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Membrane viewpoint on black holes: Gravitational pertnrbations of the horizon
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This paper is part of a series of papers which develop and illustrate the "membrane" formalism
for black holes. In this formalism, described in earlier papers, the role of the absolute event hor-
izon is played by a two-dimensional surface endowed with electrical, mechanical, and thermo-
dynamic properties. The present paper deals with gravitational perturbations of holes and
presents and discusses model problems that illustrate the effects of tidal gravitational fields on sta-
tionary holes. The first of these problems demonstrates the use of the Rindler approximation to
Schwarzschild spacetime in the case of a static perturbing point mass and clarifies the contribution
to the horizon distortion due to forces constraining the motion of the mass point. Subsequent
model problems use the Rindler approximation to compute the evolution of distortions of the
Schwarzschild or Kerr horizon due to mass points in motion near the horizon.

I. INTRODUCTION

For general theorems governing black holes and for
the study of highly dynamical black holes the covariant
four-dimensional treatment provides the best viewpoint
on black-hole spacetimes. Recently, however, interest
has intensified in the role played by black holes in astro-
physical processes. In most of these processes the black
holes are not highly dynamical; they change on a time
scale long compared to the black-hole characteristic
response time. In the study of such astrophysical prob-
lems the full four-dimensional spacetime viewpoint is
neither necessary nor ei5cient. What is often needed is a
viewpoint on black holes to which intuition and experi-
ence with less exotic astrophysical objects can easily be
applied.

A major step towards such a viewpoint was the work
by Damour' which reformulated conditions on the
horizon in terms of electrical, mechanical, and thermo-
dynamic properties ascribed to the horizon. (Znajek,
independently, has arrived at many of the same results in
a somewhat different formulation. ) These insights, how-
ever, deal only with the horizon and do not provide a
formalism for connecting the physics of the horizon to
that outside the horizon. Moreover, for the application
of intuition, the use of the horizon as the surface of the
black hole has disadvantages, partly because it is a null
hypersurface and partly because of its very nature as a
horizon.

This paper is part of a series in which a complete
and coherent formalism is developed for dealing with
black holes. This formalism is mathematically
equivalent to a fully covariant four-dimensional treat-
ment of black-hole horizons and exteriors, but provides a
viewpoint which should be much more useful for dealing
with astrophysical problems involving slowly changing
black holes. The starting point of this formalism is a
3+ 1 split of spacetime into a "universal time" and a
three-dimensional curved "absolute space. " Matter and
fields outside the hole are viewed as existing in absolute

space and evolving in universal time. The effects of the
hole are represented by a two-dimensional surface which
evolves in universal time and is viewed as endowed with
the physical properties ascribed to the horizon by
Damour. The world tube of this surface is not taken to
be the horizon but rather to be a timelike surface, the
"stretched horizon, "just outside (in a well-defined sense)
the horizon. It is appropriate, and turns out to be use-
ful, to think of this surface as a real physical membrane
whose properties can account for the interaction of the
hole with its environment.

This membrane formulation of black-hole physics is
being presented in a number of works. In the first of
these, Thorne and Macdonald developed the 3 + 1 split
for electromagnetism and in a subsequent paper used it
to analyze the magnetospheres of black holes and the
Blandford-Znajek' process in active galactic nuclei. In
the third paper Macdonald and Suen presented ideal-
ized model problems that illustrate the usefulness of the
membrane viewpoint for dynamic electromagnetic fields
near the horizon. In the fourth paper Price and Thorne
(PT) extended the membrane formalism to gravitational
interactions, and developed the general theory underly-
ing the formalism for dynamical horizons. A pedagogi-
cal review of the formalism is presented in a book-length
treatise by Thorne et al.

The goal of the present paper is to illustrate with
model problems the use of this formalism in dealing with
perturbing tidal gravitational fields near the horizon and,
with these model problems, to provide a basis for intui-
tion that can be applied to more complicated, but more
astrophysically relevant, tidal interactions with the hor-
izon. This paper then is meant to serve, for gravitation-
al interactions, much the same purpose as the paper by
Macdonald and Suen serves for electromagnetic interac-
tions. The model problems, presented in some detail
below, also provide a basis for the more wide-ranging
and more pedagogical review of horizon dynamics
presented in the treatise by Thorne et al.

Several major complications arise in dealing with
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gravitational, as compared with electromagnetic, pertur-
bations. One problem, familiar in any approach to grav-
itational perturbations, is that of gauge arbitrariness; it
will be shown that in the membrane formalism the
effects of gauge choice on horizon dynamics are
minimal, and its meaning is well understood. (For an
exhaustive discussion of gauge effects in the formalism
see PT.)

A second problem is that of solving for the fields out-
side the horizon. For electromagnetic perturbations of a
stationary black hole the task of describing exterior
fields is simplified intuitively and calculationally by the
fact that many of the familiar flat-spacetime concepts
(e.g., lines of force) and equations (e.g., Gauss's law,
Faraday's law, Ampere's law) remain valid with only
minor modification in the 3+1 split. For tidal per-
turbations no analogous simplification applies. In the
case of perturbations of the Kerr horizon it turns out,
however, that the only exterior tidal field that must be
known is that component of the Weyl tensor described
by the Teukolsky equation. '" The technical difficulties
of dealing with that equation would nonetheless detract
from the intuitive insights which are the goal of the
present paper. Instead, we arrive at tractable model
problems by confining our problems to sources which
are very near the horizon. This choice allows us to ex-
ploit the simplicity of the Rindler geometry' as an ap-
proximation to the near-horizon geometry, an approxi-
mation also used extensively by Macdonald and Suen.

A third new complication that arises in dealing with
gravitational perturbations is that of constraining forces.
A compact source of perturbations, most conveniently a
point source, allows the clearest illustrations of the rela-
tionship of a source and its effects on the horizon. For
an electromagnetic point source (i.e., a point charge) the
motion of the source presents no difficulty in principle;
the motion is chosen arbitrarily and one simply assumes
that the constraining forces driving the motion are
nonelectromagnetic, and hence make no contribution to
the electromagnetic perturbations of the horizon. For
gravitational perturbations this simplification does not
apply. Unless we limit ourselves to particles in free-fall,
the forces of constraint must themselves in general be
sources of tidal distortions of the horizon. We find,
however, that by taking our constraining forces to be
supplied by highly idealized "ropes" or "struts" the
effects of constraints on the horizon are minimized, and
the horizon distortions may be thought of for most pur-
poses as due to the point particles themselves.

This paper is organized as follows: In Sec. II the basic
formalism is introduced. The formalism for dealing with
tidal interactions is developed in detail in PT, but in that
paper no explicit prescription is given for analyzing per-
turbative sources of tidal distortion. The aim of Sec. II
is to present such a prescription for perturbations of the
Kerr geometry. Details of the formalism are presented
only to the extent that they are necessary for this pur-
pose; for other details and for proofs the relevant sec-
tions of PT are cited. Section II A gives a description of
horizon kinematic quantities and the equations govern-
ing their evolution. Section IIB then specializes and

simplifies these equations for the case of the perturba-
tions of the Kerr geometry. In Sec. II C the 3+1 split is
outlined and the kinematics of the horizon are shown to
be equivalent to the kinematics of particles ("fiducions")
in the stretched horizon. Section II D very briefly
sketches the fluid-mechanical paradigm in which the
equations governing horizon distortions are reinterpreted
in terms of the motions of a two-dimensional fluid mem-
brane located at the stretched horizon. The Rindler ap-
proximation' for the near-horizon spacetime geometry
is introduced in Sec. II E and the prescription for analyz-
ing perturbations is summarized.

In Sec. III we analyze the deformation of the
Schwar'zschild horizon by a point particle statically
suspended near the horizon. This analysis is performed
in two independent ways: (i) with the Weyl formalism'
for static axisymmetric spacetimes, and (ii) with the
Rindler' approximation to Schwarzschild spacetime.
Section III (since it deals with a static perturbation) is
not meant primarily as an illustration of the formalism
for dealing with the dynamics of horizon distortions but,
rather, establishes the range of validity of the Rindler
approximation, and demonstrates that idealized con-
straining "ropes" can be considered as having a minimal
tidal effect on the horizon. With these points estab-
lished, Sec. IV presents models of horizon distortions
arising from three different types of near-horizon parti-
cle motion: (i) a particle radially accelerating away from
the horizon; (ii) a particle moving slowly parallel to the
horizon; (iii) a particle in free-fall through the horizon.

For the most part in this paper we shall use the nota-
tional conventions of Misner, Thorne, and Wheeler'
(MTW); in particular we take c and 6 to be unity and
we use the metric signature —+ + +. Spacetime indices
a, P, p, v, . . . will run through 0—3. Indices from the
middle of the lower-case latin alphabet i, j, k, . . . will
run through 1-3. Indices a, b, c, . . . from the early part
of the lower-case latin alphabet take the values 2, 3 and
denote a two-dimensional spatial section of the stretched
horizon at fixed universal time. Dyadic notation (e.g., P,
8) will be used for symmetric second-rank tensors both
in two and three dimensions. As in PT we denote a hor-
izon quantity with an index H, used as a superscript or
subscript with no difference in meaning.

II. TIDAL DISTORTIONS OF THE HORIZON

A. Horizon kinematics and dynamics

To describe a horizon we start by choosing a time
coordinate t which is well behaved on the horizon and
increases to the future but (for the moment} is otherwise
arbitrary. (The simplest example is ingoing Eddington-
Finkelstein time on the Schwarzschild horizon; see Box
31.2 of MTW. ) We define I to be the (null) tangent to
the generators of the horizon and normalize I such that

(2.1}

On the two-dimensional spacelike section of the horizon
at constant t, we choose, for convenience, spatial coordi-
nates x'(=x, x ) which are comoving, i.e., which are
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constant on the horizon generators, implying
I =(8/Bt) .. We denote by e, the basis vectors in the

horizon section and, again for convenience, choose them
to be coordinate basis vectors e, =(8/Bx')-, . We denote

by y,b the metric in the two-dimensional horizon sec-
tion:

ameter D3 in the 3 direction will change according to

1(D- D—-)
H H H H

D dt 22 33 22 33 '=o- cr—-=2cr-= —2cr- . (2.6b)
0

The Hajicek field is defined by

y,b
——e, g.eb 0,:——n-V, l . (2.7)

I n= —1. (2.2)

The description of tidal distortions involves the hor-
izon surface gravity gH, shear o,b, expansion 8, and
"Hajicek field. "' The first of these is defined as the pro-
portionality constant in

V-, I =gH I, (2.3)

(where g is the spacetime metric confined to the hor-
izon). To define all quantities entering into the descrip-
tion below we shall need, in addition, an outward-
directed null vector n which is completely fixed (on the
horizon) by the conditions that it is normal to horizon
sections (n e, =0) and satisfies

This horizon quantity lacks the simple interpretations of
gH, 8, and o and is most easily understood geometri-
cally in terms of extrinsic curvature of the horizon. (See
Sec. II of PT.) Though less familiar than the other hor-
izon quantities it plays an important role in the mem-
brane paradigm described in Sec. II D below.

The quantities 8, o, and 0 are to be viewed as ten-
sors in the horizon section, with indices raised and
lowered by y,b and its inverse y' . To discuss their evo-
lution we introduce the time derivative D-, with the fol-
lowing meaning: covariant difFerentiation along I (i.e.,
VHI followed by projection into the horizon section. In
terms of this operator, the evolutions of 8, cr, and 0
are given by the "tidal force equation"

where the form of the equation follows from the fact
that I is tangent to a geodesic. For stationary or nearly
stationary holes glt gives a measure of the "pull of gravi-
ty" near the horizon (see Sec. IIC below). Horizon ex-
pansion and shear are defined as the trace and the trace-
free part of the gradient of I in the horizon section:

D~fob+(8H gH)~ab Capbv I I = @ab

the "focusing equation"

D,8H =gH8 -,8H cr,b—o——H—8n PH ] 2 H ab H (2.9)

gH yabgH

H H & H
~ab =ab 2 yah~

with

(2.4a) and the "Hajicek equation"

(2.4b)

(gH+ 8H), &o lb
H (2.10)

8,b (V, l ) eb— (2.4c)

(Since the generator congruence is hypersurface orthogo-
nal, its rotation vanishes and 8,b, hence o,b, is sym-
metric. ) In comoving coordinates horizon shear and ex-
pansion are simply related to the time rate of change of
y,b and its determinant y:

In these equations C,„b„represents the Weyl curva-
ture tensor; 7 and 9f are defined in terms of the
stress-energy T„at the horizon by

(2.11a)

(2.11b)
By,b/Bt =2',b+8 y, b (2.5a)

1 8
8H =——lny,

2 Bt
H0 ab 2

Yah
yabt

(2.5b)

The horizon expansion and shear have simple geome-
trical meaning. ' Consider a set of generators which oc-
cupy area ~ on an initial horizon section at time t
A difFerential time dt later (i.e., on the section at t+cPt
the generators will cover an area which is greater by

d(~H) =8H~Hdt . (2.6a)

To understand the geometric meaning of o consider
generators which form a small circle of diameter D0 on
an initial section and introduce orthonormal basis vec-
tors ez, e3 into the section such that cr-3 vanishes. After
a time dt the diameter D2 in the 2 direction, and the di-

the double vertical bars in the Hajicek equation indicate
covariant differentiation with respect to the metric y, b

of the horizon sections. Equations (2.8)—(2.10) and their
equivalents in the membrane paradigm form, along with
(2.5), the basis for the description of the evolution of ti-
dal distortions.

