse" directions, or whether a
singularity would still be produced if the waves were
transversely finite but had arbitrarily large "size"—i.e.,
if they were "almost-plane waves. " And if there is a re-
gime in which spacetime singularities are guaranteed to
be produced as a result of almost-plane-wave collisions,
what are the conditions on the colliding almost-plane
waves which characterize this regime? This paper is the
first in a series whose ultimate goal is to answer these and
related questions.

This first paper in the series lays foundations for the
subsequent papers by reviewing (briefly) old results and

presenting some new ones on colliding exact plane-wave
spacetimes, and by introducing the concept of a
gravitational-wave (GW) spacetime —of which almost-
plane waves are a special case —and proving some
theorems about GW spacetimes which imply several im-
portant properties of almost-plane waves. More
specifically, we note the following.

In Sec. II we briefly review some global properties of
the exact solutions for the so-called plane fronted waves
with parallel rays ("PP waves"), and for plane waves. The
principal purpose of this section is to introduce the
reader to our terminology and viewpoint on issues that
will be central to the rest of this paper and to future pa-
pers in the series.

In Sec. III we turn attention to colliding exact plane
waves. We begin, in Sec. III A, by briefly reviewing the
properties of some exact solutions to Einstein's equations
representing plane-wave collisions, and we discuss a
peculiar property of these colliding plane-wave space-
times: the fact that, even after one has maximally extend-
ed them in a global sense, they are not "locally inextendi-
ble" if one uses the standard notion of local inextendibili-
ty (Sec. 3.1 of Ref. 1). We elucidate this peculiarity by in-
troducing a new notion of "generic local inextendibility, "
which these spacetimes do turn out to satisfy. In Sec.

37 2803 1988 The American Physical Society



2804 ULVI YURTSEVER 37

IIIB we give an alternative proof of a theorem due to
Tipler which predicts that collisions of exact plane
waves must produce singularities. Our alternative proof
of Tipler's theorem emphasizes the role and the necessity
of strict plane symmetry (a concept we shall define with
care) in establishing the existence of singularities in col-
liding plane-wave solutions and in more general plane-
symmetric spacetimes. The importance of strict plane
symmetry becomes clear when, following Chandrasekhar
and Xanthopoulos, one notices that in contrast with the
usual case where they produce spacelike spacetime singu-
larities, some colliding plane waves can produce Killing-
Cauchy horizons on which strict plane symmetry breaks
down and thereby can avoid the conclusion of Tipler's
theorem. (In a previous paper we have shown that
Killing-Cauchy horizons in plane-symmetric spacetimes
are unstable against plane-symmetric perturbations, and
thence that any generic colliding plane-wave solution will
be devoid of such horizons. In accordance with this re-
sult but independently of it, Chandrasekhar and Xantho-
poulos have recently discovered that the Killing-Cauchy
horizons in their colliding gravitational plane-wave
spacetimes are destroyed and are replaced by spacelike
singularities, when the colliding plane waves are coupled
with plane symmetric null fluids propagating along with
the waves. Thus, the assumption of strict plane symme-
try required in the proof of Tipler's theorem is probably
satisfied by all but a set of measure zero of colliding
plane-wave spacetimes. )

In Sec. IV we introduce the concept of a
"gravitational-wave (GW) spacetime, " and we use the
Newman-Penrose and the characteristic initial-value for-
malisms to prove several theorems about GW space-
times. These theorems have important implications for
almost-plane waves (which are special cases of GW
spacetimes).

Section IV A is devoted to a careful definition of GW
spacetimes and associated discussion. Roughly speaking a
GW spacetime is a solution to the vacuum Einstein field
equations which is flat prior to the arrival of a curvature
disturbance (gravitational wave), but may or may not set-
tle back down into flatness afterward. This section also
introduces a class of "standard" coordinate systems and
"standard" null tetrads to be used in studying GW space-
times.

In Sec. IV B we discuss a previous theorem of
Dautcourt' which directly implies that any GW space-
time possessing a null Killing vector field pointing along
the propagation direction —i.e., a spacetime which
represents a gravitational wave propagating in a perfectly
diffraction-free manner, with no change in its wave
form —must be a PP-wave spacetime. Since PP waves are
always infinitely large in transverse extent, this result im-
plies that almost-plane waves (which have finite trans-
verse "size") must always exhibit diffraction.

In Sec. IVC we present a "peeling-ofF"-type theorem
about the behavior of the Weyl curvature quantities asso-
ciated to a standard tetrad on a general GW spacetime. A
discussion of this theorem is given preceding its proof.

In Sec. IVD we introduce the characteristic initial-
value formalism of Penrose, Muller zum Hagen and

II. EXACT PLANE-WAVE AND PP-WAVE SPACETIMES:
A REVIEW INTRODUCING OUR TERMINOLOGY

AND NOTATION

A plane fronted (PP) wave with parallel rays' (A, ,g ) is
a spacetime where one can introduce a global coordinate
chart (U, V, X, Y): JR~R in which the metric takes the
form

g=dX +dY +h(U, X, Y)dU —dUdV,

where h ( U, X, Y) is C and satisfies

Bh Bh =0.aX2+ a Y2

(2.1)

(2.2)

In such a spacetime, agav is parallel [i.e., V(agaV) —=0]
and is in general the only Killing vector field on (Af, g ). ,

The special case

h(U, X;)=h,. (U)X,XJ (ij =1,2), (2.3)

where h;, (U) is a symmetric matrix with h;;(U)=0,
defines the plane-wave' spacetimes with their five-
dimensional group of isometrics.

Note that, when h (U, X, Y)=0, except for 0& U &o,
the PP-wave spacetime represents an exact "sandwich
wave" for which spacetime is flat for U &0 and U & a.
Note also that whatever may be h, the propagation direc-
tion 0/BV is Killing, so the PP wave propagates without

Seifert, and Friedrich which we will need to prove the
theorem of Sec. IV D. We give a brief review of this for-
malism in a form that is appropriate to our conventions
and notation and we emphasize those aspects relevant to
our purposes.

Section IV E is devoted to another theorem about GW
spacetimes: a proof that any GW spacetime that not only
begins flat before the wave arrives but also returns to per-
fect fiatness after the wave passes (i.e., any precisely
"sandwich" GW spacetime), must actually be a PP-wave
spacetime. Since all PP waves are infinitely large in
transverse extent, this theorem implies that almost-plane
waves must always leave "tails" behind, in any region of
space through which they have propagated.

In Sec. V we briefly recapitulate the principal con-
clusions of this paper.

Throughout this paper (with the exception of Sec.
IIIB) we will deal with purely gravitational (vacuum)
waves; for Einstein-Maxwell plane waves and for plane
waves coupled with fluid motions, results similar to those
of Secs. II-III hold with appropriate modifications.

Throughout this paper we use, without explanation,
terminology and concepts from Hawking and Ellis. ' Our
mathematical conventions and notation are those of
Hawking and Ellis, ' and Misner, Thorne, and Wheeler. "
In particular we adopt the metric signature ( —,+, +,+ )

and use the "rationalized" Newman-Penrose equations
appropriate to this signature. These equations are listed
in the Appendix. Our terminology and general usage of
the Newman-Penrose formalism are in accordance with
those of Chandrasekhar' after the proper conversion
from his (+,—,—,—) metric signature to ours.
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diSraction. The PP waves must be of infinite extent in
the spacelike X, Y directions because of Eq. (2.2), even
though they are not in general plane symmetric. In fact,
we will show in Sec. IV that neither of the above soliton-
like properties of PP waves (ffatness after the passage of
the wave, and diffraction-free propagation) can hold true
for almost-plane gravitational waves of finite transverse
extent.

For a plane polarized plane wave in the "Kerr-
Schild"-type chart' ( U, V,X, Y), the function h takes the
form

X=xF(u), Y=yG(u), U=u,
V=u+x FF +y GG

(2.4)

where F and G are the unique C solutions to the equa-
tions

Gtl

G
= —h, (2.5)

with initial conditions F(0)=6 (0)= 1, F'(0)=6'(0)=0,
and F(U}=6(U}=1for U&0. In this local coordinate
system the metric is

g=F (u}dx +6 {u)dy du dv, — (2.6)

and the plane symmetry generators are given by
g;=8/Bx' on the domain of the (u, v, x,y) chart, with
(i =1,2) and x'=x, x =y.

The field equations (2.5) imply that, for a sandwich
wave (2.6), in the domain I u & a j where h =0 and where
the spacetime is flat,

(2.7)

where, because of the field equations {2.5), f &
&a, and

f2 & [—m, a]U[f &, + oo]. These metric functions

display, as we shall see, the focusing efFect of the plane
sandwich wave (2.6}on the null geodesics propagating in
the u direction. We call the case f, =f2 the anastigmatic
case and the generic case f,&f2 the astigmatic case. We
also denote the null surfaces (wave fronts) Iu =Oj and

I u =a j by JV and Jl/', respectively
To see the focusing efFect of the plane wave on null

geodesics (discussed in greater detail, e.g., in Ref. 13),
consider, for an arbitrary value of Uo, the null surface
Iv=voj generated by null geodesics on which u is an
aSne parameter and along which x, y, and U are con-
stant. In the Minkowskian region I (JV'), these null geo-
desics generate a standard, flat, Minkowskian null sur-
face; namely they generate the null surface [ v = V =vv j.
On the other hand, assuming for simplicity that the plane

h(U, X;)=h(U)(X —Y ) .

