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We construct an infinite-parameter family of exact solutions to the vacuum Einstein field equa-

tions describing colliding gravitational plane waves with parallel polarizations. The interaction re-

gions of the solutions in this family are locally isometric to the interiors of those static axisym-

metric (Weyl) black-hole solutions which admit both a nonsingular horizon, and an analytic exten-

sion of the exterior metric to the interior of the horizon. As a member of this family of solutions

we also obtain, for the first time, a colliding plane-wave solution where both of the two incoming

plane waves are purely anastigmatic, i.e., where both incoming waves have equal focal lengths.

I. INTRODUCTION

As a result of the revolutionary new techniques intro-
duced in the last decade, there now exists an extensive
collection of powerful tools to generate exact solutions
for the Einstein field equations in the stationary axisym-
metric case. ' More recently, there have been succesful
attempts to employ these same techniques in the study
of solutions with two commuting spacelike Killing vec-
tors, i.e., in the study of plane-symmetric solutions to
Einstein equations. These recent investigations have pro-
duced a rich arsenal of new exact solutions for plane-
symmetric spacetimes; among these are many new solu-
tions describing both colliding purely gravitational plane
waves and colliding plane waves coupled with matter or
radiation.

Historically, the work on exact solutions for colliding
plane waves has followed two distinct paths of develop-
ment: On the one hand, the problem can be formulated
as a characteristic initial-value problem for a system of
nonlinear hyperbolic partial differential equations in two
variables. This system involves the metric coefficients
(and in the nonvacuutn case the components of the
matter fields) in a coordinate system where the two
plane-symmetry-generating Killing vectors are equal to
two members of the coordinate basis frame, so that the
unknown variables are functions of the retarded and ad-
vanced time coordinates u and U only. The initial data
for the metric coefficients (and the matter fields) are
posed on the initial null boundary consisting of intersect-
ing null surfaces JV& and JVz, the past wavefronts of the
two incoming waves (Fig. I). The integration of this
initial-value system to obtain the metric coefficients in
the interaction region bounded by JV, U JV2 is very
difficult in general, in fact no general expression has been
found for the solution in the generic case of colliding
plane waves with nonparallel polarizations. However, in
a paper of great ingenuity, Szekeres was able to reduce
the integration of arbitrary initial data for incoming
gravitational plane waves with parallel polarizations, to
the evaluation of a one-dimensional integral followed by
two quadratures (see also Ref. 4 for another viewpoint).
Despite this feat, however, the functions to be subjected

to these elementary operations of integration and quad-
rature turned out to be very complex for general initial
data. Consequently, exact solutions which were expres-
sible in closed analytic form could only be obtained us-

ing this approach for a few very special incoming wave
forms.

A very different and innovative alternative to the
above approach for obtaining exact solutions of colliding
plane waves was pioneered by the work of Khan and
Penrose. The idea is simply to work backward in time:
(i) look for solutions to the field equations which have
two commuting spacelike Killing vectors g, , g2, (ii) ex-
press the solutions in a coordinate system (u, v, x,y)
where u, u are null coordinates and g, are given by
t)/tlx, and (iii) see whether it is possible to extend these
solutions across the null surfaces JV, = I u =0) and
JVz ——

I v =0 I in such a way that the extension still
satisfies the field equations, and that the extended metric
in regions II and III (Fig. I) describes single plane waves

FIG. 1. The two-dimensional geometry of the characteristic
initial-value problem for colliding plane waves. The null sur-
faces JV, = I u =0I and JVz ——

I U =0I are the past wave fronts of
the incoming plane waves 1 and 2. Initial data corresponding
to waves 1 and 2 are posed, respectively, on the upper portions
of the surfaces JV~ and JV& that are adjacent to the interaction
region I. The geometry in region IV is Hat, and the geometry in

regions II and III is given by the metric describing the incom-

ing waves 1 and 2, respectively. The geometry of the interac-
tion region I is uniquely determined by the solution of the
above initial-value problem.

37 2790 1988 The American Physical Society



37 NEW FAMILY OF EXACT SOLUTIONS FOR COLLIDING. . . 2791

propagating in the appropriate directions. This tech-
nique of generating exact solutions for colliding plane
waves was elevated into an art form over the recent
years by the work of Chandrasekhar and Xanthopoulos,
who have obtained not only many new solutions describ-
ing colliding plane waves with parallel polarizations cou-
pled with matter sources, but have also obtained new ex-
act solutions for colliding plane waves with nonparallel
polarizations, which display several unexpected novel
features. ' It is this technique which we use in the
present paper to construct our solutions; consequently
we shall describe it in more detail in the subsequent sec-
tions. Here we just remark that, as it is possible in prin-
ciple to use different prescriptions for extending the
metric beyond the interaction region, the alternative ap-
proach we just described will in general yield several
different colliding plane-wave solutions which all have
the same geometry in the interaction region I, but which
for each different extension describe different incoming
wave forms in the regions II and III (Fig. 1). This is in
contrast with the direct method where one integrates the
initial data posed by the incoming plane waves and ob-
tains a unique colliding plane-wave spacetime. The
reason for this behavior is that the same solution in the
interaction region may evolve from several inequivalent
sets of initial data, whereas the outcome from the direct
method of integrating given initial data is constrained to
be unique by the well-known uniqueness results for hy-
perbolic systems.

For the solutions constructed in this paper, the metric
in the interaction region of the colliding plane-wave
spacetimes is obtained from the interiors of the static,
axisymmetric "distorted black hole" (Weyl) solutions
which possess an interior. Every Weyl solution of this
kind has a pair of commuting spacelike Killing vectors
defined throughout its interior region. The simplest ex-
ample of such Weyl solutions is the Schwarzschild
spacetime. The construction by which we build our col-
liding plane-wave spacetimes is described in detail in the
next section (Sec. II) for the Schwarzschild metric, along
with a discussion of the properties of the resulting collid-
ing plane-wave solution. Then in Sec. III we discuss the
generalization of this construction to the infinite-
parameter family of Weyl solutions which satisfy our
regularity requirements; this generalization yields a cor-
responding infinite-parameter family of colliding plane-
wave spacetimes. In Sec. IV two specific examples of
spacetimes in this family are described brieAy. The first
of these examples is generated from one of the simplest
nonspherical Weyl solutions in our family; this Weyl
solution can be interpreted as the interior metric of a
Schwarzschild black hole distorted by a static, quadru-
polar matter distribution outside the horizon. The
second example describes a colliding plane-wave space-
time where both of the two incoming plane waves are
purely anastigmatic, i.e., where both incoming waves
have equal focal lengths. ' In Sec. V we recapitulate our
conclusions by briefly listing both the new features and
the drawbacks of the solutions that we have constructed.
We also discuss some open questions and suggestions for
future research on the issues raised by the present work.