B. Perturbations of Kerr horizons

The background for our perturbations will be a Kerr
(or, as a special case, Schwarzschild) black hole of mass
M and angular momentum J=aM. This black-hole
spacetime, in standard Boyer-Lindquist coordinates
(x =t, x'=r, 8, P ), is given by0 i

ds = (p 6/X )dt +g~k(dx~+P'—dt)(dx "+P"dt),

(2.12a)
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and

5=r +a —2Mr, p2=r2+a2cos28~

X —=(r +a ) —a b sin 8t
(2.12c)

P = 2M—ar /X

The Kerr horizon is at

r=r&—=M+(M —a )'

(2.12d)

(2.12e)

the larger root of b, =0.
Although Boyer-Lindquist coordinates provide a use-

ful description of the Kerr spacetime outside the hor-
izon, they are not well suited to the study of perturba-
tions of spacetime very near the horizon. We can arrive
at a more convenient set of coordinates by first introduc-
ing as a new radial coordinate

where

gjkdxjdx"=(p /h)dr +p d8 +(Xsin8 /p) dP 2,

(2.12b)

t=t+ Mr&
lna

rH —M
(2.17}

and leads to the value of gtt given in Eq. (2.16) and to
the Hajicek field

QH ———
2 z [pHre+M(ra ac—os 8')]et,

(2Mrtt) p

(2.18)

perturbed spacetime, they comove with the horizon, i.e.,
8' and P' are constant on horizon generators.

The values of horizon quantities gH, 8, o, and 0
depend, in general, on the choice made for t; i.e., they
depend on the precise manner in which the horizon is
sliced into t=const sections. For a highly dynamical
horizon there is no preferred choice of slicing, but for a
static or stationary hole there exists a strongly preferred
choice which uniquely fixes gH, 8, P, and Q . {See
Appendix B of PT for details. ) In particular, for the
Kerr horizon the preferred slicing is

a —=plk' /X

1 —a sin 8 /2Mrtt

MrH /(r& —M )

' 1/2

(r rtt )—1/2

= 2
YH'8' pH ~ f/'& —0 o (2.19)

As in the case of any stationary horizon, 8 and O,b

vanish. The metric y for horizon sections dt =0 can be
read directly from (2.16}as

+0((r rtt)' '), — (2.13)

which vanishes at the horizon and increases outward.
We next introduce new angular coordinates O', P' by

2

8'=8 —,' apH, gt

4gapH

{()'=pt—QHt .
(2.14}

Here QH (not to be confused with the Hajicek field Qtt}
is the angular velocity of the horizon, with

QH —=a /2MrH,

and pH
——rH+a cos 8 is the value of p at the horizon.

In terms of these coordinates the spacetime metric takes
the form

(2.15)

2

ds = adt + 2
—+pHd8 +co H(df'+P dt}

gH

rH —M

2Mr~
pH=rH+a cos 8',

(2MrH )
co =— sin 8',

PH

{2.16)

aa
[pHr&+M(rH acos 8'}]—

ga(2MrH ) PH

near the horizon. [For a detailed discussion of the order
of the fractional errors in (2.16) see Appendix C of PT,
where the notation agrees with that used here. ] One ad-
vantage of the new angular variables is that, in the un-

In this paper we shall be interested in gravitationally
perturbed Kerr spacetime and we shall have to deal with
the fact that our coordinates acquire an arbitrariness of
the same order as the spacetime perturbation. On the
horizon we reduce this arbitrariness by choosing,
throughout the remainder of this paper, spatial coordi-
nates 8 and P which comove with the perturbed genera-
tors and which agree to zeroth order with the comoving
8' and P' Kerr coordinates.

No specific choice exists for the slicing function t in
the perturbed spacetime. Rather we can only choose t
to agree to zeroth order with the preferred choice (2.17}
for the Kerr horizon. Since t has an arbitrariness of the
order of the perturbation of the spacetime we must con-
sider the efFect of this arbitrariness on our horizon quan-
tities. (For a full description of the transformation prop-
erties of horizon quantities under a change in slicing see
Sec. IIC of PT.} Because 8 and tr H vanish for the
Kerr background and are of the order of the spacetime
perturbation, the uncertainties in these quantities are
second order in the perturbation and can be ignored.
The surface gravity gH, finite in the background, be-
comes uncertain to the order of the perturbation. For
most purposes this arbitrariness is irrelevant since only
the zeroth-order part of gH will be needed. It is con-
venient, however, to fix the choice of the slicing function
t such that gH always has its constant, unperturbed
value (rH M)/2MrH. We—henceforth make this choice.
(See, however, Sec. IIIC of PT for a discussion of slic-
ings appropriate for a black hole undergoing sizable, but
slow, changes in mass and angular momentum. ) Note
that a change of slicing adds a multiple of I to the spatial
basis vectors e„hence the metric y,b

——e, .eb is indepen-
dent of the choice of slicing. The most troublesome of
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the horizon quantities under the slicing transformations
is the Hajicek field Q . If we change from a slicing
function t to a new function t, the new and the old
Hajicek vectors are related by

Q,' =Q, —ger(BP/Bx')-, . (2.20)

a ., /ar-H — H H

88 /Bt —g~8 = o,bo—~ .

(2.21)

(2.22)

It should be noted that in the simplification of the focus-
ing equation we have assumed

(This is actually not the most general form for the trans-
formation of Q for constant gH. It assumes that all
generators attached to the horizon long in the past, at
which point t on that generator was set to —oo. For de-
tails see Appendix D of PT.) We must conclude then
that the perturbation of the Hajicek field, for a dynami-
cally perturbed horizon, lacks invariant meaning; mean-
ing can be attributed only to its curl Q{,b}.

For the description of small perturbations of the hor-
izon Eqs. (2.8) and (2.9} simplify considerably. In (2.8)
we treat the Weyl term 8,b as the perturbative driving
force. The equation then requires o,b to be first order in
the perturbation and, to first order, the left-hand side
reduces to Dmg, —gHeg, . We shall deal only with mod-

el problems in which no stress energy crosses the hor-
izon, so that the. P term is absent in Eq. (2.9} and this
equation shows that 8 —

~
a,b ~

is second order in the
perturbation. If we confine ourselves, as we do, to
comoving coordinates then the D-, operator may be ap-
proximated by 3/Bt since the difference D-, —(8/Bt ) is of
the order of 8 and cr,b and entails only higher-order
corrections in (2.8}and (2.9}.

With these simplifications and with the specialization
to vanishing stress energy at the horizon, the tidal force
equation and focusing equation become, to lowest order,

In using Eqs. (2.21}—{2.24) we start with a known
form for 8,b and solve the tidal force equation (2.21) for
cr . The resulting o is then used in the focusing equa-
tion (2.22) which is solved for 8 . Finally, with the
known values of o and 8, we solve (2.24) for the time
evolution of the metric.

The boundary conditions to be used with these equa-
tions deserve comment. The homogenous solution to

Eq. (2.21) has the form P -e . If we take PH to be
zero as t ~—oo in accordance with the usual choice for
causal systems, then Eq. (2.21) tells us that PH remains
zero until the horizon feels a tidal forcing term C,b,
after which PH diverges exponentially. The horizon,
however, is not a causal system. It is the boundary be-
tween the regions of spacetime from which light-speed
signals can and cannot ever escape to spatial infinity.
Whether a light-speed signal can escape from a point in
spacetime depends on the region of spacetime to the fu-
ture, not the past, of that point. The appropriate bound-
ary condition on the horizon shear is at t =+ 00 where it
must be taken to vanish. Similarly, the boundary condi-
tion for Eq. (2.22) is the vanishing of 8 at t =+ oo. For
these boundary conditions the solutions of Eqs. (2.21)
and (2.22) may immediately be written as

rr.,(r, 8', P')= f 8.,(P, 8', P')exp[gH{t P)]dr, —

{2.25a)

8 (t, 8', P')= I O~~eHi, (t,8', P')exp[g~(t t )]dt-
t

(2.25b)

For the metric-evolution equation (2.24) the situation
is more familiar. Suppose that at time tp the form of the
metric y, l, (ro 8', $') is known. [It might, for example,
be the standard Kerr form (2.19) for to preceding any
horizon perturbations. ] At any other time the solution
to Eq. (2.24) (with O', P' dependence suppressed) is obvi-
ously

«gyp ~ (2.23)
Y b(r) } b(ro)+2& b+8 y'.~ (2.26a)

This condition for the consistency of the perturbative
approach is related to an important kinematic condition:
no caustics have jumped onto the horizon. (See Ref. 9,
Sec. VI C7.) The remaining evolution equation we shall
need is Eq. (2.5a) for the components of the metric in the
comoving coordinate basis. Correct to second order in
the perturbation this equation is

H +8Hyo (2.24)

where y,b is the unperturbed (e.g., Kerr) metric.
Because the background Hajicek field does not vanish,

the Hajicek equation (2.10} simplifies only slightly when
applied to perturbed horizons with vanishing stress ener-
gy and we shall not exp1icitly use the perturbation form
of this equation. The exact Hajicek equation (2.10} on
the other hand is of central importance in the conceptu-
al foundations of the membrane paradigm, and provides
a useful approach to the calculation of the evolution of
black-hole angular momentum. (See Sec. II D.}

where we have introduced the time-integrated shear

Xb= CrbP (2.26b}

and the time-integrated expansion

e~= J 8"(~ g~ .
tO

(2.26c)

These quantities describe the elliptical distortion and the
increase in area at time Fof a set of generators that was
circular at to.

C. The 3+1 split and the stretched horizon

The 3+ 1 split of spacetime outside the horizon is ac-
complished with a special time coordinate t, which we
call "universal time. " The constant-t spacelike sections
of spacetime outside the horizon are called "absolute
space. " In the membrane paradigm all such spatial sec-
tions are considered as a single three-dimensional space
in which physical fields reside and evolve according to
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universal time. The congruence of timelike lines orthog-
onal to absolute space is taken as the collection of world
lines of a preferred set of fiducial observers (FIDO's) at
rest in absolute space. On FIDO world lines the rela-
tionship of FIDO proper time ~ and universal time t
defines the lapse function a according to

a=d~/dt . (2.27)

In general a universal time can be chosen with the fol-
lowing properties (for proof and details see Sec. II of
PT}: (i) the lapse function a vanishes at the horizon and
increases outward; (ii) near the horizon a is constant on
a FIDO world line or, more precisely,

d a/d r= O(a ); (2.28)

(iii) in the horizon limit, a~0, the FIDO world lines ap-
proach horizon generators; (iv) the equation

1
t =t + lna +const

2gH
(2.29)

defines a well-behaved time coordinate t on the horizon,
and for this t the horizon has (constant) surface gravity

gH. We always use Eq. (2.29} as the relationship be-
tween the slicing function t that determines horizon
quantities and universal time t that determines FIDO
world lines. With this relationship fixed, the only arbi-
trariness in universal time is that in the choice of the
slicing function, i.e., once t is chosen (such that gH is
constant) universal time t is fixed. (See Appendix D of
PT for a detailed discussion. )

The surface a=0, the horizon, is null but the surface
at a =aH && 1, though very close to the horizon, is time-
like. In the membrane paradigm the surface at
a=aH &g1 is called the "stretched horizon" and this
timelike surface is used in place of the horizon as the
inner boundary of the hole's external spacetime; field
quantities and relations in the membrane paradigm are
formulated in such a way that the precise (small) value
of a& is unimportant. By Eq. (2.28) FIDO's in the
stretched horizon remain in the stretched horizon [aside
from O(aH ) errors which we ignore] and, roughly speak-
ing, the FIDO four-velocity U can be thought of as
representing the generators according to the replacement

l~aHU . (2.30)

In the stretched horizon a second set of world lines,
that of "fiducions, " must also be invoked. These world
lines are locked even more strongly than those of the
FIDO's to the horizon generators. Unfortunately the
mathematical definition of the fiducions is unavoidably
technical and will not be given here. (For details see
Sec. IIB of PT.) For the concerns of this paper it
suffices to state that the four-velocities of FIDO's and
fiducions differ only by O(aH) and almost everywhere
we can treat the fiducions and FIDO's as equivalent.
(The single exception is in the fiuid-mechanical interpre-
tation of horizon dynamics where the difference of
FIDO and fiducion motions gives rise to fluid momen-
tum density. )

Since the stretched horizon is a two-parameter

congruence of fiducion (or, equivalently, FIDO) world
lines we can define from this congruence and from the
fiducions' four-velocity U an acceleration g =V U U.

Similarly from the projection into a constant-t section of
the stretched horizon (i.e., a projection into absolute
space) of V U we can define fiducion expansion 8 and
shear u in the manner used for three-dimensional time-
like congruences. In the horizon limit a&~0, the kine-
matic quantities g, 8, and e diverge as aH'.