When h(U}=0 for U&a and for U&0 {i.e., for a
sandwich plane wave), it is also useful to introduce the
"Rosen-type" chart' (u, v, x,y), which is defined on the
open domain [F( U)G ( U)&Oj ofA by

wave is anastigmatic and using Eqs. (2.4) and (2.7), it is
easily seen that in the other Minkowskian region I+(JV ')
lying to the future of the wave, the null surface I v =vo j
is a Minkowskian null cone C& centered at the point Q
which in the ( U, V, X, Y) coordinates is given by
Q=(V=vo, U=f„X=Y=O). In other words, after
they pass through the spacetime curvature sandwiched
between the wave fronts JV and JV ' of the plane wave, the
initially parallel (shear-free and convergence-free) null
geodesics generating the surface Iv =vvj are focused
along the null generators of the Minkowskian null cone
C&, to the point Q in I+(JV '). Moreover, it is easy to see
that the null generators of the surface t v =vs j constitute
one-half of the null generators of the achronal boundary'
J+(Zz) which have their past end points on Z . Here p
is any point in I (JV') with v (p) =vo, and Zz is the space-
like two-surface generated by p under the action of plane
symmetry. The single null generator of the null cone C&
which runs parallel to (and thus does not intersect} the
plane wave is the single past endless generator of J+(Z~ ).
Similarly, in the general astigmatic case, one-half of the
generators of J+(Zz ) which have their past end points on

Zz generate the null surface I v =vv j, and after passing
through the plane sandwich wave these generators are fo-
cused onto a spacelike curve lying in the null plane

I U=f& j. This spacelike curve is given by IU=f~, X
=0, V=vv+ Y /(f

& f2) j in th—e (U, VX, Y) coordinate
system. Along the null plane I U=f, j, which we will
henceforth denote by 4, there is a one-parameter family
of null generators of J+(Z ) which do not have past end
points and which all run parallel to the plane wave.

Similar conclusions apply for the null generators of the
achronal boundaries J+(p} where p EI (JV) is a point
sufficiently far away from the wave (before the wave's ar-
rival). However, in this case the null generators are fo-
cused to a point (or a spacelike curve) lying beyond the
surface 4', i.e., at U &f, . '3

The plane symmetry generated by the Killing vectors
g; breaks down on the null surface 4"; that is, in the
tangent space at any point on this surface 4', the Killing
vectors g'; generate a subspace which is nor a two-
dimensional spacelike plane (see Sec. III B of this paper).
This breakdown of "strict" plane symmetry on 4' {Sec.
III B) allows the null generators of the achronal boundary
J+(Zz} to intersect each other at points in 4'. In the
anastigmatic case, the g'; degenerate on 4' to null Killing
vectors that are proportional to 8/8 V and that vanish on
the line X = Y =0; hence, in this case the g; span a one-
dimensional null hne at each point on 4—IX = Y=Oj.
In the astigmatic case, g, degenerates on 4 to a null Kil-
ling vector that is proportional to 8/8 V and that vanishes
along the two-surface X =0, while gz is still spacelike on
4', generating symmetries along the spacelike line to
which null generators of J+(Z ) are focused. In this case,
the g; span a two-dimensional null plane at each point on
4' —[X=Oj.

A further consequence of these focusing properties is
the fact that plane-wave spacetimes are not globally hy-
perbolic, ' even though they are geodesically complete
and satisfy stable causality. Any partial Cauchy surface
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X in I (4) cannot intersect 4', hence 4 is a future Cau-
chy horizon for X. This was to be expected, since strict
plane symmetry on X will be preserved throughout the
domain of dependence of X, which therefore cannot in-
clude S. [The past Cauchy horizon for a partial Cauchy
surface that intersects the wave will be the time reversed
analogue of 1 lying in I (JV).]

Lng" [~t p

III. COLLIDING EXACT PLANE WAVES

A. Review of exact solutions and a new viewpoint
on the breakdown of local inextendibility

The first results on exact solutions of the vacuum Ein-
stein equations representing colliding plane impulsive
gravitational waves with parallel, linear polarizations
were obtained by Khan and Penrose, ' and Szekeres. '

Later Nutku and Halil' obtained the generalization of
these solutions to arbitrary relative linear polarizations
for the two incoming impulsive waves. Szekeres, ' and
Chandrasekhar and Xanthopoulos' have obtained simi-
lar results for Einstein-Maxwell waves. The main result
of these exact solutions (see Fig. 1) is that the future of
the collision surface (region IV) is bounded by a curva-
ture singularity in future directions. Surprisingly, the
singularity extends over to the past endless null genera-
tors of the surfaces JV, and JV2 which would lie in the
respective Cauchy horizons of the single plane-wave
spacetimes if the collision were not taking place. ' ' A
curious result, therefore, is that the spacetime pictured in
Fig. 1 is maximally extended, i.e., the points of $2 and 4,
touching the surfaces JV, and JV2 cannot be added to the
spacetime even though these points do not represent local
curvature singularities —i.e., even though there are time-
like curves running into and terminating on these singu-
larities which are completely contained within the flat re-
gions II and III. In other words the maximally extended
colliding plane-wave spacetime is not C -locally inex-
tendible although it is globally C"-inextendible (maximal)
for any k ) 1 (for definitions, see Sec. 3.1 of Ref. 1).

The first new result of this paper is to point out that
the above failure of local inextendibility is not generic in
the following sense.

We define a spacetime (Jkf, g) to be, generically C"-
locally inextendible if there exists no open set Q in A
with the following properties.

(i) Q has noncompact closure in A.
(ii) (Vl, g ~

~) has a C -extension (VE,g') in which the
image of 'M has coinpact closure.

(iii) There is a point q EQ and an open subset 8 of
T JR consisting of timelike vectors, such that for any vec-
tor XEG the geodesic [y~(t}=exp~(tX), 0&t &t, j
from q is inextendible in W, and t

&
is finite. Here t

&
is the

smallest upper bound of all t' G R such that
yx(t)=exp~(tX) is defined and contained in % for all
r E[O, r').

With this definition, the maximally extended colliding
plane-wave spacetime of Fig. 1 is not only globally inex-
tendible; it is also generically C -locally inextendible for
any k) 1.

Note that the key idea behind the usual definition of lo-

FIG. 1. Geometry of the maximally extended colliding

plane-wave spacetime in the anastigmatic case. The null

surfaces JV& and JV2 represent the wave front(s) (JV'&, JV"& and

JV&, JV&) of the incoming colliding plane waves. Since the plane

waves depicted in the above figure are impulsive, for both waves

the past and future wave fronts are identified
(JV'f —A] aha —JVp) and hence are indistinguishable. Because of
the focusing of each wave by the other wave, the wave fronts JV,

and JV'2 are represented by null cones in the future of the col-
lision plane. The flat regions II and III lie under the cones

JV&, JV&, respectively. The respective Cauchy horizons 4'& and S2
of the incoming plane waves are completely cut off from the

spacetime, except for those points which lie on the common

generators of S'& and S'2 with the null cones JV2 and JV&, respec-
tively. However, these points are also singular since they do not

possess a regular spacetime neighborhood which is isolated
from the curvature singularity. Note that the coordinate system

can always be arranged, by a Lorentz transformation, so that
the collision is head on as in the above figure. This figure,

which was drawn by R. Penrose and which was published in

Ref. 18 by R. Matzner and F. Tipler, is reproduced here by the
kind permissions of Penrose, Matzner, and Tipler.

cal inextendibility is this: One identifies as locally ex-
tendible, among others, those (maximal) spacetimes that
possess purely topological singularities, i.e., singularities
which do not involve unbounded curvature but which
nevertheless cannot be removed without destroying the
topological manifold structure of the spacetime. Such a
singularity may be modeling the global influence of some
essentially nonsingular matter distribution (e.g., a cosmic
string}, or may be the result of some unusual "cutting and
pasting" employed in the construction of the spacetime
(such as those that appear in the covering space of the
two-dimensional Minkowski space with the origin re-
moved}. In all such cases our definition would identify
these spacetimes as generically locally inextendible; i.e.,
the presence of their "noncurvature" singularities will be
directly felt only by those freely falling observers which
constitute a set of measure zero. Only the spacetimes in
which such topological singularities are unavoidable for a
"finite fraction" of all freely falling observers (e.g. , be-
cause of the focusing of causal geodesics onto these singu-
larities} will fail to satisfy generic local inextendibility.
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For example, if the topological singularities of the collid-
ing plane-wave spacetimes which we have described
above were to lie beyond the respective Cauchy horizons
of the colliding waves instead of lying on them, then these
spacetimes would fail to be generically locally inextendi-
ble. However, as our discussion of Tipler's theorem in the
next section will make clear, this is not a possible out-
come of generic plane-wave collisions. Thus, except possi-
bly for a set of measure zero, all colliding plane-wave
spacetimes will satisfy generic local inextendibility.

Another important property of the above examples of
colliding plane-wave solutions is that they are globally
hyperbolic, since neither of the Cauchy horizons 4, , S2 is

contained in Ai. In particular, the singularities present in
these spacetimes are "not timelike" in the sense of Pen-
rose that is the singular points are part of an achronal
future c boundary for (JK,g ).