It is not the purpose of this paper to discuss either the
physical interpretation of colliding plane wave solutions
or the significance of these solutions for general relativi-
ty in a wider context. The reader is referred to Refs. 3,
5, 10, 7, 9, and 4 and the extensive literature cited
therein for a detailed exposition of these issues.

II. THE SOLUTION OBTAINED
FROM THE SCHWARZSCHILD METRIC

We first write the Schwarzschild metric inside the hor-
izon (i.e., for r & 2M) as

1

2M
r

dr + —1 yt

+r (d8 +sin Hdg ) . (2.1)

1+sin(u +v) z+ dx
1 —sin(u +v)

+[1—sin(u +v)] cos (u —v)dy~, (2.3)

which explicitly displays the plane-symmetry generating,
commuting, spacelike Killing vectors g&

——B/Bx and

gz ——B/By. We take the spacetime region
[u &O, v &0, —~ &x &+ DO, —~ &y &+ ~ j with the
metric (2.3) on it as the interaction region I of our collid-
ing plane-wave solution. Note that, even though this in-
teraction region is locally isometric to the region

J=[r & min [ M(1+cos0), M(1 —cos0) ],
—~ &t &+ ~, 0&/ &27r]

of the Schwarzschild spacetime (this region J is depicted
in Fig. 2), we will in effect have changed the topology of
the underlying manifold from S )&R to R by means of
(i) extending the metric (2.3) across the surfaces [u =0],
[v =0] (nonanalytically) in the manner described below,
and (ii) by applying the coordinate transformation (2.2)
in which y and U —u are not regarded as periodic
whereas P and 0 are. More specifically, by our non-
analytic extension we shall eliminate the (coordinate)

Clearly, in this interior region where r &2M the com-
muting Killing vectors B/Bt and B/Bp are both space-
like. We therefore introduce new coordinates (x,y, u, v)

tuned to the plane symmetry generated by these Killing
vectors, by the following transformation (again for
r &2M):

t =x, P=(1+y/M),
(2.2)

8= —+(v —u), r=M[1 —sin(u+v)) .
2

In this new coordinate system the metric (2.1) takes the
form

g= —4M [1—sin(u +v)] du dv
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singularities of the (u, v, x,y) chart at v —tt =2trk+n/2
(where k is any integer) that would show up in the maxi-
mal analytic extension, and thereby we shall transform
the topology from S &(R to S')&R . Subsequently,
since B/BQ=MB/By is Killing, the resulting metric on
S'XR can be lifted to the covering space R as de-
scribed by the coordinate change (2.2), and this yields us
the metric (2.3) defined on R .

We extend the metric (2.3) across the wave fronts
I

t u =0] and [ v =0] by the Penrose prescription 2

u /a ~( u /a )H ( u /a ), v /b ~ ( v /b )H ( v /b ) where H (x )

denotes the Heaviside step function and we have intro-
duced two length scales a and b into the problem
by putting u =u'/a, v—:v'/b where ab =4M, and we
have redefined u' as u and U' as U. Thereby we obtain
the following final metric for our colliding plane-wave
spacetime:

2
u u U Ug= — 1 —sin H ——+ H —— du dv+
a a b b

u u U]+sin —H —+—H
a a b

u u v
1 —sin —H —+ —H

a a b

V

u u U U+ 1 —sin —H —+—H
a a b b

u u U U. cos —H ———H — dya a b b
(2.4)

r=M(1-cos

8=0 (coordinate singularity)

r=M(1 cos e)

The geometry of this spacetime is depicted in Fig. 3,
which describes a two-dimensional subspace given by
Ix =const, y =const[. (Actually the geometry is more
subtle than this two-dimensional projection indicates; see
Refs. 11 and 9.) A curvature singularity is present at
(u /a)+(v /b)=rr/2; it corresponds to the curvature
singularity of the interior Schwarzschild spacetime at
r =0. The extended spacetime consists of four regions
where the metric is analytic: region I, where
u ~ 0, v ~ 0, is the interaction region in which the
metric is given by Eq. (2.3); regions II and III,

where u &0, U &0 and u &0, U &0 respectively,
represent the two incoming plane waves; region IV,
where u &0, v &0, is the flat Minkowskian region
representing the spacetime before the arrival of either
wave. The only vector fields that are Killing vectors on
the whole spacetime are B/Bx and B/By (and their con-
stant linear combinations), whereas there exist two more
R-linearly independent (i.e., linearly independent over
the reals) spacelike Killing vectors in the interaction re-
gion I [Eq. (2.3)]; these extra Killing vectors correspond
to the generators of spherical symmetry for the interior
Schwarzschild metric (2.1). These vector fields cannot be
extended as Killing vectors to the rest of the spacetime
[Eq. (2.4)]. For the generalized solutions that we de-
scribe in the next section, B/Bx and B/By (and their con-
stant linear combinations) are the only Killing vectors in

r=2M, the hOrizOn

(coordinate singuianty)

(u/a)
(singularity)

(u/a)+(v/b) K/2 ( g 1 ty)

.ty)

r=M(1+ (1-cos Q)r M

0—K (coordinate singularity)

FIG. 2. The region J in Schwarzschild spacetime to which
the interaction region of the colliding plane-wave solution (2.4)
is locally isometric. This region J is shown shaded in this
figure which is drawn in a It =const], t ed=0, m.

i plane. As ex-
plained in the text, the geometry in region J is extended
nonanalytically beyond the null surfaces r =M(1+cosO) and
r =M {1 —cos8), which correspond to the wave fronts i u =0I
and [v =Oi, respectively. Consequently, all coordinate singu-
larities are avoided and the Schwarzschild metric on the shad-
ed region J is lifted from S ~R to R, on which the final

metric (2.4) is defined.