This divergence has a simple origin. At constant a
well-behaved quantities near the horizon should have a
finite rate of change per unit t time, hence per unit
universal time. [See Eq. (2.29).] In terms of fiducion (or
FIDO) proper time, rates in the stretched horizon will
then depend on aH as a&'. In order to arrive at
kinematical quantities which are independent of the pre-
cise (small) choice of aH we must renormalize g, 8, and
0 by converting them to a per-unit-universal-time basis.
We therefore define

gH=aH I g I
8 —=aH8 o'H =aHo (2.31)

quantities which are independent of aH [aside from
O(aH } fractional errors which we ignore].

The usefulness of the stretched horizon as a timelike
surrogate for the true horizon is apparent in the follow-
ing fact: At a point on a fiducion (or FIDO) world line

gH, 8, and o as defined by Eq. (2.31) are identical to
the horizon surface gravity, expansion and shear at the
corresponding point of the horizon. (See Sec. III of PT
for a proof, and for the precise meaning of "correspond-
ing point. ") The kinematic meanings of the stretched-
horizon 8 and o, furthermore, are those given by Eq.
(2.6). The Hajicek field of the horizon, in a similar way,
corresponds to a projection of the extrinsic curvature of
the stretched horizon. Moreover, the equations describ-
ing the evolution of 8, o, and 0 in the stretched
horizon are Eqs. (2.8)-(2.10) with the following
modifications: (i) D , must be repl-aced by D, with the

meaning: aH VU followed by projection into the
constant-t section of the stretched horizon; (ii) the Weyl
term 8,& and the stress-energy terms VH and QH must be
reinterpreted as resulting from a 3+1 decomposition of
the Weyl and stress-energy tensors. [See below, especial-
ly Eqs. (2.32)—(2.34) and (2.36).]

In the use of the 3+1 split of spacetime, fields are
decomposed into time coinponents (projection with
FIDO four-velocity U) and space components (projection
into absolute space). On the stretched horizon a further
distinction is made: We introduce N, a unit vector
which is spatial (i.e., lying in absolute space), outwardly
directed, and normal to the stretched horizon; and we
introduce basis vectors e, (a =2, 3) lying in the
constant-t sections of the stretched horizon. In the hor-
izon limit these constant-t sections approach the
constant-t sections of the horizon so we can, and do,
choose to have the basis vectors e, for the stretched hor-
izon approach the horizon basis vectors e, as aH~O.
With this choice we have, for example, that the com-
ponents cr,b of shear in the stretched horizon are the
same [aside from negligible O(aH) errors] as the com-
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ponents o,b of horizon shear.
When the 3+ 1 split is used to understand electromag-

netic fields near a horizon the field tensor F„„is re-
placed by electric E'=F'"U„and magnetic
B'= ,'e"—' ~FijjU„ fields as measured by FIDO's. (Here U

is the FIDO four-velocity and e™is the Levi-Civita al-
ternating tensor in spacetime. ) At the stretched horizon
these spatial fields are further decomposed into com-
ponents EN, BN in the direction N of the normal to the
stretched horizon, and components E„S, tangential to
the stretched horizon.

For gravitational interactions the analog of F„„is the
Weyl tensor C &„and in our formalism it is replaced by
two tensors in absolute space, the gravitoelectric field 8,j
and the gravitomagnetic field 8,j, given by

@ij—=Cia vU~ U",

+ij —=
2 +pi vjLC jpU U

(2.32)

(2.34)

which are well behaved in the limit aH —v0 and [aside
from negligible O(aH) fractional corrections] are in-

dependent of aH near the horizon. (iii} Near the horizon
8,b is the same [aside from O(aH) fractional errors] as
the driving term 8,b on the right of Eq. (2.8). (iv) The
condition that the Weyl field be nonsingular at the hor-
izon implies, aside from O(aH) errors, C,b=a„2dbN'
(where e;jk is the Levi-Civita tensor for absolute space),
or

gH=N&&gH (2.35)

This is analogous to the electromagnetic horizon condi-
tion E =N XB and has an analogous interpretation: To
FIDO's near the horizon 8 and % have the form of an
ingoing plane gravitational wave.

The stress-energy tensor T„„,like F„„and C &„,must
undergo a 3+1 decomposition and renormalization with
factors of aH. Of primary concern here are the terms
occurring in the focusing equation (2.9) and the Hajicek

The fact that these tensors are spatial (i.e.,
Z U= U 8=9 U= U %=0} follows from the sym-
metries of the Weyl tensor.

The following facts about Z and S are important to
the formalism and are derived and discussed in PT. (i) Z
and % are symmetric and traceless and contain five in-
dependent components each; they therefore contain all
the information in the ten independent components of
the Weyl tensor. (ii) Because the FIDO four-velocity is
pathological at the horizon some components of 8; and

diverge on the stretched horizon as aH —+0. Of par-
ticular importance are the "transverse-traceless" com-
ponents 8,b and 9,b formed from the components
tangential to the stretched horizon according to

~ob @ob Y b(l @ d}
(2.33)

+b +b Y b(1 +d)
These components diverge as O(aH) and inotivate the
definition of the horizon fields

equation (2.10). In the 3+1 split these arise as the red-
shifted energy crossing the stretched horizon per unit
universal time,

PH a2 T UiUvH pv (2.36a)

In the aH ~0 horizon limit these agree with the
definitions given in (2.11) [cf. Eq. (2.30)].

For the Kerr geometry [Eq. (2.12)] universal time is
simply Boyer-Lindquist coordinate time; the lapse func-
tion is given by Eq. (2.13}and the fiducion world lines
are those of constant 8', iI}', and a=aH. For a perturbed
Kerr geometry the spatial coordinates O', P' become un-
certain to the order of the perturbation. This arbitrari-
ness has no effect, to lowest order, on the stretched-
horizon values of 8, o, 8, %, or on Eqs. (2.21),
(2.22), or (2.25), which apply on the stretched horizon if
t is replaced by t. We choose, however, to fix the spatial
coordinates O', P' by requiring that in the perturbed
geometry, as well as the unperturbed, they are constant
on the fiducion world lines. With this choice the metric
in the constant-t section of the stretched horizon

Y,b ——(8/Bx') g.(B/Bx ) agrees in the horizon limit with
the horizon-section metric Y,b, and Eqs. (2.24) and (2.26)
are valid if t is replaced by t. The mathematical descrip-
tion we shall use for the perturbations of the horizon
may be viewed equally well as describing the evo1ution
of the two-dimensional "fluid" of fiducions. In the dis-
cussions below we shall use "on the horizon" and "on
the stretched horizon" almost always interchangeably.

D. The quid interyretation

In the application of the membrane paradigm to the
study of the interactions of a hole with electromagnetic
fields it is very useful for purposes of intuition to
think of a physical membrane located at the stretched
horizon. With the assignment of specific two-
dimensional electrical properties (surface charge density,
surface current density, surface resistivity} to this mem-
brane, the interaction of the electromagnetic environ-
ment with the hole is understood via a more-or-less nat-
ural picture of the interactions of a physical membrane.
In particular, in this picture: (i) charge cannot penetrate
the membrane; charge flowing onto the membrane from
the exterior resides as membrane surface charge, and
moves as membrane surface current, until and unless it
is cancelled by the accretion of opposite charge; (ii) the
radiative boundary condition, that to FIDO's elec-
tromagnetic fields near the horizon have the form of in-
going plane waves, emerges as a consequence of the
properties of the membrane.

As with electromagnetic interactions, gravitational in-
teractions of the hole can be understood by assigning
specific physical properties to the membrane, but in this
case the paradigm is much richer and the details more
complex. The general picture will be only briefly
sketched here; for details and proofs see Sec. V of PT.

and the momentum crossing the stretched horizon per
unit universal time,

(2.36b)
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The new physical properties assigned to the membrane
are those of a two-dimensional viscous fluid. The fluid
elements comove with the fiducions, and as measured by
FIDO's this Quid has a surface density X of mass-energy,
a surface pressure P, a surface stress S, and a momen-
tum density H. The fluid also has fixed coefficients q
and g, respectively, of two-dimensional shear and bulk
viscosity, with the specific numerical values

1

16m

1
and

16m
(2.37)

In terms of these, and of the shear and expansion of the
(fiducion} fluid elements, the surface stress tensor has the
familiar form

S.b (P —(8 )y—.b 2rto—
ab (2.38)

As with other FIDO-measured quantities, some of the
above fluid fields on the stretched horizon diverge in the
aH ~0 limit. As with other quantities these divergences
can be understood as originating in the use of proper
time in FIDO measurements. These divergences are
remedied by a switch to measurements on a per-unit-
universal-time basis or equivalently by the application to
each quantity of the appropriate number of factors of
aH. In this way we arrive at the following stretched-
horizon fluid quantities which [aside from negligible
0(aH ) errors] are independent of aH:

X =aHX,
1

IH
16m

P =aHP,
1

CH =(=-
16m

' Ii =II, (2.39)

Dtaab+(8H gH)aab @ab
H H H (2.40)

[cf. Eq. (2.8)). In the fluid viewpoint this is understood
as the natural response of the two-dimensional fluid to a
gravitational tidal field. [For a detailed discussion, and
an explanation of why pressure-gradient and viscous
forces do not appear in Eq. (2.40) see Sec. V B 2 of PT.]

The remaining dynamical equations of the membrane
paradigm follow from the equation of motion of the fluid

S b=aHS, „=(P (H8 )y,b
—2rtHtr—,b .

We require that the shear of the two-dimensional Quid
be driven by the stretched-horizon gravitoelectric field
according to the tidal force equation

With this interpretation, moreover, the membrane
Quid equations are equivalent to the dynamical equations
of the stretched horizon as follows: (i) Equation (2.40)
with no further interpretation is, of course, identical to
Eq. (2.8). (ii) The projection of Eq. (2.41) onto the
FIDO four-velocity U, the equation of energy conserva-
tion for the fluid, is identical to the focusing equation
(2.9). (iii) The projection of Eq. (2.41) into the constant-t
sections of the stretched horizon, the equation of Quid
momentum conservation, is identical to the Hajicek
equation (2.10}. In this way the analysis of the evolution
of horizon distortions may be viewed entirely in terms of
the mechanics of the two-dimensional Quid membrane at
the stretched horizon.

For a complete understanding of the horizon dynam-
ics the electrical and fluid-mechanical properties of the
membrane must be supplemented by the thermodynamic
properties of the membrane. These properties, which
follow from the work of Hawking, ' assign to the mem-
brane a red-shifted temperature TH given by

TH =(fi/2rrk )gH, (2.44)

where A and k are, respectively, Planck's constant and
Boltzman's constant; and to a cross-sectional area ~
of a bundle of fiducions is assigned an entropy

With these requirements the Quid properties of the
membrane serve, for gravitational interactions, a role
similar to that served by the electrical properties in ex-
plaining the interaction of the hole with electromagnetic
fields. In particular, the fluid not only terminates all
stress-energy flows but, as a consequence of its equations
of motion (2.40) and (2.41) and its viscous coefficients g
and g, it "explains" the horizon boundary condition
(2.35). (See Sec. VB and Appendix E of PT.) For gravi-
tational interactions, however, the membrane paradigm
goes considerably beyond this parallel with the elec-
tromagnetic paradigm. A sufficient mathematical con-
sistency condition for the requirements (2.40} and (2.42)
on the membrane Quid is the vanishing of the extrinsic
curvature on the inner side of the stretched horizon's
(2+1}-dimensional world tube. This in turn implies that
our Quid dynamical variables X, P, and II are related to
the kinematical variables of the stretched horizon by

-H 1 -H
XH ——— 8H, PH —— gH, II = — 0 . (243)

8m
'

8n
'

8m

„+[T„„N"]=0. . (2.41) 6$ =(k /4R)KA (2.45}

Here eP is the stress-energy tensor of the two-
dimensional fluid (U Ye

~ U =X, U tt' e, = —II.„
=S,b), [T„„N"] denotes the discontinuity in the normal
component of stress energy across the stretched horizon,
and Eq. (2.41) is understood to be projected on the
(2+1)-dimensional world tube of the stretched horizon.
We further require that all stress-energy flows from the
exterior are terminated at the stretched horizon, i.e.,

(2.42)

so that all stress-energy flowing into the stretched hor-
izon is absorbed by the two-dimensional fluid membrane.

From Eq. (2.6a}, rewritten for the stretched horizon in
terms of entropy, we can compute the rate of "heating"
for a small region of the stretched horizon of area ~
bounded by fiducions:

TH (gH/8n. )8 XA——dhS H H
dt

(2.46)

We now apply the exact focusing equation for the
stretched horizon [Eq. (2.22) with the 8H term and the
stress-energy term of Eq. (2.9} restored and reinterpreted
as stretched-horizon quantites]. With this and the fact
that 8 =(h.A } 'd&A /dt, the heating equation can
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be written as

d hS~
H

gH dt

H
(cr,boH —'8—H+8m. 9' ) . (2.47)

(We have used here the fact that gH is constant for our
choice of slicing; see the discussion in Sec. II B.} If this
equation is applied to find the heating that occurs during
a time long compared to gH

' it can be shown that the
second derivative term on the left may be ignored, ' and
the equation may be written as

ASH
TH —(2gH—aabaH"+$H8H+P )~ . (2.48)

This equation has precisely the form of the heating equa-
tion for an ordinary fluid: the first two terms on the
right represent dissipative heating and the third term
represents heating due to the addition of red-shifted
nongravitational energy from the black-hole exterior. In
our model problems there will be no nongravitational
stress-energy crossing the horizon and for perturbative
models we have 8tt «o,btrtt (see Sec. II B), so that over
a time interval much greater than gH

' we may use

H ab H
TH

d
=29HaabaH~

dt
(2.49}

The rate of heating for the hole may then be computed
by integrating this equation over the entire horizon.