We should also remark that, recently Chandrasekhar
and Xanthopoulos have obtained new exact solutions
describing colliding gravitational impulsive-shock waves
with nonparallel polarizations, in which the interaction
region is bounded by a Killing-Cauchy horizon instead of
by a spacelike singularity, and in which a timelike singu-
larity appears when the solution is analytically extended
beyond this horizon. However, as we will also discuss in
the next section, it is shown in Ref. 4 that such Killing-
Cauchy horizons in any plane-symmetric spacetime are
unstable against purely plane-symmetric perturbations.
Therefore, it is reasonable to expect that the spacetimes
resulting from "generic" plane-wave collisions will al-

ways involve spacelike curvature singularities with the
same global structure as the solutions we have discussed
above, regardless of the relative configuration of the in-

coming polarizations and wave forms.

B.A general framework for studying colliding
plane-wave spacetimes and an alternative proof

of Tipler's theorem on their singularities

The global structure of plane-symmetric spacetimes
(e.g., plane waves and colliding plane waves} is nontrivial
when they possess Killing-Cauchy horizons on which
their plane symmetry breaks down. When discussing
such spacetimes from a general standpoint some care is
needed. In this section we introduce a brief framework
for analyzing general plane-wave and colliding plane-
wave spacetimes. This framework is based on some intui-
tively plausible definitions and constructions which make
precise the basic notions that one needs in such a general
discussion. We conclude the section with an important
application of this framework: a discussion and an alter-
native proof of Tipler's theorem' on singularities of col-
liding plane-wave spacetimes.

We will call a maximal (see Sec. 3.1 of Ref. 1) space-
time (At, ,g ) plane symmetric if there exists a pair of com-
muting Killing vectors g„g2 on JÃ, and an open dense
subset of JK at every point of which g'„gz span a space-
like two-dimensional subspace in the tangent space. So as
to exclude cylindrical symmetry, we assume that the or-
bits of g,. (i = 1, 2}are homeomorphic to R '. If the open
dense subset is all of Af, i.e., if no breakdowns of plane

symmetry occur, then we say (At, g ) is strictly plane sym
metric.

In the strictly plane-symmetric region of any plane-
symmetric spacetime there exist standard null tetrads
constructed as follows: Since g; are Killing and span a
spacelike two-plane at each point, there exist precisely
two null geodesic congruences everywhere orthogonal to

Let l,n be tangent vector fields to these congruences
normalized so that g(l, n) = —1. Let m, m' be two linear-
ly independent complex null linear combinations of g';,
which are complex conjugate, satisfy g(m, m')=1, and
vary smoothly over the region of strict plane symmetry.
Then (/, n, m, m') is a null tetrad which is locally regular
although it will not in general cover all of At W.e will
call the tetrad (l, n, m, m'), together with the additional
requirement that I,n are Lie parallel along g'; (which we
can obviously impose since g; are Killing and commute),
a standard tetrad.

We will say that a plane-symmetric nonfat spacetime
is a p/ane waue if in a standard tetrad either %0——%2 —=0
or %4 ——V&=0. Note that this property is independent of
the choice of the standard tetrad which is unique up to
tetrad rotations of type III (Sec. 7.3 of Ref. 12).

We have seen in the last section that single plane
sandwich wave solutions are not strictly plane symmetric,
as focusing causes the breakdown of plane symmetry
along a null hypersurface 4 in I+(JV '), where A; JV '

are the past and future wave fronts. Now consider a
spacetime representing the collision between two plane
waves moving in opposite directions. A plane-symmetric
spacetime (Af, g) will be said to model colliding plane
waves if there exist two null surfaces JV', , JVz in Jkt, inter-
secting in a spacelike two-surface Z, such that in any
standard tetrad %4=%2 =—0 but %0&0 on I (JV, ),
%o=%z ——0 but %4&0 on I (JV2), and Vo, +4&0 on
I+(Z ). Figure 2 depicts such a spacetime.

In the specific colliding plane-wave solutions reviewed
above, ' ' ' the collision produces a spacetime singulari-
ty. That this is a rather general outcome of plane-wave
collisions is shown by a theorem of Tipler. However, a
key requirement for the proof of Tipler's theorem is that
strict plane symmetry holds throughout the colliding
plane-wave spacetime. Since this notion of strict plane
symmetry is crucial to the discussion that we will give in
the next few paragraphs of this section, we first present a
restatement and an alternative proof of Tipler's theorem

cA'2 eV,

FIG. 2. Colliding plane sandwich waves.
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which emphasize the requirement of strict plane symme-

try explicitly.
Theorem / {"Tipler's theorem" }.Let {Af,g} be a strict-

ly plane-symmetric spacetime with a C metric g, with
the following properties.

(i) Null convergence' holds on Af: R,bK'K )0 for
any null vector E.

(ii) There exists a point p at which either at least one of
(4'O, o, @00) is nonzero or at least one of (44, A, ,@22} is
nonzero, in some standard tetrad on W.

(iii) Through the above point p EAt, there exists a par-
tial Cauchy surface X which intersects each null geodesic
generator of J {p) and which is noncompact in the
spacelike direction orthogonal to g';.

Then, (Jktg, ) is not null geodesically complete.
Proof. Fix the standard tetrad mentioned in property

(ii). Then since /, n are geodesic and hypersurface or-
thogonal, we can arrange that the following Newman-
Penrose spin coefficients vanish (cf. the Appendix)

~=v=e+e =p —p =p —p =0 .

Now assume, without loss of generality, that it is one
of (%o,o, @00) that is nonzero at p (otherwise interchange
the role of I and n in the argument, and accordingly in-

terchange the roles of the spin quantities).
Let Z denote the orbit of p under the action of the

Killing symmetry group generated by g'„g'i. Then by
plane symmetry, properties (ii) and (iii) hold at every
point q EZ .

Now assume, in contradiction of the theorem's con-
clusion, that (JK,g } is null geodesically complete. Con-
sider J*(Z~). These achronal boundaries are generated

by null geodesics which by (iii} and because of strict plane
symmetry all have their past (future) end points on Z~,
and which are everywhere orthogonal to Z and hence
(since g; are Killing} to g„gz. Thus J (Z~ }are generated
by integral curves of I and n that start off from Z .

It is shown by Tipler in Ref. 2 that as a result of the as-
sumptions (i) and (ii) above [and of the Ricci identities
(A5) and (A6)], any null geodesic y parallel to / and

passing through any point q in Zz will have a conjugate
point to Z along itself at some affine distance f from q.
If we now fix our time orientation so that the conjugate
point lies to the future of q, then every null generator of
J+(Z~ ) parallel to / has a conjugate point to Z along it-
self at an affine distance u =f & 0; and f is independent
of the null generator. The noncompactness of the partial
Cauchy surface in property (iii) guarantees that the null
geodesic generators of J+(Z } parallel to / cannot inter-
sect (except on Z ) those parallel to n, and consequently
since J+(Z ) has no boundary (proposition 6.3.1 of Ref.
1), the submanifold J&+{Z )—Z of J+(Z~ ) generated by
null geodesics parallel to / has no boundary.

We construct the map

p: Z~ x (0,f] ~ JI+ (Zp ) —Z~,

given by

P: (q, u) ~ y~(u) E J,+(Z~) —Z

Claim: P is a diff'eomorphism.
That P is onto is obvious since all points on

J&+(Z }—Z~ are on null geodesics y from Z and for
u &f yz(u} does not belong to J&+(Z )—Z for any

q CZ (see Chap. 4 of Ref. 1). That P is one to one is an
immediate consequence of the strict plane symmetry
holding at every point of At, which strict plane symmetry
prevents different null generators yz and y ~ (q&q')
from intersecting each other. That P and P

' are smooth
is clear by construction.

Thus,

[J+(Z, ) —Z, ]=- Z, X(O,f] =- R'X(O,f].
Here, the symbol -=denotes "is diffeomorphic to." But
R X (0,f] has a boundary which is diffeomorphic to R 2,

and therefore we obtain a contradiction to the proposi-
tion 6.3.1 of Ref. 1.

Therefore, the assumption that (A, ,g) is null geodesi-
cally complete must be false —a conclusion that proves
the theorem. 0

Tipler s theorem implies, as a specific application, that
if the spacetime produced by the collision of two plane
waves is strictly plane symmetric —as is the case in the
classic examples (Refs. 14—16), then the collision must
produce a singularity (null geodesic incompleteness). We
have argued at length in Sec. III of Ref. 4 that in a space-
time which represents the collision between an exact
plane gravitational wave and a plane wave of any physi-
cal field belonging to some restricted class, the break-
down of strict plane symmetry is incompatible with glo-
bal causality. Therefore, strict plane symmetry is a natu-
ral restriction to impose on colliding plane-wave space-
times. However, the fully nonlinear gravitational field
does not belong to the class of fields for which the argu-
ments of Ref. 4 are valid; consequently these arguments
do not prove that colliding plane-wave spacetimes are
strictly plane symmetric. In fact, just as spacetimes con-
taining a single plane wave fail (beyond the Cauchy hor-
izon h') to be strictly plane symmetric, so also some col-
liding plane-wave spacetimes possess (Killing-)Cauchy
horizons at which strict plane symmetry breaks down.
Examples are the Chandrasekhar-Xanthopoulos solu-
tions. Tipler's theorem cannot be applied to such space-
times.