FIG. 3. A two-dimensional projection of the geometry of the
colliding plane-wave solution (2.4). The metric is analytic
throughout each of the regions I, II, III and IV, but it suffers
discontinuities in its derivatives across the boundaries between
the adjacent regions. The interaction region I is locally
isometric to region J (Fig. 2) of the interior Schwarzschild
solution (2.1). The curvature singularity at ( u /a) + ( v /b)
=m/2 corresponds, under this isometry, to the Schwarzschild
singularity at r =0.
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the interaction region I, since the isometry group of the
distorted, static, axisymmetric Weyl solutions is in gen-
eral two dimensional. The solution (2.4) and also its
generalizations described in Sec. III represent colliding
plane waves with parallel polarizations, since the x —y
part of the metric [Eq. (2.3)) in the interaction region I is
in diagonal form at all points; or equivalently since the
Killing vectors B/Bx and B/By are hypersurface orthogo-
nal throughout the spacetime.

According to Eq. (2.4), the metric in region II is

(u/a)+(V/b) &p {saagularity)

g» ———[1—sin( u /a ) ) du dv +2 1+sin(u /a ) 2dx
1 —sin(u /a )

+ [1—sin( u /a ) ] cos ( u /a )dy (2.5)

which entails a curvature singularity at the null surface

( u =~a /2j. The metric g„, in region III is obtained by
replacing u /a with v /b in Eq. (2.5) and similarly
displays a curvature singularity at the null surface

I v =nb/2 j. Note that, in the most famous of the solu-
tions for colliding plane waves ' ' the corresponding
null surfaces are also singular, but they do not represent
curvature singularities. Instead, in those solutions, these
surfaces correspond to the (nonsingular) focal planes (or
Killing-Cauchy horizons ) of the respective incoming
plane waves, and they become singular in the colliding
plane-wave spacetime only because of the topological
effect caused by the focusing of the plane wave moving
in the opposite direction. " In the present case, how-
ever, these null surfaces are contained within the incom-
ing plane sandwich waves, by contrast with the famous
solutions where they are located in the flat regions lying
to the future of the curvature disturbances associated
with the incoming waves. Hence, for the solution (2.4)
[see Eqs. (2.13)-(2.14) below], the curvature quantity 4o
or 44 representing the radiative part of the Weyl tensor
diverges on these surfaces. Physically, this could be con-
sidered a serious drawback of the solution (2.4), we ex-
pect a realistic spacetime representing a single gravita-
tional wave propagating in empty space to be free of
singularities of the above kind. However, it is possible
to circumvent this dif6culty by cutting off the gravita-
tional radiation in each incoming plane wave along two
null surfaces I u =u, j and j v =v, j, where we can
choose u, and U, to be arbitrarily close to ma/2 and
nb/2, respectively. This results in the colliding plane-
wave spacetime depicted in Fig. 4, where the metric in
the regions denoted by I, II, III, and IV is exactly the
same as the metric in the regions denoted by the same
symbols in the original solution (2.4). Across the surfaces
Iu =u, j and Iv =v, j the metric is C' but not C, mak-
ing these surfaces shock fronts across which the curva-
ture quantities %0 or %'4 suffer jump discontinuities
without delta-function contributions. (The structure of
the Seld equations for a plane wave makes it possible to
introduce such shocks at any desired null surface
Iu =const]; see, for example, Ref. 9.) The geometry in
the regions denoted by IIa and IIIb in Fig. 4 is flat, and
the surfaces Iu =uf j and Iv =vf j (where uf and vf are

flat
FIG. 4. Geometry of the colliding plane-wave solution that

results from "cutting off" the incoming, colliding plane waves
described by the solution (2.4). As explained in the text, the in-
troduction of the secondary shocks along the surfaces f u = u, j
and [v =v, j removes the curvature singularities on the focal
planes j u =uI j and j v =vf j. However, the geometry in the
interaction region of this new solution is not everywhere de-
scribed by the metric (2.4); the regions Ia and Ib are described
by a different metric.

a am=N, +N2
Bx y'

where

1+i (U —V)/2
lY i—

2
e

(U+ V)/2e
2

7

(2.6}

(2.7}

and M, U and V are functions of u and u only. The
tetrad (2.6)—(2.7) gives rise to the metric

slightly larger than na/2 and nb/2) correspond to the
focal planes of the respective plane waves. These planes
would be nonsingular if the collision were not taking
place; the singularities at these focal planes are solely
due to the topological effect of the focusing of the wave
moving in the opposite direction. " The physics of this
new solution in the interaction region is determined to
an arbitrarily large extent by the metric (2.3) in the re-
gion I; even though the metric in regions Ia and Ib is not
determined by Eqs. (2.3) or (2.4), by choosing u, and v,
arbitrarily close to na/2 and n..b/2 it is possible to make
the regions Ia and Ib arbitrarily small. Hence the collid-
ing plane-wave solution (2.4) describes arbitrarily well
the collision of the more "realistic" plane waves illus-
trated in Fig. 4.

We now turn to the proof of our implicit assertion
that the metric (2.4) is indeed a genuine solution (in the
sense of distributions) to the vacuum Einstein field equa-
tions. For this purpose, and also for spelling out the
geometric structure of the solution (2.4} more clearly, we
will find it useful to introduce the following null tetrad
on our colliding plane-wave spacetime:

1=2e, n='8 8
BQ BU
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g= —e™dudU+e dx +e ' + 'dy (2.8)

Thus, the tetrad coefficients M, U, V for the colliding
plane-wave solution (2.4) are given by

u uM= —21n 1 —sin —H
a a

U+—H
b

(2.9a)

1
U = —ln —cos

2
2u u 2U U+cos H

(2.9b)

u u U vV=ln cos —H —+—H
a a b b

u u U U—ln cos —H ———H
a a b b

Q u v v—2 ln 1 —sin —H —+—H
a a b b

(2.9c)

The vacuum field equations for the metric (2.8) are '

2(U „„+M„U„)—U „—V „=0,
2(U „„+M„U „)—U „'—V„'=0,
U„„—U„U„=O,
V„„——,'(U„V„+U„V„)=0,

(2.10a)

(2.10b)

(2.10c)

(2.10d)

where the integrability condition for the first two equa-
tions is satisfied by virtue of the last two and yields the
remaining field equation

M „„——,'(V„V„—U„U „)=0. (2.11)

Therefore it is sufficient to solve Eqs. (2.10c) and (2.10d)
first and to obtain M by quadrature from the first two
equations (2.10a) and (2.10b) later, since Eq. (2.11) as
well as the integrability condition for Eqs. (2.10a) and
(2.10b) are automatically satisfied as a result of Eqs.
(2.10c) and (2.10d).

We now proceed to verify that the field equations
(2.10) and (2.11) are satisfied (in the sense of distribu-
tions) by our colliding plane-wave solution (2.4).