The membrane momentum density IIH provides an
approach to computing the rate of change of angular
momentum J of a hole. For a stationary hole

J= f II&,~yd8'dP'= f II&.dA . (2.50)

where y=det~~y, b~~ and II& is the projection of II on
8/BP', the generator of rotations about the symmetry
axis. (See PT Sec. IIB and Hajicek. '

) Since the in-

tegration in (2.50) is over the entire horizon, J is
unafFected by the fact that an arbitrary gradient can be
added to II . [See Eq. (2.20).]

We now consider a slowly evolving hole, i.e., one
changing on a time scale much greater than gH ', which
begins and ends in a stationary state; the change in J will
be given by the difference in integral (2.50) between the
final and initial states. In order to arrive at a useful
definition of J during the epoch of change we now make
a further restriction: We assume that the perturbation
acting on the Kerr black hole is axisymmetric about the
rotation axis of the hole in a time-averaged sense, e.g., a
particle orbiting the hole in its equatorial plane. (This is
the model problem to be studied in Sec. IVB.) For such
a situation, all generators having the same value of
8'( =8,') before the perturbation will end up with their 8'

values again equal to each other (though not necessarily
equal to 8';) after the perturbation. We can take these
generators (or fiducions) to define 8/BP' during the
epoch of evolution. It is then clear that the quantity

dJ 8
dt at

= f —(V'ylIH. )d8dy (2.51)

when integrated over time throughout the perturbation
period will give the difference of the angular momenta of
the Kerr black hole before and after the perturbation.

Equation (2.51) can be put into a more suggestive
form. For comoving coordinates we have

D 0-+(cr '+ '5'8— )II =—0 =—0H ~ H ~ H

t
(2.52}

and, from (2.5), B&y/Bt =8HMy. We may then use the
Hajicek equation (2.10) to write (2.51) as

= f (2qHo&. l'+Q&. )&yd8'dP' . (2.53}

The divergence of the shear can now be explicitly com-
puted:

(jb r Hb ~ ab(" ytry' ) b trHYab y' (2.54)

The first term on the right disappears under integration
in (2.53) and we are left with

ab H H

dt rtHaHyob t;+ &t;)d& (2.55}

dM dS &
dJ

dt dt dt
(2.56}

where 0& =a/2MrH is the hole's angular velocity given
in Eq. (2.15).

E. The Rindler approximation

If we restrict attention to the region (a «1) of space-
time sufficiently close to the horizon then in Eq. (2.16)
the g« term, which is O(aa sin 8'}, may be ignored and
the Kerr geometry may be approximated as

ds = adt +gH da—+pHd8 +coHdg (2.57)

In this geometry the three-surfaces of constant t are
curved with radius of curvature of order rH. We may
approximate these three-surfaces as Bat by further re-
stricting attention to regions of spacetime above a patch
of the horizon small compared to rH. More specifically
we define, near 0'=80, Cartesian-type coordinates

The second term in the integral represents the rate of
angular momentum falling across the horizon. The first
term also has an intuitively appealing interpretation: the
viscous torque due to the interaction of the tidally in-
duced shear with the nonaxisymmetric distortion of the
horizon.

It should also be noted that in the derivation of Eq.
(2.55) from (2.51) the assumption of weak perturbations
has nowhere been used; this result then is exact and can
in principle be used to find the change in angular
momentum for strong disturbances of a hole.

From the heating rate for the hole and the rate of
change of the hole's angular momentum, the rate of
change of the hole's mass is given by the first law of
black-hole thermodynamics:
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x =o—iH(~o)4 y =p—H(~o)[0' —~o]

The line element in Eq. (2.57) then becomes

ds = —(gHz) dt +dx +dy +dz

(2.58)

(2.59)

B g/Bp +(1/p)BQ/Bp+B tPIBz =0,

By/Bp=p[(BQ/Bp)' —(Bg/Bz) ],

By IBz =2p(BQIBP)(BQIBz ) .

(3.2)

(3.3a)

(3.3b)

T=z sinhgH t, Z =z coshgH t, (2.60)

if we ignore the O(y IrH ) corrections (and assume Ho is
not too near 0 or n).

We shall call Eq. (2.59) the Rindler' approximation to
Kerr. With the further transformation

Equation (3.2) implies that g is a harmonic function in a
fictitious Euclidean "background" space with cylindrical
coordinates (p, z, g). For asymptotically flat solutions
with bounded sources, P approaches the Newtonian
gravitational potential at spatial infinity:

the Rindler geometry takes the Minkowski form

ds = dT +—dx +dy +dZ (2.61)

lim f= —m/R+O(m /R ),
R —+ oo

(3.4)

III. STATIC PARTICLE NEAR HORIZON

A. The Weyl approach

Axisymmetric, static, vacuum solutions of the Einstein
field equations can be described by the Weyl forma1-
isrn. ' This formalism uses coordinates ( t,p, z, P } in
which the metric takes the form

ds & = e+ 'zidt 'i+ e—2(y~ p, z) +p, z ~l(d p'i+. d—z 2')

+p e +P,z dg2— (3.1}

showing that the Rindler geometry corresponds to a re-
gion of flat Minkowski spacetime. (In general it actually
contains two equivalent regions of Minkowski spacetime,
Z &

~

T
~

and Z & —
~

T ~; here we confine our attention
to the first region. )

We shall exploit the simplicity of the Rindler approxi-
mation by using flat-spacetime techniques to solve for
the distortion of the horizon due to sources near the hor-
izon. Specifically, in the model problems we start by
adopting the Lorentz gauge and use the Lienard-
Wiechert-like solution for the metric perturbations.
From this we compute the (gauge-invariant) gravitoelec-
tric field e,b which is used in (2.25a) to find the horizon
shear cr,b The .shear in turn is used in (2.25b) to give
the expansion. Comoving coordinates are then assumed;
the evolution of y,b is computed and the distortion of
the horizon is viewed in terms of the distortion of an ini-
tial circle of (coordinate-fixed) fiducions. (Note that o,b

and 8 are gauge-invariant and do not depend on the
Lorentz gauge used at the outset; the introduction of
comoving coordinates here is therefore not inconsistent. )

Lastly, the expansion is used for an investigation of the
rate of heating of the horizon [Eq. (2.46)] and of the
mass added to the hole [Eq. (2.56)].

with R—:(p +z )'; here rri is the total active gravita-
tional mass of the system, as measured at infinity. Once
1( is chosen, corresponding to some source of the field, y
is found from the integration of Eqs. (3.3).

The form of g for Schwarzschild spacetime is not
spherical, ' but rather is that of a uniform line mass M
on the symmetry axis extending from z = —M to
z =+M. It is best described in prolate spheroidal coor-
dinates (u, v, P) related to Weyl coordinates by

p=M sinhu sinv,

z =M coshu cosv .
(3.5)

The Schwarzschild solution (denoted here with subscript
0) in these coordinates is

go ——ln[tanh( u /2) ],
sin v

yo ————,'ln 1+
sinh u

(3.6)

r =2M cosh ( u /2 ), 0=v . (3.7)

Our approach will be to modify the Schwarzschild
geometry with a harmonic weak perturbation f, corre-
sponding to a particle suspended above the horizon on
the symmetry axis. The Weyl functions are then written
as

The Schwarzschild line element in standard form follows
from Eqs. (3.1), (3.5), and (3.6) with the further coordi-
nate transformation

(The Weyl coordinate z is, of course, not to be confused
with the Rindler coordinate z of the previous section. )

The vacuum Einstein equations in these coordinates
reduce to

and y =yo+y,

and the perturbation yi is found from Eqs. (3.3) in u, v

coordinates:
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By, /Bv=2p cotv[(BQ /Bp)(BQ, /Bp) —(Bg /Bz)(BQ, /Bz)] —2pztanv[(BQ /Bz)(BQ, /Bp)+(B@ /Bp)(BQ, /Bz)] . (3.8)

Here and throughout this analysis we keep terms only up to linear order in 1(ti.

To represent a perturbing particle on the symmetry axis we take g, to be

gi ———p[p +(z b—) ] '~ = p—[M sinh u sin v+(b —M coshu cosv} ] (3.9)

Though this appears to describe a spherically symmetric point particle, of apparent mass p, at z =b its meaning is ac-
tually rather more complicated due to the nonlinearities associated with y. The field near p=O, z =b is in fact the
Curzon solution with a highly nonspherical naked singularity at p=0, z =b. For [p +(z b) —]'~ &&p, however,
the monopole part of the field dominates and the nonsphericity of the singularity can be ignored. For fi «1, which
is a requirement for our perturbation approach, the perturbing source can therefore be considered to be a point parti-
cle.

When g, from Eq. (3.9) is used in Eq. (3.8) the result is

2@M
(b —M coshu cosv ) sinu .

[M sinh u sin v +(b —M coshu cosu ) ]
(3.10)

Although this equation could be integrated exactly, we
are only interested in the solution near the horizon. For
static geometries the horizon is the surface at which

g«
——0 occurs, which for the spacetime here is the sur-

face u =0 (since $0+pi diverges to —ao at u =0). We
can therefore approximate Eq. (3.10) as

pi= p[p'+—(z b)') —' ' p[p'+—(z+b)']

(3.13)

and yi can be found from Eq. (3.12) by adding a similar
expression with b~ —b and opposite overall sign; thus,
for u «1,

Byi/Bv =2@Msinu(b —M cosu) [1+0(u )]

for u «1, (3.11)

which has the solution

yi ——2@[1/(Ii —M) —1/(b —M cosv)][1+0(u )]+C
for u «1, (3.12}

where C is an integration constant.
The condition for elementary flatness is y=O on the

symmetry axis. A nonvanishing y at v =0 or ~ indicates
that the geometry has a conical singularity correspond-
ing to an infinitesimal "rope" or "strut" on the axis. It
is clear from Eq. (3.12) that y cannot vanish both at
U =0 and v =m.. Furthermore, integration of
(By/Bp)dp+(By/Bz)dz from just below the point mass
to just above it reveals 'that y, increases by
4pM/(b M), so y cann—ot vanish on axis both above
and below the particle. The physical origin of these
mathematical results is the fact that constraints are
necessary to keep the hole and the point mass static
against the force of their mutual gravitational attraction.
The mathematical requirements can be satisfied in a
number of ways, as shown in Fig. 1, each of which cor-
responds to an intuitively correct system of constraints.
The simplest, for example, is to choose
C = 4pM/(b M—) so that y—=0 holds on the axis ex
cept for a "strut" along M &z & b holding the hole and
the point mass apart.

We shall make a choice which avoids the necessity of
connecting a strut or a rope to the hole: In addition to
the particle at z =b, an identical particle is held static at
z = b The tot—al p. erturbation g, is then

1 1 1 1
p) =2p +

b —M b —M cosv b +M b +M cosv

(3.14)

(The overall sign change originates in the square roots in
Eq. (3.13) where for

I
z

I
&b on axis [(z b) ]'~ =b ——z

but [(z+b} ]'~ =b+z . ) The choice of integration
constant in Eq. (3.14) is that implying, on the axis,

I,c, l

FIG. 1. Physical constraints for producing a hole-and-
particle Weyl solution. In (a) a conical singularity correspond-
ing to a strut in compresson holds the hole and particle apart;
in (b) ropes to infinity provide the constraints; in (c), the solu-
tion described in the text, symmetrically placed particles sup-
ported by ropes to infinity are used.
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for ~z
~
&b,

y=y„=4pM, /(b M— ) for ~z~)b.
(3.1S)

A, =V'= —,'(1 —e )= const = —,'y„.~A (3.16)

The A, =V equation of state of the rope means that the
passive gravitational mass of the rope vanishes. This ex-
plains why the tension T is constant: the rope has no
weight; hence the tension at any z is only that necessary
to support the particle. The lack of gravitational mass
also explains why the ropes do not enter into the
Newtonian-like potential g. These ropes then provide
constraints without themselves making any apparent
contribution to the gravitational field. The last (approxi-
mate) equality in (3.16} follows from (3.15), which indi-
cates y„-g, « l.

A physical interpretation is also needed of the mass
parameters M and p in our solution. The surface gravity
g& can be evaluated as the horizon limit of
( —g«)'

~

a ~, where a is the four-acceleration of a sta-
tionary particle, with four-velocity U=( —g«) '~zB/Bt.
A straightforward calculation gives

gH ——(4M ) 'exp(2&i
I =o—y & ~

=o) . (3.17)

Equations (3.9) and (3.12) show that the exponent is con-
stant on the horizon, as it must be by the "zeroth law of
black-hole mechanics. " A t =const, u =0 horizon sec-
tion has the geometry

The physical interpretation of the conical singularities is
shown in Fig. 1(c); the symmetrically located particles
are suspended from "ropes" anchored at infinity.