On the other hand, as is suggested by calculations of
Chandrasekhar and Xanthopoulos (Ref. 5) and proved by
the author (Ref. 4), all such Kilhng-Cauchy horizons
which break strict plane symmetry are unstable against
plane-symmetric perturbations. Moreover, as was shown
by Chandrasekhar and Xanthopoulos for special cases, it
is plausible {though not yet proved in general) that the
(full nonlinear) growth of these instabilities always de-
stroys the Killing-Cauchy horizon, thereby making the
spacetime strictly plane symmetric. If this is the case,
then all colliding p/ane-wave spacetimes whose causal
structures are stable against plane-symmetnc perturba-
tions are strictly plane symmetric, and Tipler's theorem
implies that they also are all singular.
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It is interesting in revealing the depth of Tipler's
theorem to note that for a single plane-wave spacetime
the only conditions of the theorem that do not hold are
strict plane symmetry and the existence of the partial
Cauchy surface satisfying the requirements in (iii}. As we
argued in Sec. II these conditions are intimately related
and presumably imply each other in the generic case.
The partial Cauchy surface condition is used to guarantee
that all generators of J+(Z~ ) have past end points on Z~;
whereas the strict plane symmetry is used to show that
the map P is a difFeomorphism, which is the vital step in
our proof of Tipler's theorem. In fact, we will use this as-
pect of Tipler's theorem in a future paper to produce a
qualitative argument for the existence of singularities in
colliding almost-plane-wave spacetimes when the relevant
parameters belong to a certain regime.

Also note that (Fig. 2) Tipler's theorem [simply by tak-
ing the point p as an arbitrary point in I+ ( JV2 )

AI (JV2')j implies that the points on the past endless

generators of J+(Zz ) which would lie in the Cauchy hor-
izon I will become singular, and consequently I will be
cut off completely from the colliding plane-wave space-
time, a result that is not obvious from the analytical
structure of the known exact solutions. '

IV. GRAVITATIONAL-WAVE (GW) SPACETIMES

In this section we turn attention to general solutions to
the vacuum Einstein equations which represent a single
"gravitational wave" propagating in an otherwise flat
space. Plane-wave and PP-wave spacetimes are simple ex-
amples of such solutions; and we frequently will refer to
them for comparison and motivation while discussing
more general gravitational-wave (GW) spacetimes. Our
primary interest in studying GW spacetimes is to learn
about "almost-plane waves" —GW spacetimes that in
some suitable sense are of "finite spatial extent, "
representing a transversely bounded curvature distur-
bance carrying finite "energy" and propagating in an oth-
erwise flat spacetime. (We will define almost-plane waves
more precisely in paper 2 of this series. ) Clearly almost-
plane waves cannot be plane symmetric, since they have
an amplitude that must satisfy suitable falloff conditions
at large "transverse" distances. We will see in Sec. IV B,
by a theorem of Dautcourt, ' that relaxing the assump-
tion of plane symmetry on such a spacetime forces it to
have no Killing vectors in general sad hence leaves little
hope for an exact solution. Indeed, one can already guess
that for a nonplanar gravitational wave the linear and
nonlinear effects of diffraction and backscattering might
cause the wave to evolve as it propagates, thereby
preventing the existence of a Killing propagation vector.
However, it is by no means clear whether the nonlineari-
ty of the field equations can make possible the existence
of localized, nondispersive, solitonlike solutions.
Dautcourt's result shows that it cannot.

The plan of this section is as follows.
Section IV A is devoted to a careful definition of GW

spacetimes and associated discussion. Roughly speaking a
GW spacetime is a solution to the vacuum Einstein field
equations which is flat prior to the arrival of a curvature
disturbance (gravitational wave), but may or may not set-

tie back down into flatness afterward. This section also
introduces a class of "standard" coordinate systems and
"standard" null tetrads to be used in studying GW space-
times.

In Sec. IV B we discuss a previous theorem of
Dautcourt' which directly implies that any GW space-
time possessing a null Killing vector field which points
along the propagation direction —i.e., possessing a gravi-
tational wave which propagates in a perfectly
diffraction-free manner, indefinitely preserving its wave
form —must be a PP-wave spacetime. Since PP waves are
always infinitely large in transverse extent (Sec. II}, this
result implies that almost-plane waves (which have finite
transverse "size") must always exhibit diffraction.

In Sec. IV C we discuss, present, and prove a "peeling-
oF'-type theorem about the behavior of the Weyl curva-
ture quantities associated with a standard tetrad on a
general GW spacetime.

In Sec. IVD we introduce the characteristic initial-
value formalism of Penrose, Muller zum Hagen and
Seifert, and Friedrich which we will need to prove the
theorem of Sec. IV D. We give a brief review of this for-
malism in a form that is appropriate to our conventions
and notation, and we emphasize those aspects relevant to
our purposes.

Section IV E is devoted to another theorem about GW
spacetimes: a proof that any GW spacetime that not only
begins flat before the wave arrives but also returns to per-
fect flatness after the wave passes (i.e., any precisely
"sandwich" GW spacetime), must actually be a PP-wave
spacetime. Since all PP waves are infinitely large in
transverse extent (Sec. II), this theorem implies that
almost-plane waves must always leave "tails" behind in
any region of space through which they have propagated.

A. Definition of a GW spacetime

Definition Agravi. tational-wave (GW) spacetime is a
geodesically complete (hence maximal), vacuum space-
time (JM, ,g) with a C metric g, satisfying the following
conditions.

(i) At is diffeomorphic to R .
(ii) There exist two nonintersecting, null, achronal

three-dimensional C submanifolds (without edge) JV and
JV ', whose nulkgeodesic generators have no past or fu-
ture end points in JII, and which satisfy JV CI (JV ').

(iii) (Jlf, g ) is flat on I (JV).
(iv) There exists a noncompact partial Cauchy surface

through every point p EA, .
(v) g is C" outside JV and JV '.
Remark. The differentiability class of A, is assumed

C". It can be shown, using the characteristic initial-
value formalism which we will outline in Sec. IV D, that
there exist spacetimes satisfying all the above conditions
except geodesic completeness. Completeness cannot be
proved for these spacetimes because of the local nature of
the existence theorems; nevertheless, in view of its
mathematical naturalness and the relatively unimportant
role it will play in what follows, we retain the assumption
of completeness. We also remark that, by appealing to
Christodoulou*s recent theorems ' proving the global ex-
istence of solutions to the initial-value problem for the
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vacuum Einstein equations with "small" initial data, it
seems physically plausible (and in fact extremely likely)
that for sufficiently "weak" gravitational waves —not a
serious restriction for our purposes —the completeness
condition will indeed be satisfied.

On any GW spacetime there exist local coordinate sys-
tems (u, v, x y) for which JV, JV '= ju =Oj, Iu =a j and
in which we can find a local null tetrad with the form

l=R +A, n=B B =B
au av av

p a A a a
m =M +N +co

ax ay av

(4.1)

where R (u, v, x,y), A (u, v, x,y), and co(u, v, x,y) are
real and Q(u, v, x,y), 8'(u, v, x,y) are complex functions.
(A proof and detailed discussion will be given in a future
paper. ) We call such a local chart and tetrad a "stan-
dard coordinate system" and its "associated standard
tetrad. " If the GW spacetime has a (null) Killing propa-
gation direction, we also require a standard coordinate
system (u, v, x,y) to satisfy a/av =Killing vector, but we
drop the requirement that JV'=Iu =a j. Note that for
both the general case and for a GW spacetime with a Kil-
ling propagation direction, neither the standard charts
nor the standard tetrads are uniquely defined; in both
cases a large amount of coordinate and tetrad transfor-
mation freedom remains in the choice of these charts and
tetrads. For example, for a sandwich plane-wave space-
time (Sec. II}, the "Kerr-Schild"-type chart and the
"Rosen"-type chart are both standard coordinate sys-
tems.

B.The only difFraction-free GW spacetimes are PP waves

In a short paper' published in 1964, Dautcourt
classified all vacuum spacetimes possessing a null Killing
vector. According to his classification, such spacetimes
either are PP waves or are certain solutions of Petrov
type II or I. Furthermore, his solutions of Petrov type II
or I have the property that their curvature-invariant
R,b,dR' ' is nonzero on a region that extends into
I (JV') for any null surface JV satisfying property (ii)
above, and diverges on a three-dimensional timelike hy-
persurface. ' Obviously, these type-I or type-II solutions
cannot be gravitational-wave spacetimes according to our
definition above. Therefore, as we have stated earlier, the
only GW spacetimes with a Killing propagation direction
(the only diffraction-free GW spacetimes) are PP waves;
and this in turn implies that almost-plane waves must al-
ways exhibit diffraction.

Remarks. This result implies that any generic observer
through whom the curvature disturbance of the GW
spacetime passes will first feel only the +0 component of
the Weyl tensor in any standard tetrad. Only later, and in
a "sudden" (i.e., nonanalytic, shocklike) fashion, the oth-
er components 4, , %2, %3, and %4 (which represent back-
scattered curvature) will appear in the measured gravita-
tional field. Hence, if we trace the history of the
observer's measurements backwards in time, the quanti-
ties +&, %2, F13, 44 will "peel off" (not necessarily in that
order} before the quantity %v vanishes and the distur-
bance is turned off.