The field equations hold in the interaction region I
(Fig. 3), since in this region (2.4) reduces to the metric
(2.3), which is locally isometric to the interior
Schwarzschild metric and thus is obviously vacuum.

In order to show that the field equations are satisfied
in regions II and III, it is clearly sufficient to verify Eqs.
(2.10) and (2.11) for the metric g» given by Eq. (2.5),
since the metric g&&& in region III is locally isometric to
g„under the interchange u~v [which incidentally is
also a discrete isometry for the metric (2.3) in the in-
teraction region]. This can be verified directly by substi-
tuting U, V and M for u &0, v &0 from Eqs. (2.9) into
the left side of Eqs. (2.10) and (2.11); the result is easily
shown to vanish. A more elegant approach, however, is
to note that (i) verifying the field equations in regions II
or III is equivalent to verifying the field equations for
the analytically extended interaction region metric (2.3)

at the null surfaces tu =Oj, tv =OI; and (ii) the field
equations for the metric (2.3) clearly hold at these null
surfaces, because these equations hold throughout the
analytically extended spacetime region covered by the
(u, v, x,y) chart, and because this region contains the null
surfaces t u =OI and ( v =0 I as nonsingular hypersur-
faces.

The field equations hold in the region IV since the
metric in this region is flat.

To show that the field equations hold (in the distribu-
tion sense) on the boundaries between regions I and II
and between regions I and III (Fig. 3), it is again
sufficient to consider only the I-II boundary because of
the u~U symmetry of the problem. Now, since all field
equations hold identically throughout region I and re-
gion II, they can only fail to hold on the boundary I-II if
there are contributions to the left-hand side of Eqs.
(2.10) and (2.11) which are nonzero only on this bound-
ary and which are zero everywhere else. It is seen easily
from the structure of the functions U, V, M displayed in
Eqs. (2.9) that such contributions must involve 5-
functions supported on the I-II boundary. However, as
M, U, and V are functions of the arguments
(u/a)H(ula) and (v/b)H(v/b), the only way 5-
function contributions can arise is by a two-times
difFerentiation of U, M, or V with respect to either u or
v, but not by a differentiation of the form B„B„.There-
fore the last two field equations (2.10c) and (2.10d) as
well as the integrability condition Eq. (2.11) automatical-
ly hold on any of the boundaries. On the boundary I-II,
the first field equation (2.10a) holds trivially since this
boundary is given by Iv =Oj and Eq. (2.10a) contains
only double u derivatives and thus cannot introduce 5(v)
terms. The second equation (2.10b), however, can intro-
duce 5(v) terms on the I-II boundary through the
derivative 2U „„.But a short calculation reveals that all
5( v ) terms introduced by the differentiation U» are pro-
portional to sin(2v/b), and thus they vanish on the I-II
boundary on which U =0. This completes the proof that
the field equations hold, in the sense of distributions, on
the I-II boundary as well as on the boundary I-III be-
tween regions I and III.

The boundaries between regions II and IV and be-
tween regions III and IV (Fig. 3) are treated similarly.
By the same arguments as above, and since on the II-IV
boundary we have u =0, it is enough to show the nonex-
istence of 5(u) terms on the II-IV boundary. Such terms
could only be introduced by the first field equation
(2.10a), and the second field equation (2.10b) holds trivi-
ally on the II-IV boundary. Equation (2.10a) can intro-
duce 5(u) terms only through the second derivative
U „„;however, all the terms in this derivative which in-
volve delta functions turn out to be proportional to
sin(2u/a) and thus they vanish on the II-IV boundary
on which u =0.

By either of the above boundary arguments, the field
equations hold on the two-plane Iu =v =0). Morover,
since the coordinate system (u, v, x,y) regularly covers a
neighborhood of the two-plane Iu =v =OI, and since
the metric coefficients in the (u, v, x,y) chart are continu-
ous on the whole spacetime including this plane, no
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"conical-type" singularity can be present on the space-
like two-plane I u =v =OJ.

In order to elucidate further the physics of our collid-
ing plane-wave solution, we conclude this section with a
brief discussion of the behavior of the spacetime curva-
ture associated with the metric (2.4). The Newman-
Penrose curvature quantities in the null tetrad (2.6) and
(2.7) are given by

%o——2ie (M „V„+V „„—V „U „),

%2= —e M„„,N

%4= —[(U „—M, )V„—V„„].

(2.12a)

(2.12b)

(2.12c)

(2. 12d)

(2.12e)

Substituting M, U and V from Eqs. (2.9) in the above
equations, we straightforwardly obtain the following in-
formation about the behavior of the curvature quantities
on our colliding plane-wave spacetime (2.4).

All nonzero curvature quantities in the interaction
region I (Fig. 3) diverge towards the singularity
[(u/a)+(v/b)=n. /2] . The asymptotic behaviors of
%o, %z, and %4 near the singularity are all of the form
[(n/2) —(u/a) —(v/b)] " where n =10 for +o, n =6
for %2, and n =2 for 4'4.

In region II (Fig. 3) the only nonzero curvature quan-
tity is

12i 1
[q'o)r-rrr =

za [1—sin(v /b )]

and also has a 5-function singularity of the form

4i 1 5(u/a) .
a cos(v /b )[1—sin(v /b))

(2.17a)

(2. 17b)

12i
[q'o)rr-rv=

0
(2.18a}

and also has a 5-function singularity of the form

4i

Q
(2.18b)

Along the III-IV boundary %o (being zero) is continuous,
whereas %4 has a jump

3l
[+4]rrr rv= —

bz
(2.19a)

and also has a 5-function singularity of the form

l

b2 b
(2.19b)

Along the II-IV and III-IV boundaries (Fig. 3) qlz (be-

ing identically zero across these boundaries) is continu-
ous. Across the II-IV boundary %4 (being zero) is con-
tinuous, whereas %0 has a jump

12i 1
0 a [1—sin(u /a )]

(2.13) III. THE SOLUTIONS OBTAINED
FROM THE %'EYL METRICS

whereas in region III the only nonzero curvature quanti-
ty is

The most general static axisymmetric spacetime with
a regular axis has the metric'

3l 1

[1—sin(v /b)]
(2.14) g = e~dt +e —rp dp +e rr &r(dp +dz ) (3.1)

In region IV all curvature quantities vanish.
On the I-II and I-III boundaries (Fig. 3) %z has jump

discontinuities which are finite but which diverge to-
wards the singularity:

where (t,z,p, P) are the cylindrical (Weyl) coordinates,
and P and y are functions of p and z only. The vacuum
Einstein field equations for the metric (3.1) are