The nature of these ropes will be important in subse-
quent sections and warrants further discussion here. If
we replace the symmetry-axis singularities with line
sources of stress energy, those sources are characterized
by a mass-per-unit length A, and a tension 7 related to
y „,the value of y on the axis, by

From Eq. (3.10), and the fact that y& vanishes on axis,
we can also approximate y&=0 away from the particle
and the rope, e.g., in a neighborhood of the axis below
the particle, so that the metric becomes

ds = —tanh (u~/2)e 'dt

+coth (ur/2)e '(dp +dz +p dP ) . (3.23)

When reexpressed in local time and distance coordinates
for the background,

t =tanh{u /2)t, p=coth(ur/2)p,

z =coth( u~ /2)z, and
(3.24)

the metric takes the simple form

ds = —e 'd t +e '(dp +dz +p dtI} ) . (3.25}

This is just the form of the weak-field metric with
Newtonian potential g, {see, e.g., MTW, Sec. 18.4). In
the careted coordinates f& is given by

g, = —p coth( u~ /2) /[p + (z —b ) ]'i (3.26)

with b=bcoth(uz/2) and where the negligible contribu-
tion from the particle at z= bhas —been omitted. It
follows that the active gravitational mass of each parti-
cle is

m =p, coth( u /2) =p
b+M

' 1/2

(3.27)

It should be noted that in the Schwarzschild geometry
the acceleration of gravity at the position of the upper
particle is

2 ~1
dsH2 4M e —'(e 'dv + sin v dg ),

hence the surface area

A =16mM exp(y)
~ „o—2P]

~ „o) .

(3.18)

(3.19)

—1/2

M/r2

=(4M) 'coth(u /2)cosh 4(u /2) (3.28)

The Smarr formula for the mass MH of a static hole,
implying

MH ——gHA /4m =M, (3.20)

then shows that for any f& and y, nonsingular at the
horizon, the hole mass is simply M.

To understand the dynamical meaning of the parame-
ter p we confine ourselves to the weak-field region close
to the upper particle, i.e., we take

p p,M 1

Msinh u b2 M& 4y"
P

(3.29)

From Eq (3 16) it follows that the tension in the ropes
supporting the particles satisfies

p «[p'+(z —b )']' ' «b —M . (3.21) 'T=m /g / (3.30)

go=in[tanh(u /2)] and ra=0. (3.22}

The background potentials tpo and yo change on a length
scale b —M so we may approximate them as constant
with the values at the particle location v =0,
u = u~ =arccosh(b /M ):

as, of course, it must.
The computation of Riemann components for the di-

agonal static metric of Eq. (3.1) is straightforward
though tedious. We present the results in the orthonor-
mal basis for a static observer:
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e& (———g„) '"a/at =coth(u/2)e "a/at, e =(g„„) ' ~ r}ldu =(2M) 'sech (u/2)e ' '8/Bu,

e =(g,„) '~ d/Bu =(2M) 'sech (u/2)e ' '8/Bu, e&
——(g&&)

' 8/BP=(2M) 'sech (u/2)cscue 'd/dP .

(3.31)

Since we are interested only in the fields near the horizon, the computations of the Riemann components are carried
out only to lowest order in u. A typical result is

Rt„-,„——I
—[1l(4M )]+(2I4b/M )l(b M—)

(pb—/M )(b +3M cos u)(b —M )l(b —M cos v) j[1+0(f,)+O(u )] . (3.32)

The 1/(4M ) term in the above expression is the
Riemann component due to the unperturbed
Schwarzschild hole; the remaining terms are the pertur-
bations, linear in g„due to the particle. The charac-
teristic size of g, on the horizon is p/(b —M) so in Eq.
(3.32) we see that the second term is smaller than the
first by a factor of order g, . At or near v =0 or m, how-
ever, the ratio of the third term to the first is of order
giM/(b —M). We are specifically interested in
configurations in which the spacetime curvature on the
horizon, near the particles, is dominated by the tidal
fields of the particles, so we take as a further constraint
on our parameters Q,M/(b —M)» I or

t8fco QpQ

48ms olios so N1+0 +0
(s2 +co 2)4 M M

(3.35)

The above results apply of course only if our restric-
tions on the geometry and on mass parameters are
satisfied. In the present notation these restrictions are (i)
the condition f, «1 requires that rn be small enough,

m M
b —M b —M

1/2

(3.33)

&.e.,

m

So
(3.36a)

It is useful now to express the Riemann components
near u =0 in notation appropriate for later comparisons.
We therefore introduce co as the proper distance along
the horizon from the symmetry axis at u=0, and we
note that e =e&. We also label the spatial normal to
the horizon section e„=e-„, and we use s to represent
proper distance normal to the horizon, i.e.,

s=2Mu[1+O(u )+O(g, )],
with so the distance to the particles:

su 2Mu =——2M arccosh(b/M)-2M[2(b/M —1)]'

With this notation the Riemann components on the hor-
izon (i.e., at s = u =0) to first order in f, are

tcovco 'Fgtg 8889

—R - -=-'R - -= —-'R-
8$8$ 2 a)Po)P 2 t 8 t 8

Smso so3 2

1+0 +0
(sz+rg ) M M

(3.34)

Components not related to these by index symmetry
vanish on the horizon. Components R~@ and R„&~&
vanish on the horizon linearly in u and are computed to
be

(ii) The condition [Eq. (3.33)] that the particle dominate
the tidal field at the horizon requires that (su/M) be
small enough to give

'2
m M
so so

(3.36b)

It should also be noted that the tidal field described by
Eqs. (3.34) and (3.35) are those due to the particle at
z =b. The particle at z= —b has negligible influence in
this region of validity. If, for example, the constraints in
Fig. 1(b) were used the results would be unchanged.

B.The Rindler approach

We now use the Rindler geometry of Eq. (2.59) to find
the tidal fields on the horizon for a model problem
analogous to that analyzed above in the Weyl formalism.
The analogous configuration consists of a particle of
mass m at x =0, y =0, and z =so. To constrain the par-
ticle we invoke a rope of infinitesimal cross section, with
mass-per-unit-length I, and tension 7; extending upward
(i.e., to larger z) from z =su, along the x =y =0 axis. As
the equation of state of the rope we use A, =7' so that the
rope is weightless. [See the discussion following Eq.
(3.16).]

The stress energy of the particle source T&,"«,,&, has, as
its only nonvanishing component in these coordinates,
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T",„;,~,
——(m IgHz )5(x)5(y)5(z —so) . (3.37) so that, for the A, ='7 equation of state, 'T is constant

and is given by

For the stress energy of the rope the nonvanishing com-
ponents are

T,", , =[A.(z)/gHz ]5(x)5(y)H(z —so),
T„=—T(z)5(x )5(y )H(z —so ),

(3.38)

d7 A, —V
dz z

and
Pl

sp
(3.39)

where H is the unit step function. The force-balance
equation ( Tp",„,,i, +T;,"~ ).„=0 requires

m Igo I
=mg„/a, , (3.40)

where gp is the acceleration of gravity at z =sp=ap/gH
(i.e., the acceleration of a particle stationary in Rindler
coordinates at z =so).

It will be useful in the calculations below to write the
stress-energy tensor in a coordinate-independent form.
To do this we let U(r) be the particle four-velocity, as a
function of its proper time r, and we take U(s, r) to be
the four-velocity of the segment of rope at proper length
s. The unit vector tangent to the rope in the rope rest
frame is denoted t. At any spacetime point x the total
stress energy can be written

T""(x) =m f U"(r) U"(r)5 [x g(~)]—dr+off [U. "(s,r) U "(s,r) t "(s,r—)t "(s,~))5 [x g(s, r—

)]deeds,

(3.41)

where g(r) specifies the world line of the particle, and
g(s, r) gives the world line of the rope segment at s.

The perturbations of Rindler spacetime due to the
particle and rope are easily found if Minkowski coordi-
nates (T, x, y, Z) are used for the Rindler geometry [see
Eqs. (2.60} and (2.61}]. We can then follow the standard
approach (see, e.g., MTW, Chap. 18) of defining the
metric perturbations h„„of flat spacetime (with metric
g„'.} by

F
pv =gp, v g pv

and the trace-reversed perturbations h„by
F Ph„„=h„,——,g„Pti

(3.42}

(3.43}

In all calculations only perturbations of first order in h„„
are kept, implying, e.g., h&

~——h„vg "". When the
Lorentz gauge condition

h~.„=o (3.44)

is invoked, the solution for h„v at spacetime point
x =(x, t), due to perturbing stress energy T„„,takes the
familiar form

retarded event x„, at the intersection of the particle
world line and the past light cone of x:

k =xret —x (3.47)

where k(s} is the null vector from x to the retarded
event for the rope segment at s.

To evaluate the expressions in Eqs. (3.46) and (3.48)
we start by considering a segment of the rope at
z=z'=a'IgH, and for a field point at t, x, y, z =a/gH
we denote by t'„, the retarded time for the contribution
from the segment at a'. The four-velocity and tangent
for the segment are U=(1/a')e, and t =e, in the
Rindler basis. But Eq. (3.48) is valid only in a Min-
kowski basis, so we use Eq. (2.59) at time t,'„ to arrive at

The "ret" subscript on the right-hand side of Eq. (3.46)
indicates that U is to be evaluated at x„,. The rope con-
tribution to h„v is

U„(s)U (s)—t„(s)t„(s)
h„,(x )

I

„=4'Tf " " " ds, (3.48)
U(s) k(s)

4T„„(x',t')5(t t'
I
x —x'

I

—}d x—'dt'
„„( )=

U =coshgHtret

t =sinhg&f ret

and U =sinhgHt'„, ;

and t =coshgH t,'„. (3.49)

(3.45)

4mU„U„h„(x)
I U.k

(3.46)

where k i.s the null vector from the field point x to the

but only in a Minkowski coordinate basis system.
When the particle stress energy, the first integral in

Eq. (3.41), is used in Eq. (3.45) the result is the
linearized-gravity analog of the Lienard-Wiechert poten-
tials

Proper length along the rope can be pararnetrized with
a', using ds =dz'=gH 'da', with the rope extending
from ao ——gHso to a= oo. Equation (3.48) then gives, as
the only components of the rope contribution,

h TT(x }
I rope = h zz (x }

I rope = f4'T da'
gH o U(a'). k (a')

(3.50}

At the field point x the Rindler and Minkowski bases for
the flat background spacetime are related by
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e, =a(coshgHt er+sinhgHt ez),

&, =sinhgHt ez-+coshgHt ez
(3.51)

With these we can compute the Rindler components of
h„. The only nonvanishing components are

U(a'). k(a')= —U (T,'„—T)+ U (Z,'„—Z)

=agH 'sinh[gH(t t'„, )]—. (3.53)

If we are to evaluate the integral in Eq. (3.52) we must
solve for t —t,'„ in terms of the field-point coordinates
and the source-point parameter a'. This relationship fol-
lows from the retardation equation k.k =0. To simplify
notation we shall henceforth use

S' —=sinh[gH( t t '„, ) ]—, C'—:cosh[gH( t t '„,—)], (3.54a)

a 'hr l.op
= —h I.o~= J -, —, (3.52}

gH o U(a') k(a')

If Eq. (2.60) is used to evaluate the Rindler com-
ponents of k, the denominator in Eq. (3.52) can be writ-
ten

It is straightforward to add negative mass contribu-
tions to Eq. (3.37) [an additional term with m5(z —sp)
replaced by —mf5(z —sf )] and to Eqs. (3.38) [an addi-
tional factor of H(sf z—)] and to verify that the force
balance equation T'".„=0 does indeed reduce to Eq.
(3.58).

The artifice of the negative mass is very convenient
since it requires no additional computation. Once the
particle contribution in h„„and in the Riemann tensor
have been found, the changes ap~af and
m~ m—f ———(af/ap)m give the contribution of the
negative mass; in the rope integral in Eq. (3.52} the
upper limit of integration is taken to be af. Further-
more, the negative mass can be eliminated from our final
results for the Riemann components. Since the Riemann
components are gauge invariant they are not plagued by
the gauge-dependent singularity of h„„. There is there-
fore no difficulty in taking the a&~oo limit. (The re-
sults have been checked by also computing the Riemann
components following an explicit gauge transformation
of h„,.)

With a cutoff' at af the integral in Eq. (3.52) can now
be evaluated:

co =x +y

The retardation equation then gives

k k=0= —(T,'„—T) +co +(Z,'„—Z)

=co +gtt (a +a —2aa'C') .

This implies

(3.54b)

(3.55)

hrr I rope= hzz I rope

4T of da'

gH oo U(a'} k(a'}

=4T in f
0

(3.59a)

and

Q2+ Q'2+g 2 —2

C'= H

2QQ
(3.56}

with

5p=gp+ (gp+4a gttcp )' and gp—:gHcp +ap —a

(3.59b)

U(a') k(a') =agH 'S'=agH '(C' 1)'—
[( 2 —2+ 2+ &2)2 4 2 &2] l /2/2 i

(3.57)

When Eq. (3.57) is used in the integral in Eq. (3.52) a
difficulty emerges: U.k~a'/2gH as a'~ oo, so the in-
tegral is logarithmically divergent. This is a pure gauge
effect; an explicit gauge transformation can be performed
to produce finite expressions for h„„ I „~. There is,
however, a simpler and more instructive way of eliminat-
ing the divergent integral: The rope can be terminated
at some arbitrary a=af ——gHsf. The force necessary to
support the upper end of the rope can be supplied con-
veniently, if somewhat unphysically, by a negative-mass
particle. Intuition suggests that the magnitude mf of
the mass must satisfy

m
I g I ...,=&=mf

I g l.r.,

=(a +ap+gHcp )/2aap, (3.60)

where the second equality follows from Eq. (3.56) with
a' taken to be ap. It is then straightforward to evaluate
the Minkowski components of the particle contribution
(3.46) with Eqs. (3.49) and (3.53). When the results are
expressed as components in the Rindler basis at the field
point we find

4gHm Cp

Q Sp

and where fif is defined by the same expressions with ap
replaced by af throughout.