Proof. In any standard chart (u, v, x,y), the surface JV
is given by JV= Iu =Oj and the standard tetrad is of the
form of Eq. (4.1):

I=R +A
au av

(R~O)

n=, m=8a a a a
BU

'
Bx By BU

Since the metric is C, and the spacetime is flat on
I (JV), all curvature quantities vanish on JV= Iu =Oj.
Now assume, in contradiction to the theorem's con-
clusion, that there is no set of neighborhoods I U j,
U CI+(JV) satisfying U U D JV such that on each
U, 4& ——%2 ——43——%4=0. Let I V j be the collection
of all open sets in I+(JV} on which qi,:—0, i =1,2, 3,4.
Then the complement 8 of U, V in JR is an open set in-

tersecting JV, and 8(lI+(JV )does not'contain any open
neighborhoods on which 4; =—0. Thus 8A I+(JV )

C supp(4, , %'2, +3,%4}; in fact, Intsupp(4&, +2 %3 %4)
=8(l I+(JV), and therefore [8(iI+(JV')](l fp CAt,
( p] 0 3 q 3 0 4)(p)&0j is a nonempty open set whose clo-
sure intersects JV in the closure of an open set 'N in JV.
Then, it follows from the repeated application of the ar-
gument below to noncharacteristic surfaces in a neigh-
borhood of JV, that there exists at least one open subset
'lV of JV and an open neighborhood '9' around it, for
which at least one of 4'&, +2, %'3, %4 is nonzero at any point
in '0' (l I+ (JV}

Now in general qis, will be nonzero on Q'. Then, per-
form a type-II tetrad rotation' with a local function b to
make %0=0 on 'M'. [This can be done since
(4&, +2, +3,+&)&0 at any point. ] The rotated tetrad will

be of the form

C. A "peeling"-type property of general GW spacetimes

We now prove a "peeling"-type result about the behav-
ior of the curvature tensor in a general GW spacetime.

Theorem 2. Let (JN, g ) be a g, ravitational-wave space-
time with wave fronts JV, Ã ', thus (JR,g) is flat on
I (JV) where JV is the past wave front. Then, there exists
a collection of open sets I U j, U CI+(JV), such that
U U D JV, and on each U, %', =+2——%3——4'4 ——0 in

any standard chart and tetrad.

I'=R +RA +P' +Q'B ~ B,B,B

Q BU Bx ByB, -B -B,Bn'=n=, m'=M +N +co'

Henceforth we will omit primes over the quantities be-
longing to the new tetrad.

Now in this new tetrad +0:—0 on O'. But then, the Bi-
anchi identities give us
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—D%'
&

———3m%'z+ 2( e+2p ) I', ,

D+z — 5 0 ] 2lcq13+3Pq z+2(~ —&)P&

D—%,= ~%, 5—*%z 2—(E p—)%,+3~% z 2—A,%, ,

D—+4= 5—'43 (—4~ p—)%4+ (4m +2a )%3 3—A%z,

which, when written in terms of partial derivatives with
respect to the coordinates according to the tetrad above,
and when the spin coefficients and metric components are
regarded as known functions, yields us a system of first-
order linear partial differential equations for
~~. ~2. ~3. ~4

By the C -ness of g, 4& ——4z ——43 ——4~=0 on JV, and
hence also on 'NC JV. Since R =R'+0 at any point, the
surface %V is a noncharacteristic surface for the above
system of equations, given locally by I u =OI. Since the
coefficients are smooth [at least C since g is C on
I+(JV}flI (JV ')], any C' solution (4&,+z, +3,%&) of the
system above is uniquely determined in some neighbor-
hood V' of "lV by Holmgren's uniqueness theorem ex-
tended to nonanalytic equations (John and Smoller ).
(In fact, one can safely assume g to be piecewise analytic
thus eliminating the need for such an extended unique-
ness theorem: that piecewise analyticity, by the Cauchy-
Kovalewski theorem, implies that the unique C' solu-
tion of the above system is also analytic on its domain of
uniqueness. ) But as we clearly see from the above system
of equations, +& ——%2 ——43——%4——0 is a C' solution in any
neighborhood of 'N, of the above initial-value problem.
Therefore it is the unique solution in some neighborhood
V' of 'N, and 4, =%z—ql& ——%4——0 in that neighborhood

geometry given by the limit of the metric g which lives in
the open interior of Ai; this limiting metric defines
smooth tensor fields on the manifolds without boundary:
IntJV„ IntJVz, and Z. We describe the situation in Fig. 3.

We will now outline the construction of a local coordi-
nate system and tetrad on Af, w. hich are particularly well
suited for the discussion of the initial-value problem. We
will call them Friedrich's tetrad and coordinate system.
They are constructed as follows.

On Z choose coordinates x,x =x "(:—x,y ).
On JV& choose a function u )0 which vanishes on Z

and which is the affine parameter along integral curves of
e, —= I, the null geodesic generators of JV, . Let Z„be the

0
two-dimensional submanifold I u =uo I in JV&. Choose on
Z complex vector fields e3, e4 ——e3 with g(e3, e4)=1,
g(e3, e3}=0which are tangent to Z. Propagate e3,e4 onto
JV& in the following manner: Construct e3, e4 as the paral-
lel transports of e3, e4 along e, . At any point in JV, , e3
(e4) lies in the intersection of the e3Ae& (e4Ae&) plane
with the two-surface Z„ through that point, and

0

g(e3, e4}=1,g(e3, e3) =g(e4, e4) =0.
Choose a coordinate u )0 on Al coinciding with u on

JV&, such that V uo, u =uo is a null hypersurface in At
Put ez ———Vu on AI. Parallel transport e„e3, e4 from
JV, to all of A, along integral curves of ez. Choose a func-
tion v )0 on Att and functions x" on At ( A =3,4) such
that (i) x" coincide with x" on Z, (ii) x" are constant
along null generators of JV, and null generators of the
(u =uoI hypersurfaces [and hence ez(x ")=0],(iii) v =0
on JV&, and (iv) ( u, v, x ") form a coordinate system such
that ez =—BiBv.

As a result of these constructions, we have
But since %0=0 on Q', Q'(l V' is a flat neighborhood

of 'N and hence in the original tetrad, on
Q' (l V', ql

&

——%z ——43——%~—:0. This contradicts our
assumption about 'N and '9', since ('9'(l V') AI+(JV) is

nonempty and is contained in '9'(ll+(JV) . This contra-
diction proves theorem 2. Cl

D. Review of the characteristic initial-value formalism

I—=e, = +U +X8 8 g 8
BQ BU

An=ez= „,m=e3 +g
dv v Qx

Am'—=e,=~' +g'"
ax"

(4.2)

Our next result about GW spacetimes is a uniqueness
theorem similar to that of 0autcourt: Whereas
Dautcourt's theorem (Sec. IV B above) says that the only
diffraction-free GW spacetimes are PP waves, our next
theorem (Sec. IVE below) says that the only sandwich
GW spacetimes are PP waves. Since the proof of the
theorem makes extensive use of the characteristic initial-
value formalism as developed by Penrose, Muller zum
Hagen and Seifert, Friedrich, and others, we first give
in this subsection a brief review of this formalism, em-
phasizing those aspects that are relevant to our purposes.
We follow Friedrich quite closely, though with entirely
different conventions.

We assume that we are given a "spacetime JR with
boundary, " where the boundary L$L—=S consists of two
null surfaces JV', , JV2 intersecting and terminating in the
past directions on a spacelike two-dimensiona1 submani-
fold Z=JV, AJVz, BJK=—S=A;UJVzUZ. Here the
geometry on the boundary Lkt is to be understood as the

as a null tetrad on AI. We also have Ã, = t v =0),
JVz ——

I u =OJ, and Z =
t u = v =OJ. Moreover,

FIG. 3. Characteristic initial-value problem.
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U=X"=co=0 on JV, (u =0),
~=e=O on JV, (u =0),

(4.3)
—Dp= —p „=p +cro*,

D—cr= —o „=o(p+p*)—40 .
(4.10)

while on the whole spacetirne A,

v=y=r=n (a—+p*)=p —p'=0 on JR . (4.4}

Use these to integrate, onto A'&, by ordinary di6'erential
equations along null generators of JV&, the reduced initial
data I g,p, o on Z j. Then use the Ricci identities on

We now formulate the fundamental theorems of the
characteristic initial-value formalism.

An initial data set is a set of complex- and real-valued
functions

AU, X,tu, g, l2, P, a, A, ,p, e, o,K, qlz, qr„+2 0 3 %4

( p» )gA+(p «)g«A ((B(»A g«B(A )

on Z (4.5)

and m. =a+p' [Eqs. (4.4)] to find a,p, n. on Z. All other
initial data on Z are known from the reduced initial data
and Eqs. (4.3) and (4.4) (since Z C A'& ), except
+,, Wz, and 43 which are found from the following Ric-
ci identities restricted to Z:

5*cr—5p =p(a*+p) o(3a p')+ 4, —, —

5*p 5a =pp Ao. +aa—'+pp* ——2ap+ 42,

5'p —M.=p(a+p')+A(a' —3p)+%3 .