[+2)I-II
2 1

ab [1—sin(u /a ) ]
2 1

[1—sin(v /b )]

(2.15a)

(2.15b)

(3.2a)

(3.2b)

(3.2c)

Iq'4)r n=- 3l 1

[1—sin( u /a ) ]

and also has a 5-function singularity of the form

(2.16a)

There are no 5-function contributions to the discontinui-
ty of 4'2 along these boundaries. Along the I-II boundary
0 Q is continuous, whereas 4'4 has a jump

where Eq. (3.2a) is the integrability condition for the last
two equations (3.2b) and (3.2c}.The regularity of the axis
p=O requires that y=O at p=O. Thus, any solution
f(p, z} to Eq. (3.2a) uniquely determines a solution of the
form (3.1) to the vacuum Einstein equations. For the
Schwarzschild solution, g and y are given by

5(v/b) .
i 1

b~ cos(u/a)
(2.16b)

r( (p, z) =—,'ln a+1 (3.3a)

Along the I-III boundary 4'4 is continuous, whereas %0
has a jump

y (p, z)= —,'ln
a —12

2 2A' —P
(3.3b)
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where

p t [p2+(zM)2] i /2[p2+(z+ M)2] i /2j1

and

[[p +(z —M) ]'/ +[p +(z+M) ]' j .1

2M

(3.4)

(3.5)

where a(p, z) is defined by Eq. (3.5). (The mass M that
enters into the definition of y and P can be chosen ar-
bitrarily, and in particular can be set equal to 1. Howev-
er, we retain this free parameter M since it will be help-
ful when introducing length scales into the colliding
plane-wave solutions that we are going to build shortly. )

To solve the field equation (3.2a) satisfied by lt, we intro-
duce spherical polar coordinates v and q defined by

p=vsing, z =vcosg .
The Schwarzschild coordinates (t, r, 8,$) are related to
the Weyl coordinates by

' 1/2

The general solution of Eq. (3.2a) can now be written in
terms of Legendre polynomials Pk(x) (Ref. 13):

2Mp=r 1—
T

sin8, z =(r —M)cos8,

(3.6)

f(v, rt}= g (d„v"+ckv " ')P„(cosset) .
k=0

(3.9)

The horizon Ir =2M j of the Schwarzschild spacetime
corresponds to the surface I p =0, —M & z & M j in Weyl
coordinates. Note, however, that neither the horizon

j r =2M j nor the interior region where r & 2M is
covered smoothly by the Weyl coordinate system.

In order to isolate those Weyl solutions which, like
Schwarzschild spacetime, possess a nonsingular horizon
and an interior region, we will Gnd it convenient to
define new metric functions f and y" by

(3.7)

Since the field equation (3.2a) for 1t is linear, it is
satisfied in exactly the same form by the function f. On
the other hand, the field equations satisfied by y as ob-
tained from Eqs. (3.2b), (3.2c), and (3.3) are given by

For the time being, the coefficients dk and c„are simul-

taneously included in the above expression, because both
asymptotic flatness and regularity of the horizon are ir-
relevant restrictions for our purposes. However, the
terms involving the Legendre functions of the second
kind, Qk(cosi)), are left out of the sum (3.9), since we as-
sume that the axis on which cosy=+1 is nonsingular
throughout spacetime. This assumption, together with
the regularity condition that we impose below, will
guarantee that the spacetime admits a nonsingular hor-
izon which is located at r =2M in the Schwarzschild-
type coordinate systein (3.6). Combining Eq. (3.1) with
Eqs. (3.7), (3.3)—(3.5), and (3.6), we obtain the following
general Weyl metric written in the Schwarzschild-type
coordinates (t, r, 8,$):

2M
g 1 e 2( ( r 8)dt 2+ e

—2((( r~ 8)r 2sjn28 d $2
T

(3.8a) + 2[/(r, 8)—f(r, 8)] dp +r d81-'
1

(3.10)

y"„=2p 4,,4„+, (a„4,,+a,,4„) (3.8b) The functions it/(r, 8) and y(r, 8) in the above metric are
calculated from the formulas [cf. Eqs. (3.8) and (3.9)]

it/(pz)g[d(p2+z2)/c/z+c(p2+z2)(ll + i)/2]p (3.11)

y(pz)= f p g f, + (a—f —a 1(,} dp+2 (t/~f, + (a, (t) +a~), } dz
P ~ a2 1

P ~P a2 —1
(3.12)

by substituting for p and z their expressions (3.6) as func-
tions of r and 8. In Eq. (3.12} the function a(p, z} is
defined by Eq. (3.5), and the line integral is evaluated on
any contour C that starts on the axis p=0 (where y van-
ishes), and that ends at the point (p, z) where y is to be
computed. '

Since we are interested in solutions with two spacelike
Killing vectors, we now turn to the characterization of
those Weyl solutions in the family (3.10)—(3.12) which
possess an "interior region" in which 3/Bt is spacelike.

As we have noted before, the Weyl coordinates (t,p, z, P)
cannot cover the interior region regularly even if such a
region exists. However, as the form of the metric (3.10)
indicates clearly, the Schwarzschild-type coordinates
(t, r, 8,$) [which are defined formally by Eqs. (3.6)] will
cover the interior region r &2M, whenever this region
exists as a spacetime region with a well-defined metric
(3.10). Morover, these coordinates will cover the interior
region r &2M regularly, apart from the usual singulari-
ties associated with spherical coordinates. It is also clear
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that the interior region r ~2M will have a well-defined
metric (3.10) if and only if the functions fi(r, g) and
P(r, g) given by Eqs. (3.11) and (3.12) are well defined for
r &2M. We now claim that in order for these. functions

g and y be well defined for r &2M, it is necessary and
sufficient that in Eqs. (3.9) and (3.11) all of the
coefBcients ck vanish. This restriction on the general
solution (3.9) is necessary for the existence of the interior
region r ~2M, because the expression

p +z =—r —2Mr+M cos 8

where

p(r, g)= g dk(r 2M—r+M cos 8) /

k=0

(r —M}cosg
XPk

(r 2M—r+M cos 8)' (3.14)

assumes negative values at some points in the region
r &2M; therefore we have to eliminate any term involv-
ing the product of an half-odd-integer (integer) power of
p +z with an even-indexed (odd-indexed) Legendre po-
lynomial Pk from Eqs. (3.9} and (3.11). The sufficiency
of the above condition for the existence of a well-defined
metric {3.10) on the region r &2M will become clear
after the following discussion. W'e also note that the
above restriction on the general solution (3.9) guarantees
not only the existence of the interior region Ir &2M
but also the existence and regularity of the "horizon"
Ir =2M).