We now turn to the evaluation of the contributions
from the ends of the rope. It is convenient to define

t„,p and t„,f as the retarded times at ap and at af, and
to define Cp, Sp, Cf, and Sf as in Eqs. (3.54a), for exam-
ple,

Cp: cosh[gH(t —t„,p)]—

or

mgH —Y—
Qp

mfgH

Qf
(3.58}

4gH m
a 'hr.

I pe~,.i.= Cp,a
4gHm

h
I p.&,.&.

= Sp .a

(3.61)
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The contributions due to the negative-mass particle then
follow immediately:

e =a ett
e =cosine +singers,

(3.66)

4gHm f Cf
hrt I nag mass= 7

Q Sf
4gH mf

htz I nag mass= Cf,a
4gHmf

zz I nag mass= a Sf .

(3.62)

We can now sum Eqs. (3.59), (3.61), and (3.62) to find

h„„and can invert Eq. (3.43):

(3.63)

a h„=h—2 4mg~ 1
Sp+

af
a, f+ 2sf

L

where, of course, g„„is the Rindler metric. The results,
the perturbations of Rindler spacetime in the Lorentz
gauge, are

mgH
3

1

Sp

3 co

Sp sp

2

af
ap

3 co

Sf
(3.67)

where so:—ao/gz and sf =af/gH are proper distances
defined as were the analogous quantities in the previous
subsection.

We can now take the rope to be infinitely long, that is,
we assume af ~ no, hence Sf—+af /2a~ na. In this lim-

it the Riemann components are

mgH
3

R~~ ~
———R~ ~

——

a Sp

e
&

———singe„+ cosine

When the metric in Eq. (3.64) is used in Eq. (3.65) a
typical result is

a-'h„= 4mgH af
Cp — Cfa ap

(3.64)

h =h„„=
2mgH 1 af 1

Sp ap Sf

r

4yylgH 5fln
ao

in which Eq. (3.58) has been used to eliminate 7' and

mf.
With these results the Riemann components can be

calculated from

3 co

So sp

2mgHR-- = —R—=
Qcort}N O'C' 3S3

0

1— 3

2S0 sp

3mgH co
R --=R

c7p t 2 t $/2'P 2 ~5Q a~p

r

Cp

a ao

mgH
3

R-- = —R--= 1—
tNtco P2P2' 3 gr 3Q wp

2

(3.68)

R„pys
———,

' ( h „s.py +h py. „s—h ps isy
—h isy. ps ) (3.65)

The perturbed spacetime is clearly symmetric about the
z axis so it is convenient to introduce polar coordinates
(ro, P) for the xy sections and to give the Riemann com-
ponents in the orthonormal basis

We next take the horizon limit a —+0, noticing

a+g co s +co
Sp~

2apa 2 ssp

where we have used s—=a/gz. In this limit (a«1,
infinite rope) the Riemann components are

8m so
R;]g)

———R)~)~——R)~;~———R ])])———,'R ]~)~———
~ R;)))——

So+CO

48 m sp3co s
Stet sprp r J 2)4(So+CO

(3.69}

which agree perfectly with the results in Eqs. (3.34} and
(3.35).

C. Interyretation

In Sec. IIIA we computed the near-horizon Riemann
components for a static particle in the Schwarzschild
geometry, under certain geometric restrictions. In Sec.
IIIB these were found to agree with the results of the
computation for the analogous configuration in the
Rindler geometry. In both computations the constrain-
ing force on the mass point is provided by an idealized
"rope" which is weightless and can be considered to

have a minimal effect on the tidal fields at the horizon.
We can therefore consider the horizon fields as being
produced by the mass point alone. The justification of
this interpretation is particularly clear in Sec. IIIA in
which the stress energy of the rope never enters; further
justification wi11 appear in Sec. IV in which certain re-
sults will be seen to be consistent with the viewpoint that
tidal fields emanate only from the particle.

The agreement of the results in Secs. III A and III 8 is
more-or-less expected since the Rindler geometry ap-
proximates the near-horizon Schwarzschild geometry. It
may seem that the constraining rope, extending to
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infinite height, does not lie within the realm of this ap-
proximation. The rope, however, need not be infinite for
our results to apply. We can reconsider results for a
finite rope extending from ap to a& and terminated there
(by a negative-mass particle, or whatever). In Sec. III B
this was explicit in expressions such as (3.67). In Sec.
III A we can infer the finite-rope result by adding to Eqs.
(3.34) and (3.35) analogous expressions with ao replaced
by a/ and m replaced by —(a//ao)m. The condition
that the contributions from the upper end of the rope
can be ignored is

5//a/ »So /ao .3 3 (3.70)

[See, e.g., Eq. (3.67).] This requirement is satisfied at a
particular value of t0 if a/ is chosen large enough to en-

sure

a~ &gap and a/ »(gHt0) /ao ~ (3.71)

For sufficiently small r0 these conditions can be satisfied
with a~ &g1 so that the entire source configuration can
lie within the region in which the Rindler geometry ap-
proximates the Schwarzschild geometry.

With the nature of the Rindler approximation clarified
by the above example, we may now use the approxima-
tion to extend our results. For a patch of the horizon
with gHto«1, and for a source lying in the a «1 re-

gion, the Rindler spacetime approximates Kerr space-
time as well as Schwarzschild. We may therefore inter-
pret the results of Secs. III A and IIIB as the horizon
fields due to a mass point and rope comoving above the
Kerr horizon, i.e., due to a mass point at constant
Boyer-Lindquist coordinates r =ro and 8 =80 and with

p =$0+(tt/2MrH)t [cf. Eq. (2.14)]. In this case the
horizon fields are those given by Eq. (3.68) with the in-
terpretation [from (2.13) and (2.14}]:

' 1/2

(MrH ——,
' a isin~80t)

' ~~,
rp —rH

Sp =2
rH —M

J

to =PHsin 80(8 —80}

(2MrH }
[p —$0—(a /2MrH )t ]

PH

PH H+tt cos 80.2 2 2 2

(3.72)

The restriction to a limited region of spacetime near
the horizon has, in the above example, allowed us to
find an approximate solution of a difficult problem (a
particle orbiting near a Kerr black hole) with a relatively
simple computation in Rindler spacetime. EfFects, such
as centrifugal acceleration, absent in Rindler spacetime,
are guaranteed to make negligible O(a/) fractional
corrections to the results. (For details see PT.) The use
of the Rindler approximation in this way will be the
basis of the model problems in Sec. IV involving mass
points which are not comoving with the horizon.

32m$cR=
(@2+$2)3

(3.73)

which is straightforward to compute in the Weyl or
Rindler geometries. [It can, for example, be found from
the component R

& &
in Eq. (3.34} with the use of the

Gauss-Codazzi equations. ) In Sec. IVB an explicit ex-
ample will be given in which this result emerges as the
static limit for a slowly moving particle. The vanishing
of e has the obvious meaning that the area of the hor-
izon remains constant; this of course is required by the
fact that the quasistationary process is reversible.

We conclude this section by summarizing the condi-
tions for the validity of the Rindler approximation to the
Kerr geometry and the perturbation scheme for point
particles, the approach that will be used throughout the
next section. (i) The field of the particle must be weak at
the horizon. If the particle mass is m, and its distance
to the horizon is sp, this condition is

m/$0 «1 (3.74)

[cf. Eq. (3.36a}]. This condition must be satisfied for

The mass point comoving with the horizon, i.e., the
situation considered in Secs. IIIA and IIIB, is itself a
rather trivial example of the formalism outlined in Sec.
II. The results in Eq. (3.34) or (3.69) show that the
components R»~& C——

»y& as measured by FIDO's are
finite on the horizon and the horizon fields Z H, S van-
ish [see Eqs. (2.32)—(2.34)]. This is compatible with the
boundary conditions in Eq. (2.35}. Note in fact that %
will always vanish for a static spacetime, a consequence
of C~ko

——0 [cf. Eq. (2.32}]. It follows from the horizon
boundary conditions (2.35) that for a static spacetime

must vanish. The vanishing of Z means that there
is no source in the tidal force equation (2.8) or in (2.25a).
The horizon shear Pr must then vanish and this in turn
means that there is no source in the focusing equation
(2.9) or in (2.25b}, so that horizon expansion 8 also
must vanish. These results, P =8 =0, are of course
always true for a stationary horizon, as is obvious intui-
tively and is explicit in Eq. (2.5).

It is useful to consider qualitatively how our results
would change if the particle were not held stationary,
but rather were lowered in a quasistationary manner, on
a time scale tn »gH', toward the hole. Since the fidu-
cion (or generator) positions change on this same time
scale, the horizon shear must be of order 1/tn. From
Eq. (2.21) with the time derivative ignored (using
d/dt —1/tn «gH) we infer 8,&

—1/tn, and Eq. (2.22)
implies 8 —1/tD Th. e time-integrated shear X,i,
—o,& tz is independent of tz and the time-integrated ex-
pansion e -8 tD is of order 1/tn The. nonvanishing
of X,& in the limit tD oo accounts for the fact that
during the process of lowering the particle, no matter
how slowly it is done, the intrinsic geometry of the hor-
izon must change, since the horizon geometry in the
static case is distorted. This distortion, to first order in
the mass of the particle, is best described by the Ricci
curvature scalar for the horizon section
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—1
so «gH (3.75)

(iii) The horizon region considered must be small in ex-
tent in comparison with the horizon radius,

that portion of the particle motion that produces the
horizon-distorting fields being studied. (ii) During the
field-producing particle motion, the particle must be in
the region a « 1, i.e.,

A, =V' weightless rope which we have seen to produce
minima1 tidal gravitational effects.

Our approach will be to solve the problem with the
Rindler approximation to find the tidal fields at the hor-
izon. We can, in fact, do this by a simple transforma-
tion of the tidal fields found in Sec. III. We let (t, x, y, z)
be our Rindler coordinates and (T, x, y, Z) the associat-
ed Minkowski coordinates, related by

Q) «PH (3.76a) T=zsinh(gHt) and Z=z cosh(gHt) . (4.3)

[see Eqs. (2.57)—(2.59)]. We will confine attention to
holes not too near the Kerr limit and take this condition
to be

co«M . (3.76b)

In Sec. III A, we made an additional assumption that
at the horizon the Riemann curvature due to the particle
dominates that due to the background. [See Eqs. (3.33)
and (3.36b).] If a Kerr hole is not near its extreme Kerr
limit (i.e., a is not too near M), and we are interested in
the horizon not too near the polar regions, this condition
remains that given in (3.36b):

m /so »M (3.77)

In Sec. IV we shall be interested in dynamical changes in
the horizon, changes which are driven only by the corn-
ponents of Riemann curvature that constitute
and 8 . These components vanish for the background
(and are slicing invariant) so that the particle field dom-
inates that of the background, without the imposition of
condition (3.77). This condition is relevant only to one
consideration: In using the Rindler approximation to
find the perturbation to the metric of horizon sections,
we may be ignoring larger static constributions unless
condition (3.77) is satisfied.

(Z —d) —T =A

d=—s —A '=s f/(1 if) .
(4.4)

The world line of this particle is the hyperbola pictured
in Fig. 2.