(4 6)

(4.7)

(4.8)

(2) To find the initial data on JV&, proceed as follows:
First use %0 on JV, given by the reduced initial data, and
the following commutation relations and Ricci identities,
restricted to JV&,

0",.= —p*k"—oP ' (4.9)

on S:—alt = JV, U JV2UZ. A reduced initial data set is a
set of complex- and real-valued functions p, p, o,
A, , m, g" on Z such that g" =g"g' +g g'" is a posi-
tive definite metric on Z, and complex-valued functions
F14 on JV2 and %0 on JV&. It is assumed that the initial and
reduced initial data sets satisfy Eqs. (4.3) and (4.4).

Theorem 3. Let an initial data set on S satisfy all the
constraint equations obtained by restricting the vacuum
Einstein field equations onto the initial surface S. Then
this initial data set uniquely determines, in some neigh-
borhood of S, a vacuum spacetime (At, g ) with boundary
BJK=S and with the data on S coinciding with the re-
strictions to S of the spin quantities on JK in some suit-
able null tetrad and coordinate system on A.

Theorem 4. A reduced initial data set on S uniquely
determines, by using the constraint equations, an initial
data set on S which satisfies the constraints.

For the proof of theorem 3, see Refs. 9 and 8. In our
proof of theorem 5 in the next section, we will need the
intermediate steps of the proof of theorem 4. Therefore,
we sketch here an outline of this proof, following
Friedrich.

Proof of theorem 4.
(1) To find the initial data on Z from the reduced initial

data, first use the commutation relations

+,=5'o —5p —p( a'+ p)+ o (3a —p' ),
Da —= —a „=pa+ po' +p( a+p' },
Dp=——p „=(2a+p" )o +p'p 5'o—+5p

+p(a'+P) —o (3a —P, ),

(4.11a)

(4.11b)

to determine a,p, %, on JV, from top", p, o on JV, which
are known from the preceding step and from Eqs. (4.3).
Similarly, use the Ricci identities on A'„

Dp= —p—„=—5(a+p")+p'i4+cri, +
~

a+p'
~

2

—(a+p' )(a' —p) —5'p+ 5a

+(pp —o A, )+aa'+pp' —2ap, (4.12b)

to determine p, A, , and 42 on JV& by integrating, by ordi-
nary differential equations (ODE's) along A', , the re-
duced initial data on Z. Finally, use the Ricci and Bian-
chi identities on JV, ,

43——5'p —5A, —p(a+ p' ) —l,(a' —3p),

D+4 —%4 „————5'43+——pq14+ (6a+ 4p' )0'3

—3k%2,

(4.13)

(4.14)

to determine %3 and %4 on A', .
(3) To find the initial data on JV2, proceed as follows:

Use the commutation relations and the Ricci identities on
JV,,

U „= (e+e')+m—to+ad' o't,

X A gA+ «g«A

co = —7T +pcs+ A, N

gA gA+g«g«A

(4.15a)

(4.15b)

bp=p „=pp+aA, *,
(4.15c)

—ha= —a „= PA. Pa+5*le—M.—P(a+P')— —
—A,(a"—3P),

to determine X", g", p, a, co, and n on JV2. This
should be done after finding A. and p on JV2 from %4 on
Ã2, by using the following Ricci identities on JV2:

0'2 5'p 5——a (p—p, o—A, ) a—a' —p—p'+2ap,
(4.12a}

DA, = ——A, „=—5'(a+p') +pA, +o' l4+( a+p') 2

+a2 p«2



3'7 COLLIDING ALMOST-PLANE GRAVITATIONAL WAVES: . . . 2813

(4.16)

(Note that F14 on JV2 is given by reduced initial data. )

Next find %3, %z, p, and cr on JV2 as follows: First find p
and cr on JV'2 by integrating the ODE's on JVz which fol-
low from the Ricci identities

her =cr, =go+A.*p,
(4.17)—bp= —p „= (pp—+ok, )+5'p 5a —(pp —A,o )—

—aa —PP'+2aP .

Then use the Ricci identities

'tP3=5*p 5A, p—(a+—P') —A(a* —3P),
%z——5'P —5a —(pp —Ao )—aa' —PP'+2aP,

(4.18a)

{4.18b)

on JV2 to compute %'3 and 42 on JV2. Finally, use Eqs.
(4.15a) and the Ricci and Bianchi identities on JVz,

he=e „=m'a+op —%z,

hx'=a' „=m p+m'0 —%'&,

y, =5'g —5p —p(a'+ p)+ a (3a —p' ),
iso= —iso, = 5'lli+3aiP2 Piano 2P'Pl

(4.19)

(4.20)

(4.21)

(4.22)

to determine e, a, %„%o,and U on JV2.
The uniqueness statement in the theorem now follows

straightforwardly, since we have only integrated ordinary
differential equations to determine the initial data on S
from the reduced initial data on S.0

K. The only sandwich GW syacetimes are PP waves

Theorem 5. Let (At, g ) be a gravitational-wave space-
time with wave fronts JV2, JVz, hence (At, g) is fiat on
I (JVz}. If (At, g ) is also fiat on I+(JV'2), and if the fun-
damental theorems of the characteristic initial-value for-
malism hold globally (rather than just locally) on At,
then (At, g ) is a PP-wave spacetime.

Remark. A gravitational wave of this type, which
leaves spacetime precisely fiat both before and after its
passage, is called a sandwich wave. This theorem then
says that the only sandwich gravitational waves are PP
waves.

Proof. We assume, as stated in the theorem, that
I+(JV'z) (Fig. 3) is fiat and that theorem 3 holds globally
on At; and we seek to show that (At, g) is a PP-wave
spacetime.

Choose a null surface JVi which intersects JV2 trans-
versely in a spacelike two-submanifold Z (and JV2 in Z')
(Fig. 3). Then, that portion of the spacetime which lies to
the future of the initial nul) boundary S =A(& U JV'2UZ is
uniquely determined by the reduced initial data it induces
on S. From here on, we will only be interested in this re-
gion I+(S) of the spacetime (At, g) together with the
boundary of this region S =dI+(S), and we will denote
the spacetime region with boundary, I+(S)US, by the
same symbol At, where LN=S The fo,llow. ing proof will
show that if (At, g} is a precisely sandwich GW spacetime

as defined above, then the reduced initial data induced on
the null boundary S is PP-wave reduced initial data. This
is suScient to prove theorem 5, since the location of the
transverse null surface JV'& is arbitrary.

Before proceeding with the proof, we observe that the
fiatness of I+{JV'2) and I (JVz) requires +o=+,=42
=%3=%4=0 on JV2, on Z, and on JV, UI+(JVz). That is,
all curvature quantities (in any tetrad) vanish on the null
boundary S except on that portion of JV, lying between
JVz and JV2 {Fig.3}. We also note that, in general there is
some coordinate freedom in choosing Friedrich s coordi-
nate system and tetrad on the spacetime At with (null)
boundary S =BAt=JVi UJV'2UZ. In the following, we
will use this gauge freedom in the choice of Friedrich's
chart, coupled with the freedom to choose the transverse
null surface JVi (the choice of which is completely arbi-
trary}, to construct o specific null boundary S and a
specific Friedrich-type coordinate chart on the spacetime
A, with boundary S. These choices for S and for the
Friedrich-type coordinate chart on JR=I+(S) will be
particularly weil suited for studying the exactly sandwich
GW spacetime (At, g ).

The gauge freedom in the choice of a Friedrich-type
coordinate system can be decomposed into two different
types of coordinate transformations. The transforma-
tions of the first type are generated by the successive ap-
plication of two transformations: (i} transformations of
the form u'=a(x")u on A, which give, upon extending
u' uniquely as a null coordinate, u'=u'(x„, u, v) on At,
where a is an arbitrary function on Z which is extended
to S by keeping it constant along the null geodesic gen-
erators of JVi and JV2, (ii} transformations of the form
v'=v'{u, v, x") which are so adjusted that when
x"'=x"'(x",u, v) on At are obtained from the x on
JVi by keeping them constant along the new integral
curves of ei ———Vu', we have 8jBv'= —Vu' and v'=0
on JVi in the new primed coordinate system. The second
type of coordinate transformations generating the gauge
freedom in the choice of Friedrich's chart are given by

v'=v+v'(u, x "}, u'=u, x"'=x"'(u,x"),
where all primed quantities are arbitrary functions of
their arguments. Since x "' (and x ") are to be constant
on null generators of JVi and JV2, these transformations
reduce to

v'=v+v'(u, x"), x"'=x"'(x"), u'=u .

And if JV, and JVz are fixed, since we have v'=0 on JV„
these transformations further reduce to

v'=v, x "'=x "'(x "), u'=u .

Both types of coordinate transformations induce tetrad
rotations, since the old n, l, ax, m* in the new coordinate
system will not be of the form (4.2), and tetrad rotations
are necessary to bring them back into the form (4.2) in
the (u', v', x "') chart.

In the next two paragraphs we will use, as we have in-
dicated before, the above coordinate and tetrad freedom
coupled with the freedom in the choice of JV, , to bring
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Friedrich's coordinate system and associated tetrad into a
form that meshes nicely with the structure of our
sandwich GW spacetime.

We begin with the freedom to choose JV, . We shall
choose JV, so that it is given by v =0, where v is a Min-
kowskian null coordinate in I (JVz). That is, dv is a
parallel null 1-form in the flat region I+(JVz), or in other
words on I+(JV'2) there is a coordinate system (v, u', x "')
in which the metric is

g =dx dx +dx dx
—I'(du'edv+dudu') on I+(JV'2) .