We now have the following infinite-parameter family
of interior Weyl solutions, defined on the region

t r &2M I where both of the two commuting Killing vec-
tors dldt and BIB/ are spacelike:

2M
e 2+ r~B)dt 2+ e

—2)iir~s)r2sjn2g d$2

+&2[)'(r,s) —@r,e)} r2dg2
2M —1

for r &2M, (3.13)

2+z2)k/2p
k=0 p +z

(3.15)

(r2 2Mr+M2 os28)k/2p (r —M)cosg

(r 2Mr+M c—os 8)'/

is real, well defined, and finite for r &2M, even at the
points where (r 2Mr+M—cos 8) is zero or negative.
Similarly, P2„+,(x) is equal to the product of x with a
polynomial in x of order n, and x "+'=x(x }".Hence,
also for all odd k the above expression is real, well
defined, and finite for r & 2M.

(ii) The integral (3.12) can be put into the form

and where y(r, g) is computed by inserting Eq. (3.15)
into Eq. (3.12), using Eq. (3.5), and substituting for p and
z their expressions (3.6} as functions of r and 8. In Eqs.
(3.13)—(3.15) we have combined Eq. (3.11) with Eq.
(3.6) to obtain Eq. (3.14).

To see that the functions fi(r, g) and y{r,g) defined by
Eqs. (3.14), (3.15), (3.12), (3.5), and (3.6) are well defined
and real for r & 2M, note the following facts.

(i) The Legendre polynomials P2„(x) are polynomials
in x of order n. Hence, for all even k the expression

P(p z)= f fz P, + 2
(—a,&P, a„it)„) d('p—)+2 pg P, + (a,pg +pa~/ ) dz, (3 16)c ' ' a —1

~P s& 2
1

~~ ~P

where a is defined in Eq. (3.5}and the contour C is as in
Eq. (3.12}.Morover, by Eq. {3.15) and because of the re-
lation

p + (z+M ) = (r M(1+cos8)]— (3.17)

all of the expressions a, , pa, aug, and a, it), as

well as the expressions pg, g, , t)t), and f,2 which

appear in Eq. (3.16) are well defined and real throughout
the region r &2M.

(iii) By Eq. (3.17) and because of the fact that
a —1+0 at all points in the interior region r &2M, all
improper integrals which are involved in the evaluation
of y(p, z} [Eq. {3.16)] are convergent; and thus the in-
tegral (3.16} yields y as a well defined and real function
of p and z.

Now that we have an infinite-parameter family of inte-

rior solutions described by Eqs. (3.13}—(3.15), we can
turn to the construction of the corresponding family of
colliding plane-wave spacetimes. This construction
proceeds in exact parallel to Sec. II, where we construct-
ed the colliding plane-wave solution (2.4} starting from
the interior Schwarzschild metric (2.1). In fact, the inte-
rior Schwarzschild solution is the special case of the
family of solutions (3.13)—(3.15}for which all of the pa-
rameters dk are zero.

We build our infinite-parameter family of colliding
plane-wave solutions by the following steps.

(i) We apply the coordinate transformation (2.2) to the
generalized interior metric (3.13} whose metric
coefficients are defined by Eqs. (3.14) and (3.15).

(ii) We introduce two length scales a and b into the re-
sulting metric by defining u =u'la and v =v'Ib where
ab =4M . We then redefine u' as u and v' as v. We also
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redefine our parameters dk so that the new dk are equal
to the dimensionless quantities M dk.

(iii) We then extend the resulting interaction-region
metric across the wave fronts ju =0} and [v =0) by the
Penrose prescription; i.e., we replace u la by
(u la)H(ula), and vlb by (vlb)H(vlb).

(iv) The resulting metric on the interaction region is
locally isometric to the generalized interior metric (3.13).
However, as a result of the above extension and the
coordinate transformation (2.2), we change the topology
of our solution from S XR [which is the topology of

the manifold on which the metric (3.13) is defined], to
R (which is the topology of our maximal colliding
plane-wave spacetime, see Sec. II for details).

For each choice of the parameters [dk I, the above
construction yields a unique colliding plane-wave solu-.
tion. In the following equations we describe the metric
of this solution in the interaction region (Fig. 1); the
complete expression for the metric on the maximally ex-
tended spacetime is obtained by replacing each u/a by
(ula)H(u/a) and each v lb by (vlb)H(vlb) in Eqs.
(3.18), (3.19), and (3.22) below:

g e 2[/( Qy 0) Itt( QyU)] 1 sin +gI—
a b

du dv+e

u U1+sin —+-
a b

u v
1 —sin —+-

a b

dx

+e-2&("' 1 —sin —"+—'
a b

cos ———dy
u v

a b
(3.18)

where

1t(u, v)= g dk sin —+——cos
a b a b

k/2
u U . u U

sin —+—sin
a b a b

u U 2 u U
sin —+——cos

a b a b

1/2 (3.19)

f(p z)= g dk( 'ab) ""(p'-+z')"" I'k
k=0 p +z

(3.20)

and y(u, v) is evaluated (i) by inserting Eq. (3.20) into the
integral given in Eq. (3.16) where the contour C is as in
Eq. (3.12) and where the function a(p, z) is given by

a(p, z)= I [p +(z '&ab } ]'~~——
&ab

+[p +(z+ I/2v ab ) ]'~zI, (3.21)

and (ii) by formally substituting

a6 2 u v 2 u vp:—— cos —+—cos
4 a b a b

(3.22a)

&ah . u v . u v
sin —+—sin

2 a b a b
(3.22b)

into P(p, z), which is a smooth function of p~ and z.
The functions y(u, v) and g(u, v) are smooth functions

throughout the interaction region I (Fig. 3}, and generi-

u'la =sin(u /a), v'Ib =sin(v/b),
I Ix =x, y=y. (3.23)

In the following, we omit the primes over the new coor-

cally, the metric (3.18) has a curvature singularity at
(u/a)+(v/b)=n/2.

The proof that the colliding plane-wave spacetimes
constructed above are genuine solutions (in the sense of
distributions) to the vacuum Einstein equations is pro-
vided by exactly the same arguments with which we
have shown the solution (2.4) of Sec. II to be a genuine
vacuum solution in the distribution sense. The crucial
observation to note in this regard is that the metric func-
tion U(u, v) [Eq. (2.8)] for any of the solutions in the
above family (3.18}—(3.22) is given by precisely the
same expression [Eq. (2.9b)] as the corresponding func-
tion for the solution (2.4) of Sec. II.