We now introduce a shifted set of Minkowski coordi-
nates

T'= T and Z'=Z —d, (4.5)

and the associated shifted Rindler coordinates t', x, y,
and z'=a'/gH defined by

T'=z'sinh(gH t') and Z' =z'cosh(gH t') . (4.6)

We now note that the trajectory of the particle with con-
stant acceleration A and minimum "height" z =s
=a /gH is

IV. MODEL PROBLEMS WITH POINT MASSES

A. Radially accelerating point mass

As an example of a dynamical source of horizon dis-
tortion we now consider a particle of mass m which
moves on a trajectory normal to the horizon with a con-
stant acceleration "upward" (i.e., away from the hor-
izon). We adjust the parameters of the motion so that
the particle moves downward from infinity and reaches a
minimum height z =s above the Rindler horizon before
returning to infinity. To treat the problem perturbative-
ly we shall assume

m/s &&1 . (4.1)

A =(1+f)Is (4.2)

with f &0. This acceleration is to be provided by a

(Further constraints necessary for the validity of the
Rindler approximation will be discussed at the end of
the subsection. ) The condition for the particle to return
to infinity from z =s is that the (constant) acceleration
A of the particle be greater than the acceleration of
gravity 1/s—:gH/a at z=s . We therefore take

FIG. 2. Coordinate systems for the analysis of a radially ac-
celerating particle. The hyperbola is the world line of a parti-
cle with constant acceleration A. Minkowski coordinates T,Z
are those associated with the Rindler coordinates t,z in which
the particle acceleraton is Ae„ in these coordinates the Rindler
horizon 0 is at T=Z. Minkowski coordinates T', Z' are shift-
ed relative to T,Z, by d, as shown. In the associated Rindler
coordinates t', a' the world line is described by a'=gH /A. See
text for details.
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In the shifted Rindler coordinates (cf. Fig. 2) then the
particle is static at position x =y =0 and

2—:zp =ap/gH ——A '=s /( 1+f). (4.7)

7tlgH
3

(4.8)

But the tidal fields of a static particle, supported by a
weightless rope, have already been given in Sec. III. We
need only change notation appropriately to infer from
Eq. (3.68), for example,

(Note that the vanishing of 8&, 8+&&, and SH„ follows
from the axial symmetry. ) The results in Eq. (4.13) are
therefore compatible with the condition that 8 and

be traceless and with the horizon boundary condi-
tion (2.35), relating 8 and S

On the stretched horizon Minkowski and Rindler time
are related by T+Z=2T=(att/gH)e . It is con-
venient to shift the zero of universal time to t =0 at
T =d/2, the time of arrival of the first signal from the
downward moving particle (see Fig. 2}; this choice im-
plies

with

(So) =(Co) —1

=[(a' +ao +gHto ) —4a' ap ]/4a' ao . (4.9)

It remains to transform from the shifted Rindler basis to
the original Rindler basis using the transformations in
Eqs. (4.3), (4.5), and (4.6). A typical result is

R-,&,&
cosh ——[gH(t t ')]Rt—.@,&

+ 2sinh[gH ( t —t ')
]cosh [gtt( t t ') ]Rt,&s.

—
&

+sinh [gtt(t t')]Re.—&s,&
. (4.10)

The results of this composite transformation are some-
what lengthy and we present here only the components
of greatest interest in a mixed, but concise, notation:

3g T d (Ato)
1+ (4.11a)

(aa'So )

NlgH
3

(a' S() )

3

R
mgH

tstro
( iS i )3

3mgH( A co)

a aSp

3gH( Ace)
(ZZ' —TT'), (4.11b)

(aa'Sp )

(4.1 lc)

a'So =[(a' +ap +gHco ) —4a' ao ]' /2ao . (4.12)

In this expression of course we must allow a'
[representing gH(Z' —T' )] to take on negative values,
but the argument of the square root in Eq. (4.12)
remains non-negative and all expressions in Eq. (4.11)
and below are real and unambiguous.

We find the horizon fields 8 and g [see Eqs.
(2.32}—(2.34)] by taking the horizon limit (a~0,
Z —T N). The only nonva—nishing components are

3mgtt f co T
gH~ gH cg~H

0
(4.13)

In this notation all primed symbols (a', Sp, Z', T') are
understood to represent functions of the original Rindler
coordinates (a, t, co). Considering a' =gtt(Z' —T' ) it
would seem that a' is imaginary and ambiguous (choice
of branch) for ~Z'~ &

~

T'[ or ~Z —d
~

&
~
T[, a re-

gion which includes points on the horizon T=Z. No
such difBculties arise, in fact. Factors of a' occur only
in the combination

(4.14)

It is clear from Fig. 2 that the first signal from the
descending particle hits the horizon at T=d/2, i.e, at
t=O, so that Z and% vanish for t &0. [The curva-
ture perturbations described by Eqs. (4.8)-(4.15), derived
in the shifted Rindler coordinate patch, apply only in
and to the future of that region. Elsewhere the Riemann
curvature vanishes in this Rindler model. ] At t=0 the
fields jump discontinuously from zero to

@gy I =o= —@-„-
I =o

24mgH f A ( A r7) )cg8
[( A co ) + 1]

(4.16)

For co «s /(1+ f) these initial fields increase with ra-
dial distance as co, reach a maximum strength of order
mgtt f (1+f)/s, and for to »s /(1+f ) they fall off
as co

It might seem that the initial signals at t =0 should be
divergent. At Minkowski time T g0 the particle moves
toward the horizon with velocity P=dZ jdT= AT[1
+(AT) )

' and with a Lorentz factor y—=(1
—P } ' =[1+( A T} ]'~ . In the distant past, T~—00, the Lorentz factor diverges and one might ex-
pect divergent Riemann fields at the horizon due to the
infinite blue shift of the gravitational radiation from the
particle source. The finite fields at t=0 are not due to
the a factors built into Z and % . These correct for
the fact that the FIDO's are pathological; the Riemann
components in the Minkowski basis are in fact finite at
t=0. The explanation lies, rather, in the Lorentz con-
traction of the distance between the particle and the hor-
izon. In the rest frame of the particle emitting "gravi-
tons" radially inward (i.e., in the direction —ez) the dis-

[Note: At constant a, universal time and the horizon
time coordinate t difFer only by a constant, cf. Eq. (2.29).
We may therefore use t rather than t in (4.14). On the

horizon itself T=d/2e remains meaningful, though
universal time is ill defined. ] We may now write out ex-
plicitly the t-dependence inherent in the factors T and
(a'So } occurring in Eq. (4.13):

24mgH A ( A to) (p +f )
gH @H gB

[[p+1—(Ato} ] +4(Aio) )
(4.15)

fz(esH' 1)



2780 W.-M. SUEN, R. H. PRICE, AND I. H. REDMOUNT 37

tance between events of emission and the reception of
the gravitons at the horizon is —,'[A '+d(1+P)y]. For
P~ —1 this distance is of order A ', which is compara-
ble to the characteristic wavelength of the gravitational
bremsstrahlung emitted by the particle. The horizon
then is not in the radiation zone of the particle s emis-
sion from the distant past, and the idea of the "blue-
shift" of that emission is inapplicable. It should be not-
ed, however, that for T~+ ao, hence P~+ 1, the hor-
izon is in the particle's radiation zone and the concept of
geometric optics should apply (see below).

For p »max(l, f ), long after the initial signal ar-
rives, the character of the horizon fields is quite different
from that of the initial fields. The dependence on time
and location is then given by

F(t, t0)=(Ato) p I[p+1—(Ace) ] +4( Ace) j

(4.17)

8.

4

2.

0
0. 2. 4,

(Ae)
8. 10

FIG. 3. The function F characterizing the strength at late
times of horizon fields due to a radially accelerating particle.
On the curves F is constant at the indicated value. As p in-

creases the strong-field region is confined to a narrower an-

nulus, with a greater peak value of F.

which is plotted as a function of p and ( A to} in Fig. 3.
At a given p, i.e., at a given time t, the peak of F is in an
annulus at

p'/2yA ~e "g t/2

and this annulus has a width of order

bZ)-I/A .

(4.18)

(4.19)

[p+1—(Ato) ] =4(At0) cot 8. (4.20)

At late times, with p &~1, most of these gravitons hit the
horizon at

to=p'i /A kl/A

The field strength in this annulus is of order mAgHp'
and is much greater than the maximum field strength
mAgttf at early times with p «1 [cf. Eq. (4.16)]. The
most interesting horizon perturbations then occur at late
times, in this narrow strong-field annulus.

The location of this strong-field annulus can be under-
stood in terms of geometric optics. At late times the
particle moves away from the horizon at near-light ve-
locity beaming most of its "gravitational bremsstrah-
lung" away from the horizon due to the headlight effect.
Let 8 be the angle, as measured in the rest frame of the
mass point, between the outgoing radial direction (i.e.,
the z direction) and the path of an emitted graviton (i.e.,
a null geodesic). The relationship among 8, the time of
reception, and the location 8 at which the graviton hits
the horizon, is

In this case we can approximate the horizon fields as

P„=S~g=———2mgH A 5[t —t (t0)] . (4.21}

With this approximation in Eq. (2.25) the shear and ex-
pansion due to the distorting strong-field annulus are
found to be

in agreement with Eqs. (4.18) and (4.19}. Only for
~
cot8

~

&p'~ (i.e., only for emission very nearly in the
ingoing or outgoing radial directions) do the gravitons
hit the horizon outside this annulus.

For large to (i.e., Ato»1) the horizon fields have the
nature of a pulse, with a maximum at p =(A to), or at
time

t =t,„(co) =2gH 'ln( A coIf ) .

H H
CT

~~
= —CT

—-2 &8'
2mgHAe '* =2mgttAf2(Ace} 2e I for t &t,„,
0 for t &t,„, (4.22)

and

8m gHA f (Aco) e (1—e '"
) for t &t

0 for t,„. (4.23)
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In this approximation the horizon shear and expan-
Hsion vanish inside the annulus, i.e., for (Aco) &f e ".

Outside the annulus, at (Aco) &f e ", the shear and2 ~a'

expansion fall on' with distance as 6 . The shear and
expansion can be found more accurately with the
use of 8 from Eq. (4.15) in Eq. (2.25):

-2 ~Ht
cr]]———crH = ', m—f—

gran A(Aco) e Fi(f),
8 =9m f gttA (Aco) e "F2(g),
with

(4.24a}

(4.24b)

F,(f)—:cosf ——,'cos / ——', ,

F2(g)—:—,'tan —,
' g —

—,'„g——', sing+ —,'sin2$ —
+s, sin4$,

(4.24c)

(4.24d)

cosP = P, . (4.24e)
I[p+1—(Aco) ] +4(Aco) I'r

For late times (p » 1 } far outside the annulus

[( Aco) —p » A co] these expressions agree with those in
Eqs. (4.22) and (4.23). For late times far inside the an-
nulus [p —( A co) » A co] they give the nonzero values of
shear and expansion

cr-= cr =6mgH —Af (Aco) e

'f "
(4.25a)

(4.25b)

2mAf (Aco) e " for t &t,„,

These values are very small compared to those outside
the strong-field annulus. This justifies the approximate
results in Eqs. (4.22) and (4.23) that the annulus "turns
on" 8 and cr at a point on the horizon as it expands
outward across that point.

With the approximation in Eqs. (4.22) and (4.23) the
time-integrated shear and expansion [Eqs. (2.26)] are

ds =(1+I }dco +co (1 I—)dg (4.27)

The condition for such a geometry to be Riemann flat is

I =a +b/co with a, b =const . (4.28)

= f 2rtHcr~bcrH2'rrcodco . (4.29)

In the late-time (p »1) limit we have been considering,
the main contribution to this integral comes from the re-
gion of the horizon at larger co than the strong-field an-
nulus; the contribution at smaller co is smaller by a fac-
tor p . On the Rindler horizon this contributing re-
gion extends to infinite co. But to apply our results to
problems involving Kerr black holes, we must consider
the heating of a finite region of the horizon, cf. (3.76a).
Let this finite region be a disc of some radius coL&M

(characterized by co & co„,M). Thus restricted, the integral
(4.29), with o,b from Eq. (4.22), gives

m f gH[e —e (2t —tLiM)]
2 2 2 &H' &H

dAH
8

~H d8m dt
0 fol t ) tLyMr

(4.30)

Inside the annulus (i.e., at smaller co) we have
I =X =const, and outside (larger co) I ccco, from

Eq. (4.26a). Thus the intrinsic geometry is flat except in
the region of the annulus. The passage of the annulus
deforms initially circular rings of fiducions and produces
a deformed line element (4.27) if the comoving coordi-
nates tied to fiducions are used. The geometry remains
flat, but the spatial coordinates in which the flatness is
manifest are not the comoving coordinates.

The heating rate of the horizon is given by Eq. (2.49}
as

dAH dStt
gH d

——TH = f 2rIHcr, qcrHdA
Str dt

~H ~H
'2mAf (Aco) e " '"=2m A

for t ) tmax

and

(4.26a}

esH LEM f —2( A
— )2 (4.31)

here tL&M denotes the time at which the strong-field an-
nulus would pass beyond 9=SL&M, given by

e =
4 2A2f2(A —

}
—2 H (2 e H max

)

for t & t,„, (4.26b)

gHf4m'A'f {Aco) e " '"=4m A for t &t,„.

For t &tLIM all of the disc Q(SuM lies inside the
strong-field annulus; the heating of the region is then
negligible, as Eq. (4.30}shows. The total increase in area
for this portion of the horizon is

LIM/gH —877m ~f2gH J~ L™(e+ —e "M )df
These results indicate that a reference set of fiducions
which was circular in the distant past becomes elongated
in the P direction and shortened in the co direction, and
increases in area. This deformation increases with time
until the annulus passes, after which the deformation
does not change.