Note that this choice of JV, on I+(JV'z) completely fixes it
everywhere in spacetime including the region between JV2

and JV2, because there exist precisely two null surfaces
passing through any spacelike two-surface. In other
words, JV, is extended in the past directions beyond the
spacelike two-surface Z' (Fig. 3) as that null surface,
which together with JV2 constitutes the unique pair of
null surfaces through Z'.

Now the scaling freedom in u, i.e., the freedom of coor-
dinate transformations of the first kind, is fixed by the ar-
rangement that the wave front JVz coincides with the null
surface I u =a I. (Then the coordinate v is constructed as
usual from —Vu, using u and some choice of coordinates
x" on Z and thereby on JN, .) We are then left with the
following coordinate freedom of the second type:

v'= v, x "'=x "'(x "), u'=u .

We fix this remaining freedom totally by noting that,
since Z' is a two-dimensional spacelike hypersurface in
flat spacetime contained in I v =0), the induced metric on
it is flat, and hence we can arrange x "'=x "'(x ") on Z
in such a manner that at I u =a ) on JV, :

g"'(u=a)=g (u=a) = for A =3Bx 1+1
Bx

for A =4 . (4.23)
2

(Note that we are leaving the tetrad vectors m, m' fixed
during the above arrangement of coordinates. } Then
g" (u =a)=5" . But using Eqs. (4.10), since Z'CJV„
this gives

Z'
=0,

a=~=0 for u & a,
on all of JK. Since JVz and JVz are nonsingular null sur-
faces whose null geodesic generators have no end points
in A (and JK is complete), we have

A, =p=O on JV2 and JV2 .

since 8/Bv" is a parallel vector field on I+(JV'2) and the
metric is C . But t)'mn=(a*+P)n —A, 'm' —pm. Thus,
on Z' we have a'+P=O, which by Eq. (4.24) gives
a=P=O on Z'. Therefore, in this way we fix the above
remaining coordinate freedom so that on JV„
a(u =a)=P(u =a)=0, g (u =a)=(1+i)/2, g (u =a)
=(1 i)/2—, and g" (u =a)=5" . Note that, with this
procedure we also fix the remaining freedom for tetrad
transformations of type III: l ~l, n~n, m~e' m,
m*~e 'em', where 8 is a function which depends only
on x

This completes our specialization of Friedrich s coordi-
nate system and tetrad. In the next paragraph we shall
derive the special values of the spin coeScients associated
with this tetrad.

Now, since JV, is a flat null surface in Minkowski space
for u )a, its null geodesic generators have no shear or
convergence; and hence, since on JV& the null generators
are tangent to l, we have p =o =0 for u & a on JV&. But
by the Ricci identities (A20) and (A21) on JK,

ho =o. „=pa+A.'p for u &a,
—bp= —p „=—(pp+aA. ) for u &a .

These imply, by the uniqueness theorem for ODE,

p=0=0 for u)a
on all of JN. . Applying the Ricci identities (A8) and (A9)
on JV, for u & a, and using the same arguments as in the
last few equations, we obtain

~=a=P=O for u &a

on all of JK. (Here we have used the fact that, by the
choice of the coordinates x", we have a=P=O at
u =a.) Similarly, we obtain

P—a'=0 on Z' . (4.24)

Then using Eqs. (Al 1) and (A12} on JK for u &a we ob-
tain

Now, note that we have two coordinate systems covering
I+(JV2): (u', v, x"') and (u, v, x"), where the first one is
Minkowskian. As we will argue later, JV2 (as well as JV2)

is a flat null surface in Minkowski spacetime, and there-
fore by construction one can find a Minkowskian coordi-
nate system (u",v",x "")on I+(JV'2) [rotating (u', v, x "')
by a Lorentz transformation, if necessary] such that
3/Bv=8/Bv" on Z'. But then on Z', a/tv=a/av"=n;
and since I is tangent to Z', Vmn on Z' does not de-
pend on the extension of n from Z' to Af. In particular,
8/Bv" is an extension of n

~ z to Jkl, ; and hence

A. =JM=O for u )a
on all of Af.

Now, having completed the construction of our specific
Friedrich-type coordinate system and its associated
tetrad and the specific null boundary S =JV, U JVz UZ on
which our sandwich GW spacetime induces a charac-
teristic initial data set, we return to the proof that the
sandwich GW spacetime (Af, g) is actually a PP wave.
Clearly, by theorerns 3 and 4, there is a one to one
correspondence between vacuum sandwich GW space-
times, and the reduced initial data sets they induce on the
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null boundary S, expressed in the coordinate system and
tetrad constructed above. We will call such reduced ini-
tial data, which correspond to sandwich GW spacetimes,
"good reduced initial data. " Note that this condition of
"goodness" on a reduced initial data set is equivalent to
the demand that the spacetime which develops uniquely
from it according to theorem 4 is flat on I+(JV'2) and
I (JV2}.

It is not hard to prove, using Eqs. (4.5)—(4.22), that any
good reduced initial data set on S is completely deter-
mined by giving %0 on JV&, between u =0 and u =a.
Therefore, the set of good initial data is in one to one
correspondence with a certain subset of the set of all C
functions %0 on JV„which vanish for u =0 and u & a. In
the following paragraphs, we will prove that any good re-
duced initial data set is necessarily a PP-wave reduced in-
itial data set, which will prove the theorem.

We begin by noting that a PP-wave metric in the
Kerr-Schild coordinates is associated with the null tetrad

I'=2 +h(U, X, Y)
a a

a, &+i a i —~a
BV' 2 BX 2 BY'

in which the only nonzero spin quantities are ~' and

%0———5'a', and in which 5"a'=0. When we transform
this coordinate system and tetrad into Friedrich's form
[Eq. (4.2)], the only nonzero spin quantities are p, 0, and
qr0 ——%0, where 5'%0——0. Therefore the PP-wave reduced
initial data will consist of (i) g ",p, cr on Z with

p = l, = ir =0 on Z, (ii) %4——0 on JVz, and (iii) %0 on JVi
with 5'4'0 ——0 and %0——0 for u =0, u )a.

A necessary condition for the reduced initial data in-
duced from %0 to be good is that, when the Eqs. (4.10),
(4.9), and (4.11b) are solved with initial conditions (4.23)
and p, 0, a, P=O at u =a, and when Eqs. (4.12b) are
then solved for p, A, with initial conditions p, A, =O at
u =a, one then obtains, at u =0 (on Z):

p(0) =A,(0)=0,
42(0}=[5'P—5a —(pp —A, cr ) —aa* PP'—

ties this implies 6 +0=0 on some neighborhood of
Iu =OI in JV, . It then follows from Eqs. (4.26} using
standard arguments for ordinary differential equations
[specifically, using an energy-type inequality, which in-
volves a positive-definite expression depending on

~

DA
~

and
~

%0
~

and which is obtained from Eqs. (4.26), (4.10),
(4.9}, and (4.25)] that if 5 %0+0 at any point on
JV, ,

~

D A
~

and thence A =5p —5'0 are nonzero at
u =0. But this contradicts Eq. (4.25). Therefore 5'%0=0
on JVi for any "good" %0 on JVi and the claim is proved.
[To understand this claim more intuitively, first note that
we still have some freedom left in the choice of the null
surface JVi, even though we have restricted it to be a flat
Minkowskian surface on I+(JV'z). This freedom consists
of (i) rotating the surface JV, by Lorentz transformations
applied in the flat region I (JV2), and (ii) translating JVi
linearly in I+(JV'2). Thus, even if the fact %0+0 on JVi
mere compatible with the Eqs. (4.25) for a particular
choice of the surface JVi, we could readjust the orienta-
tion of JVi by using the above freeedom in such a way
that with the new choice of JV, , Eqs. (4.25) would be
violated. ]

It is easily seen that the initial data set associated with
a good reduced initial data set induced from a %0 with
5'%0—:0 on JV, has the following form: (i) on JV,

%0——0 for u &a and u =0,
p, cr=O for u &a,
5'40—=0,
a=a =p=k. =a =P=m =0,
%,=%,=%,=%4—0,
X"= U =co=0,

while g" are found by Eq. (4.9). (ii) On Z

@=a=@=k,=a=P=-w=O,

%0—0]—%p —%3—%40
X"=co= U=O,

+2ap]
~ „0——0, (4.25) while g",p, cr are nonzero. (iii) On JVz

%,(0)=[5'a—5p —p(a'+p)+o(3a —p')]
~ „0=0 .

DA = A „=—(2p+p )A+cr A' —5 qr0,

A=O on u=a in JV& .
(4.26)

Now using theorem 2 and the Bianchi identities, this
gives A =0 in some neighborhood U, of [u =a ] in JV, .
By theorem 2 and the Goldberg-Sachs theorem, A, =O
in some neighborhood of [u =OI and I u =a ] in JV„and
this gives a =p=O at u =0. Again by the Bianchi identi-

We claim that these conditions can only be satisfied if
5'40=—0 on JV, .

Since the proof of this claim is rather long, we will only
outline in this paragraph the main steps. First define
A =—5p —5'0. A satisfies, on JV„

@=A,=n =a=P=e=a=0,

U=X"=)@=0,

while g",p, o are nonzero but independent of U. (iv) On
the whole spacetime, ~=v =y =0.