For completeness, we conclude this section by describ-
ing the interaction region I of our solutions in an alter-
native coordinate system defined by
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dinate functions. The interaction-region metric for the
family of solutions (3.18)—(3.22) is expressed below in
the new coordinates (3.23). The extension of the metric
beyond the interaction region is again accomplished
by the substitutions u /a ~(u /a)H(u /a ) and v /b
~(v/b)H(v/b), and these substitutions result in a col-

I

liding plane-wave spacetime globally isometric to the
corresponding spacetime (3.18)—(3.22) [even though the
coordinate transformation (3.23) does not hold outside
region I]. Thus, the following region-I expressions pro-
duce exactly the same family of colliding plane-wave
solutions as above, written in the new coordinates (3.23):

g e 2(f—f)

1/2

1 ——1—
a b2

' 1/2

1—
a

' 1/2 2

1—a'
2

1/2

1—
b

dQ du+e2&

' 1/2

1+—1—Q U

a
' 1/2

1—
a b2

2
1/2

U Q1—
b Q

a

r CCX

U Q1—
b

2
1/2

+e ~1——1—
a b2

1/2 2

1—
a

' 1/2
Q1—
Q

' 1/2 2

ab
(3.24)

where
' 1/2

Q U

f(u, v)= g dk —1—
a Q

' 1/2 2
V Q1—
b

2
1/2

1—
a 2

2
1/2

1—U QU

b2 +
ab

2'k!2

2
1/2

Q V1—
a b2

Q

2
1/2

1—
Q

2

2

Q2 b2
' 1/2 2

V Q1—
b a'

2
1/2

1—V QV

ab

2 1/2 (3.25)

and y(u, v) is evaluated (i) by inserting Eq. (3.20) into the
integral given in Eq. (3.16), where the contour C is as in
Eq. (3.12) and where a(p, z) is given by Eq. (3.21), and
(ii) by formally substituting

p—:——,'ah[1 —(u /a') —(v'/b')]',

z= 2&ah [(u—'/a ) —(v ib )],
(3.26a)

(3.26b)

in y(p, z) which is a smooth function of p and z. The
curvature singularity, which, in the generic case, consti-
tutes an achronal future c-boundary in the interaction
region of the solution (3.24), is located at

I(u/a)[1 (v /b )]' —+(v/b)[1 —(u /a')]' =I]
in the new coordinate system (3.23).

IV. EXAMPLES

As we have noted before, when all parameters dk are
zero, the general solution (3.18)—(3.22) reduces to the

I

I

solution (2.4) of Sec. II which was obtained from the in-
terior Schwarzschild metric. From now on, we will
denote by the symbol tdk ) the unique colliding plane
wave solution (3.18}—(3.22) which corresponds to a
given choice of the parameters dk. When all dk are zero
except for the parameter dv, the solution

Id„]= jdo, 0,0,0, . . . J is again equal to (2;4), except in
this case the mass M =&ah /2 (and the boost-invariant
product &ab of the characteristic wavelengths) is re-
scaled by a factor e " corresponding to a monopolar
distortion of the solution (2.4).

To illustrate the evaluation of the function y(u, v) by
Eqs. (3.20)—(3.22), we write down below the functions
gz(u, v) and y2(u, v) corresponding to the solution
I0,0, 1,0,0, .. . ], where all dk are zero except for d2 ——l.
The metric in the interaction region of this solution is
locally isometric to an interior Weyl metric (3.13); this
Weyl solution can be interpreted as the interior metric of
a Schwarzschild black hole distorted by a static, quadru-
polar matter distribution outside the horizon:

$2(u, v) =—3 sin —+—sin ———+cos ——— —sin —+—1 . 2 Q V . 2 Q V Q V - 2 Q U

2 a b Q b a b a b
(4.1)

y2(u, v) = (q 8qz } [I—, (q;z ——M, 2(z +M ), (z —M), (z —M ) )
a b &Qb

+I,(q;z' —M', 2(z'+M'), (z+M)', (z' —M'}')]
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z[(z M—)I2(q;z —M, 2(z +M ), (z —M), (z —M ) )
&ab

+(z+M)I2(q;z —M, 2(z +M ), (z ~M), (z —M ) )], {4.2)

where

M = ,'—&—ab,
T

ab ~ u u q u vq:—— cos —+—cos
4 a b a b

I

struction below will make it clear that infinitely many
different solutions tdk j with the same property can be
found in the family {3.18)—(3.22).

To proceed, consider the following function f ( t),
defined on the interval ( —1,1):

&ab . u u . u u
sin —+—sin

2 a b a b
(4.3)

f (t)=ln(1 t)-for t &0,
f(t) =ln(1+t) for t (0 .

Since f (t) is even, there is an expansion

(4.6a)

I&(q;a, b, c,d) =
«s+c (s+a+'}/s +bs+d )

I2(q;a, b, c,d) =
o &s+c (s+a+{/s +bs+d }

We now turn to our second example of a colliding
plane-wave solution in the family (3.18)—(3.22): a solu-
tion which describes colliding purely anastigmatic plane
waves. According to Eqs. (3.18)—(3.22), the metric
g„on the region II (Fig. 3) of a solution [dk j is given by

g» ———e [1—sin(u/a)] du dv
u) —&rr(u)] 2

T

20„(u) 1+sin(u/a)
d 2+e dx

1 —sin(u /a )

f(t)= g dkP2k(t) .
k=0

(4.6b)

=(4k+1)Jt ln(1 —t)P,„(t)dt .
0

(4.7)

Now consider the solution I dk j, where dk are defined by

Since f (t) is square integrable on (—1, 1), this expansion
converges absolutely everywhere on (—1, 1) with the ex-
ception of the point t =0 at which f(t) is not C'. In
fact,

dk —— I f (t)P2k(t)dt
4k+1

2 —1

u)+e " [1—sin(u la)] cos (u /a)dy, (4.4)
dg ——0 for k odd .
dl, ——dI, &z for k even,

(4.8)

where

p»(u) = g dk(2t —1) Pk
Ir =0 &2t —1

t=sin (u/a)

(4.5a}

{4.5b)
Q»( u ) = g dk (2t —1 )"P2k

If, =0 &2t —1
(4.9}

Then, the function fit(u) [Eqs. (4.5)] for this solution

[dk j is given by

The metric (4.4) and (4.5) describes the geometry of one
of the two incoming colliding plane waves in the solu-
tion tdk j. As before, the metric giii in region III (Fig.
3) (which describes the remaining incoming wave) is ob-
tained by replacing u la by u lb in the above equations.

Unfortunately, the polynomials (2t —1)" Pk(t I
v'2t —1) are not orthogonal polynomials with respect to
any weight function, since they fail the Darboux-
Christoffel test (Ref. 14, Sec. 8.90). However, we shall
construct one particular infinite sequence (dk ) [Eqs.
(4.11) below], such that for the corresponding solution
Idk j the function f»(u) [Eqs. (4.5)] has the right asymp-
totic behavior as u ~~a/2 to make the incoming plane
wave in region II [Eq. (4.4)] purely anastigmatic.
Clearly, because of the u~v symmetry of our solutions,
with this choice of the parameters dI, the other incoming
plane wave (which is represented by the metric gi» on
region III) will also be purely anastigmatic. Also note
that Eqs. {4.11}represent only one particular solution in
our family of solutions for which the incoming plane
waves are purely anastigmatic; the details of the con-

where t=sin {u/a). However, for tE(0, 1) and for all
k &1 we have'

(2t —1) P2k
2t —1

1 = sup i P2k(t)
~

t G(0; I)

Therefore, the series (4.9) converges absolutely to a con-
tinuous function on the interval (0,1). We can write

t20

g dk(2t —1}P2k
k=0 2t —1

X dkP2k{t}
It; =0

+ g 5k(1 —t}
k=1

P»(u)=ln 1 —sin —+S(u),»

where the second series is convergent being the
difFerence of two convergent series on {0,1). Hence, by
Eq. (4.9) and Eqs. (4.6)
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where

2/II( u)
e

u ~ma/2

Q
1 —sin—

0

2
~ Q1+sin-

a
—2

2

—2

(4.10a)

—2%II( Q)
e

u ~ma/2

Q
1 —sin-

a
Q1+sin-
a

(4.10b)

The asymptotic behavior of the function P», (u} [which is
the counterpart of gii(u) in region III of the solution

[dk }]will have the analogous form near the focal plane

[u =nbl2). From Eqs. (4.10) we conclude, by inspecting
the metric g«(and g», ) given by Eq. (4.4), that for our
solution [ dk ) both incoming plane waves are purely
anastigmatic, i.e., for both incoming plane waves the
metric coefFicients g„„and g~~ vanish simultaneously on
the respective focal planes [u =ma/2) and [u =nbl2I.

The coefficients dk for the solution (dk I can be calcu-
lated explicitly using Eqs. (4.7) and (4.8). This gives'

4k +1
2k dk

( —1)'(4k —21)!

0 (2k —21+ 1)I!(2k—I)!(2k —21)!

X [P(2k —2l +2)—f(1)], (4.11a)

where

g(x) = [1nl (x)]
dx

is Euler's psi function, ' and

d2k+ i (4.11b)

for any k )0.

V. CONCLUSIONS

The infinite-parameter family of colliding plane-wave
solutions we have constructed in Sec. III have the fol-
lowing new features.

(i) The interaction regions of our solutions are locally
isometric to interior Weyl black-hole solutions. An ob-
server who enters the interaction region will not be able
to distinguish, by local measurements that he performs
completely within the interaction region, the geometry
of the surrounding spacetime from the geometry in the
interior of a black hole.

(ii) The metric functions of our solutions have oscilla-
tory forms in a suitable coordinate system [Eqs. (3.18)—
(3.22)].

(iii) By constructing an infinite series expansion for the
function P(u, v) [Eq. (3.19)], we have built a colliding

lim S(u) =0 .
u ~na/2

We thus obtain the following for the asymptotic behav-
ior of gii(u) as u~a.a/2:

plane-wave solution in our family for which both of the
two incoming colliding plane waves are purely anastig-.
matic, i.e., for which both incoming waves have equal
focal lengths (Sec. IV).

On the other hand, our solutions suffer from the fol-
lowing drawbacks, some of which are common to all
presently known exact solutions for colliding plane
waves.

(i) As with the fainous Khan-Pe»rose solution, so also
here, there are 5-function contributions to the Riemann
curvature (gravitational shock waves) on the boundaries
between the adjacent regions (Fig. 3); i.e., the metric is
not C'. The reason for this discontinuous behavior is the
particular prescription that we use to extend the metric
beyond the interaction region. It is clear, from the form
of our metric as described by Eqs. (3.18)—(3.22), that no
finite sum (3.19) will eliminate the 5-function shocks
across the boundaries as long as we use the Penrose
prescription for extending the metric beyond the interac-
tion region. Since infinite sums of the form we have dis-
cussed in Sec. IV will in general converge only in the
mean (i.e., in the L2 sense), we cannot reliably employ
infinite series expansions of the form (3.19} to construct
smoother wave forms.

(ii) Except for the characteristic wavelengths a and b
which can be freely adjusted by scale transformations,
the two incoming colliding plane waves in our solutions
have exactly the same functional form. The reasons for
this are the u~v symmetry of the metric (3.18) in the in-
teraction region, and the u~U symmetry of the Penrose
prescription for extending the metric beyond the interac-
tion region.

(iii) The incoming colliding plane waves in our solu-
tions are not of sandwich type in general; i.e., the space-
time regions II and III (Fig. 3) representing the incom-
ing waves are not fiat near the respective focal planes of
these waves. As we have discussed in detail in Sec. II,
this property is responsible for the curvature singulari-
ties that are present at the focal planes of our solutions.
The technique of "cutting off" the incoming waves just
before their focal planes, which we have discussed in
Sec. II, successfully avoids this difficulty from a physical
viewpoint; however, it appears exceedingly difficult to
determine whether the resulting solution (e.g., the solu-
tion depicted in Fig. 4) can be expressed in closed form
as a meinber of the family of solutions (3.18)—(3.22)
which we have constructed.

We conclude by listing some open questions which
suggest directions for further research on some of the is-
sues that we have raised in this paper.

(i) Are there different prescriptions for extending the
metric (3.18) beyond the interaction region which could
resolve some of the drawbacks in our solutions listed
above?

(ii) Can the technique of using static axisymmetric
black-hole metrics to generate parallel-polarized collid-
ing plane-wave spacetimes be generalized to stationary
axisymmetric solutions? Such a generalization presum-
ably would yield an infinite-parameter family of solutions
representing colliding plane waves with nonparallel po-
larizations.
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