Now we are ready to show that good reduced initial
data corresponding to +0 on JV', with 5*%0—=0 are PP-
wave reduced initial data. To prove this, it is enough to
prove that the spacetime which uniquely develops from
the initial data above (which are induced from reduced
initial data with 5*%0—:0) is a PP wave.

To find the spacetime that develops from these initial
data, just put any of the quantities
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g,X,co, U,p, A, a,.e,a,P, w, p, o,A A

%0,%„+2,+3,%4(u, u,x,x )

at (U, u, x,x }equal to their values at (U =O, u, x,x ); in
other words, just transport identically every quantity on
JV; along integral curves of n=B/Bu, independently of v.
Clearly the resulting spacetime will be vacuum (the Ricci
and Bianchi identities are trivially checked) and will in-
duce the above initial data on S=JV, U JV'2U Z. Morover,
by uniqueness (theorem 3), it will be the unique vacuum
spacetime developing from the above initial data. Clearly
the vector n=B/Bu is a Killing vector for this spacetime
{and is also parallel), and the resulting spacetime is fiat on
I+(JV2) and I (JV2). Hence the spacetime is a PP wave.

This completes the proof of theorem 5. 0

V. CONCLUSIONS

APPENDIX: NEWMAN-PENROSE EQUATIONS
IN RATIONALIZED FORM

hD Dh—= (y+—y')D (e+—e' )4+{r'+ rr)5

+ (r+ m' }5', {A1)

5D D5=——(a'+P —m')D ~A+(p'+e e')—5

(A2)

5b, 65=v—*D (r a'—P—)b —(p y—+y—')5

(A3}

The Newman-Penrose equations as originally formulat-
ed were based on the metric signature (+,—,—,—).
When one adopts, instead, the signature ( —,+,+,+),
they assume the following "rationalized" form.

Commutation relations:

We have reviewed in this paper the general structure of
exact colliding plane-wave solutions of the vacuum Ein-
stein equations; and we have argued on the basis of previ-
ous work, both by the author and largely by others, that
those solutions whose causality structures are stable
against plane-symmetric perturbations will involve all-
embracing spacelike curvature singularities. bounding the
spacetime in the future of the collision plane. We have
given a detailed qualitative review of the weil-known
focusing efFect of plane waves in both single and colliding
plane-wave spacetimes, and by discussing and giving an
alternative proof of a singularity theorem originally
discovered by Tipler, we have described how this focus-
ing property makes inevitable the occurrence of singulari-
ties in generic plane-wave collisions. We have carefully
stressed the subtle aspects of Tipler's singularity theorem
and emphasized the reason for its inapplicability to single
plane-wave spacetimes and to colliding plane-wave solu-
tions which possess Killing-Cauchy horizons. '

We have defined and analyzed general gravitational-
wave spacetimes and we have seen that the PP-wave
solutions —a particular family of GW spacetimes-
satisfy strong uniqueness theorems, much like the Kerr-
Newman family which satisfies the well-known black-
hole uniqueness results. We have pointed out the insight
that these results give into the structures of almost-plane
waves, which constitute a special case of gravitational-
wave spacetimes. In particular we have seen that almost-
plane waves must always exhibit difFraction, since by the
classification theorem of Dautcourt' the only
difFraction-free GW spacetimes are PP waves; and we
have seen that almost-plane waves must leave behind
"tails" in any region of space through which they have
propagated, since the only GW spacetimes with a precise-
ly "sandwiched" curvature distribution are the PP waves.
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5'5 55'=(—p p')D+—(p p')b, +—(P' —a)5

+{a —P)5 (A4}

Ricci identities:

5 E Dp=(p —+ao')+p(e+e') —~'r
—z( 3a+P' rr)— (A5)

5~ Do =cr(p—+p'+3e e')—
z(r m'+—a +—3P)—%0,

haDr=. (—r+n' }p+(r'rr)o +(e—e')r
—(3y +y' )lr —qr )

—40),

(A6)

(A7)

5 e Da=(p+—e 2e)a+Per —Pe zA. — —

y+(e+p Hr

5E DP= (a +—m )o +(p' e' )P—(p +y—)x'

—(a' —m' )e

he Dy =(r+n'—)a+(r'+n )P (e+e')y—

(A8)

(A9)

5'w DA=(pi+—o'p, )+m + (a P*)m v~'— —
—(3@—e~)A. —@20,

5~ Dp=(p'p—+ ark)+ am' (e, +e')p—
(A 1 1)

—m.(a' —P)—va —%2—2A,

err Dv=(n+r*)p+—(m*+r}A,+(y —y*)m.

—(3e+e')v —%3—@2, ,

5 v —hA, = —(p p+')A. (3y y')g— —

(A12)

{A13)

—(y+ y' )e+red 0'&+ A .—4»—, (A10—)
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+ (3a+P'+ n r' )v+ %4, —

5'o 5p =p(a'+P)—o(3a P' )+(p——p*)~—

+(p —p' )z+ 4& —@0, ,

(A14)

{A15)
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5'P —5a=(pp —Ao )+aa*+PP*—2aP

+y(p —p*)+«v —v')++~ —& —+ti

5'p —5A, = (p —p* }v+(p p*—}sr+p(a+P* )

+A,(a"—3p)+ 'P3

Is.p 5v =—(p'+ A A,
' )+(y+ y' ))Lt —v*~

+ (~—3P—a" )v —@2q,

QP —5y =(g—a" —P)y+lsr err—trv—ev*—

(A16)

(A17)

(A18)

Bianchi identities (in vacuum):

5*Co D—4, = —3tc+2+2(e+2p)+)+(~ —4a)po,

5 0
&

D—% ~
———2tc% 3+ 3p P2+ 2( vr a—)% ]

—&+o,

5"+2 D—+3 ——tc+4 —2(e p—)% 3+3m%'q —2k%'),

(A23}

(A24)

(A25)

P(y—y*—i )+—a~* C'»—

her 5~=—(po +A*p)+. (r+P a'—)r
—(3y —y )cr —Kv —@p2,

5'~ bp = —(pp'+—tr&)+ (13*—a —~' )~

+(y+y')p+v~+e, +2A,
5"y —ha = (p+ e)v —(v+P }A,+ (y" —p' }a

+(P' r')y+—'It3 .

(A20) 5%,—h%o ——(4y —p)%o —(4i+2P)'P, +3o %2,

(A21)
5+2 ~+1 v+0+2(y p)+1 +2+ et+3 ~

M 3 b, 'P2 ——2v%'
&

—3@%'2—2( r —p )'P3 +o' 0'4

(A22) 544 —b 43——3v%'z —(2y+4p)43 —(r 4P)44—.

(A19) 5'+, D ll,—= —(4e —p)+, +(4 +2a)+3 —3~+2

(A26)

(A27)

(A28)

(A29)

(A30)

'S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of
Spacetime (Cambridge University Press, Cambridge, Eng-
land, 1973).

F. J.Tipler, Phys. Rev. D 22, 2929 (1980).
3S. Chandrasekhar and B. Xanthopoulos, Proc. R. Soc. London

A (to be published).
4U. Yurtsever, Phys. Rev. D 36, 1662 (1987).
5S. Chandrasekhar and B. Xanthopoulos, Proc. R. Soc. London

A (to be published).
E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

7R. Penrose, Gen. Relativ. Gravit. 12, 225 (1980).
H. Muller zum Hagen and H.-J. Seifert, Gen. Relativ. Gravit.

8, 259 (1977).
H. Friedrich, Proc. R. Soc. London A375, 169 (1981); H.

Friedrich and M. Stewart, Max Planck Institute report, 1983
(unpublished).

toG. Dautcourt, Conference Internationale sur les Theories Rela
tivistes de la Gravitation (Pergamon, Oxford, 1964).
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973)~

S. Chandrasekhar, in General Relativity: An Einstein Cen-

tenary Survey, edited by S. W. Hawking and W. Israel (Cam-
bridge University Press, Cambridge, England, 1979).
R. Penrose, Rev. Mod. Phys. 37, 215 (1965).

' K. Khan and R. Penrose, Nature (London) 229, 185 (1971).
P. Szekeres, J. Math. Phys. 13, 286 (1972).

' Y. Nutku and M. Halil, Phys. Rev. Lett. 39, 1379 (1977).
P. Bell and P. Szekeres, Gen. Relativ. Gravit. 5, 275 (1974); S.
Chandrasekhar and B. Xanthopoulos, Proc. R. Soc. London
A398, 223 (1985).

8R. A. Matzner and F. J. Tipler, Phys. Rev. D 29, 1575 (1984).
9R. Penrose, in General Relativity: An Einstein Centenary Sur-

vey (Ref. 12).
U. Yurtsever (in preparation).

'D. Christodoulou, Commun. Math. Phys. (to be published).
22F. John, Partial Differential Equations (Springer, New York,

1982).
23J. Smoller, Shock Waves and Reaction Diffusion Eq-uations

(Springer, New York, 1983).
F. A. E. Pirani, in Lectures on General Relativity, Brandeis
Summer Institute in Theoretical Physics (Prentice-Hall, En-
glewood Cliffs, New Jersey, 1965), Vol. 1.