To understand the deformation of the intrinsic
geometry of the horizon section we consider the first-
order perturbations of the horizon metric y, h, at con-
stant late time (p » 1). Since only the transverse-
traceless part of the metric is affected to first order we
can write the line element to first order in m as

=4~m '( A aLi„)'. (4.32)

EA H ASH
=4m A,Aa SH

(4.33)

(Although the integrand is a late-time approximation,
the lower limit of the integral is extended to t= —oo.
This changes the result negligibly; as indicated by the ex-
ponential time dependence of dAH/dt, the integral is
dominated by the contribution at late times. ) The frac-
tional increase in area, or entropy, for this region is
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co«rH-M . (4.34)

in accord with Eq. (4.26b).
The above calculations have been carried out entirely

in the Rindler geometry. We must now consider what
restrictions apply for these results to apply to a Kerr
hole. An obvious restriction is

cal'* in the Rindler geometry, i.e., all elements of the
rope obey x=appt. [This implies that the velocity, as
measured by a FIDO, of the elements at height z is
(sp/z)p. ) In terms of the linear density A, and the ten-
sion 'T of the rope, the total (particle plus rope) stress
energy is

z «gH =4M .—1 (4.35)

[See Eq. (3.76).] A more subtle constraint is that the
horizon fields must be generated when the particle is
within the realm of the Rindler approximation, i.e., at
a«1 or

T"=D (x,y, t )a (mft, +Afz ),
T"= D—(x,y, t )(1 P—ap/a )'Tftt,

T""=D(x,y, t)P (ap/a) (mft, +Afz ).,

T"'=D(x,y, t)Papa (mft, +A ftt ),

(4.40)

This means that the initial horizon fields of Eq. (4.16)
cannot be trusted, as they arise from particle motions far
from the horizon. These initial fields, however, are not
of primary concern; the interesting horizon dynamics is
associated with the "late time" development of the
strong-field annulus. We must therefore ask at what
height z the particle generates the strong-field annulus.

The relevant equations to answer this question are (i}
the relation between the height z of the particle and the
Lorentz factor y

—= (1—p )
'~ for its outward motion

through the Minkowski ( T, Z) spacetime, viz. ,

(Az) =1+f(f+2y), (4.36a)

and (ii) the relation of the motion parameters p and y at
emission of a signal and the radius co at which that sig-
nal strikes the horizon, viz. ,

A co = 1+fy(1+P) . (4.36b)

(Here it is assumed that in the particle rest frame the
emission is at 90' to the vertical direction. ) From these
equations it follows that of the two constraints (4.34) and
(4.35) the former is more restrictive, and means that only
the particle motion with z ~(1+f )

'~ M(s /M)'~ and

y (1+f )f (M/s ) is legitimately within the Rindler
approximation.

From the above considerations it follows that Eq.
(4.32} should be correct, to order of magnitude, for a
patch of the horizon of radius co=M so that the increase
in area of the hole should be of order

d 5' A, —5'

z(1 —P ap/a )

=y'mgH/ap y=—(1—P') '"
(4.41)

(4.42)

We again choose the equation of state of the rope to
be A, ='T so that the rope is weightless and has tension
constant at the value given by (4.42). As in Sec. III B
we avoid infinities in h„„by terminating the rope at
zf ——afgH

' with a particle of mass —mf. This requires
modifying Eq. (4.40) with the replacements

m5(z —sp) ~ m5(z sp) mf5—(z zf—),
H(z sp ) ~ H(z —sp ) —H(z —zf )

(4.43)

The force-balance equation for the amended stress-
energy gives

mf ——my (af/ap)(1 —P ap/af ) . (4.44)

with

D(x,y, t):—(1—P ap/a )
'~ 5(y)5(x Pap—t),

fp=5(z sp), and ftt =H(z —sp)

where H is the unit step function. The equation of force
balance (T'"„=0)giv. es us

=4~m'A 'M'

and the increase in mass of the hole of order

(4.37)
The solution now proceeds very much as in Sec. III B.

The stress energy can be written in the form of Eq. (3.41)
and the Lienard-Wiechert-type solution for h" can be
written

hM= —' A M= M
2

8 s

'2

(4.38}
+y f U"(a )U (a ) —t"(a )t (a ) a

0 U(a'} k(a') ga

B.Point mass in uniform motion

x=appt, y=0, z=sp . (4.39)

The rope supporting the particle is taken to be "verti-

We consider next a particle of mass m moving in the
Rindler background at a fixed height z=so ——aogH

' and
with a constant velocity p in the positive x-direction, as
measured by FIDO's. The Rindler-coordinate position
of the particle is then

U"(ap) U "(ap) U"(af ) U "(af )
+4m —4mf

U(ap) k(a ) U(af) k(af)

(4.45)

where the notation is that of Sec. III B [cf. Eqs.
(3.46)—(3.52)] and it is understood that the fields are re-
tarded. The components of U and t at the retarded
source point, when expressed in the Rindler basis at the
field point, are
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U'(a' }=—I"C',
a

U'(a') = —I"S',
t = ——S1

a
t'=C', (4.46)

:-=x+p5,+p252+ (4.52)

With this expansion the left-hand side of Eq. (4.49) is

U"(a') = I"Pao/a', and t"=0,
with

( 1 p2a2/a 2) —1/2

and the denominator occurring in Eq. (4.45) is given by

k(a') U(a')=I'[agH 'S' —p(ao/a')(x —pa11t,'„)] .

—XC'=cosh gH —ln(a/ao)
aop

=cosh[gH51/ao —ln(a lao) +0(p) ]

and the right-hand side is

(2aat)1(g2~2+g2y2+a2+a2)

(4.53)

(4.47}

We are using here the notation of Eq. (3.54a) for S' and
C', as in Sec. IIIB the components of U and the value
of k. U for the particle terms in Eq. (4.45) follow by re-
placing a' with ao and af.

Equations (4.46) and (4.47) give the expressions needed
to evaluate the right-hand side of Eq. (4.45). Those ex-
pressions, however, are given in terms of retarded time
t Iiet not explicitly in terms of the field point location
(t, a,x,y ) and the parameters of the particle motion. As
in Sec. III B the evaluation of t,'„ follows from the retar-
dation equation k k =0 which here has the form

O=k(a') k(a')

=(2aa') '(gHto +a +a' +2pgttx51)+O(p ),
(4.54a)

where

CO =X +P (4.54b)

ao

gH

g N +Q +(X
arccosh 2aa' + ln(a/ao)

(4.55)

We find 5, by equating the parts of Eqs. (4.53) and (4.54)
which are zero order in P:

=gH (a +a' —2aa'C')+(x pact,'„—) +y (4.48)
It should be noted that 5, is well behaved in the horizon
limit, with

The retarded time t,'„as a function of t, a,x,y, and a' is
then given implicitly by 1a~o gH

ao gHco +a
ln

aoa'
(4.56)

t:t +gtt 'ln—(a/ao)

[cf. Eq. (2.29)]. We also define

x =x paot, —

(4.50)

(4.51)

:"—:x —paot,'„=x+pao[t t,'„+g& 'ln—(a/a, )] .

Equation (4.49) cannot be solved in closed form for
p&0. We can, however, get a reasonably tractable solu-
tion by restricting attention to the case p « 1 and by
finding a solution valid only to first order p. (In the use
of this approximation of course x must be considered
zero order in p. ) To find h„„we shall need to evaluate
the t,'„-dependent quantities S', C', and:-, appearing in
Eqs. (4.46) and (4.47), correct to first order in p. We
start by expanding = as

cosh[gH(t t,'„)]=(2a—a') '[gH(x Past,'„)—
+g&y +a +a' ] . (4.49}

The problem studied in Sec. III B is the present prob-
lem with p=0. In that case the retardation equation
(4.49) could be solved explicitly for t,'„The neede. d ex-
pressions C' and S' were found, of course, to be indepen-
dent of the field-point time t. For the present case, with
p&0, U, t, and k U will depend on t. Since we shall
be primarily interested in the fields on or near the hor-
izon we will need a time coordinate well behaved there.
We therefore introduce an ingoing time coordinate

y —so
—2 2 2

8„=4pmgH2y
(to +so)

(4.57)

where we have taken the large-af limit, with

af &&ao and af pggH~- (4.58)

The horizon shear and expansion follow from Eqs. (2.21)
and (2.22). The time derivatives in these equations are
higher order in P and can be ignored, so that to lowest
order in P

gH ~ b~H
H —1 H ab

can be used. The facts that 8 and P are proportional

(4.59}

With the solution for 5, we have " to first order in p.
With 5, we also have Eq. (4.54) and hence C' to first or-
der in P. The remaining function S' is given by
(( '2 1)1/2

With these results the right-hand side of Eq. (4.45) is
known as an explicit function of co and a and a straight-
forward calculation, similar to that in Sec. IIIB but
rather more tedious, can be done to find the metric per-
turbations h„„,and from them the Riemann components
correct to first order in p. The goal of this computation,
the horizon field 8, has components

2 2

= —8„=4pmgttx
2p +so

(to +so}
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~yah H —1 H
PtzO 2~ah 2gH @ab

Bx
(4.60)

where we use the fact that the time dependence in y, b

must occur only in the combination X=x ao13t—. Equa-
tion (4.60) can be integrated explicitly, with the initial
condition that the perturbation in y vanishes at
t —+ —00'.

to P (i.e., inversely proportional to the time scale for the
change in fields ) and that 8 is quadratic in P are in ac-
cord with one's intuition about how these quantities
must depend on the time scale; see the discussion in Sec.
III C.

The above results allow us to infer the nature of the
distortion in the metric for horizon sections. To first or-
der in P we have, from Eq. (2.24),

4.0-

2.0-

0.0-

—2.0-

—40-
r
/ /

/ /

I

~ 1 ]

/ I~/t I

/l
~ I 1

I
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I I [ I I

J ///
I /«r-
t / / r r

I

Xab Xab +Xab
(0) (1)

2 2 $24m &+0
Sp CO +$0

(4.61}

SNAB Xp

s0 N +Sp

In the low-velocity limit we have considered, these per-
turbations are independent of velocity. They correspond
in fact to the horizon distortions produced by a particle
statically suspended at height sp above the horizon. A
computation of the sca1ar curvature of a horizon section
gives

x/s.
FIG. 4. Illustration of the distortion of initially circular

rings of fiducions (i.e., the horizon-metric perturbation) as a
function of comoving coordinates X, y, when a particle passes
over the horizon at a fixed height so at low speed in the x
direction. The length of the two-headed arrow centered at
each point is proportional to the difFerence in length between
major and minor axes of the fiducion ellipse produced at that
point (i.e., to the eigenvalue of the horizon-metric-perturbation
matrix) and the direction of the arrow is that of the major axis.

T SLABS =T (hS
~
„„„—ESH~;„;„„)

32P2$0R=
(g 2+S2 )3

(4.62)

in agreement with Eq. (3.73}. At any time t then the
horizon geometry is distorted as if statically. With P+0,
however, an additional meaning can be given to the
metric perturbations in Eq. (4.61): they describe the dis-
tortion of an initially (i.e., at t = —ao} circular reference
ring of fiducions. For x,y «so this distortion takes a
particularly simple form,

hA f 8 dt
8m —00

=-,'gHPm'
s (y2+s2 )5/2

(4.65)

Here the %00 limits of integration represent integration
from negative values of t satisfying an't —x

(4.63)

which indicates that, as the particle passes overhead,
near 6=0 the ring of fiducions is elongated in the direc-
tion orthogonal to the direction of particle motion. The
pattern of distortion both for co&&$0 and for co&&$0 is
depicted in Fig. 4.

The horizon expansion in Eq. (4.59) has the form

—2 2+2 2 2+ 4

=32p m gHm
(co +so )

(4.64)

and governs the heating of the hole according to Eq.
(2.46). The distribution of heating on the horizon, i.e.,
the dependence of 8 on x and y, is shown in Fig. 5. We
can find the total heating of a patch of the horizon by
integrating over 8:

FIG. 5. Horizon expansion & for a particle in uniform
motion in the x direction. The magnitude of the horizon ex-
pansion is represented by the height of the surface above the
x-y plane. For a particle of mass m and speed P moving at
z=sa the maximum value of e" is 8P m gHso at x=0,
y=kso. Saddle points occur at x=+3 ' so, y=0. For
x +y &&so the expansion falls off as co
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so that the total heating rate for the entire horizon ap-
pears to be logarithmically infinite. This result is to be
contrasted with that for the analogous case of a point
electrical charge moving uniformly above the horizon,
in which the heating rate for the entire horizon is finite.
The result in Eq. (4.66) is misleading. In arriving at the
horizon fields in Eq. (4.57) we have used co«gH'af
[see Eq. (4.58}]. Integration of 8H, as given in Eq.
(4.64), to arbitrarily large co is therefore not valid. If we
restore to the Z fields the terms representing the ter-
mination of the constraint rope at af, the resulting 8
falls off as co and is integrable over the entire horizon
area to give

gH
TH (4.67)=2P m gHln(af/ao)

or f »0'
In applying the above considerations to a black hole,

as opposed to a Rindler horizon, we must take into ac-
count that the Rindler approximation is in any case va1-

id only for af «1 and co «M. To order of magnitude
we can infer the heating rate for a hole either by using

af = 1 in Eq. (4.67) or co,„=M in Eq. (4.66) to find

dSH
TH =P (m/M) ln(M/so)

« —
~ y ~, —so to positive values satisfying aopt

—»&I) I
so.

Equation (4.65) clearly cannot be integrated over the
horizon area to find the total heat added to the horizon.
The infinite heat added corresponds to the fact that the
heating proceeds at a constant rate for an infinite time.
More surprising is the fact that the heating rate itself
cannot be integrated over the whole horizon area. If we
integrate 8 over area out to some maximum
co=com+x »sp we find

AH
TH —— f 8 dA =4P m gHln(co, „/so), (4.66)

8~

[cf. Eq. (4.60})and therefore

Qp= (4.73)

of the particle relative to Boyer-Lindquist coordinates.
With this notation the particle trajectory is given by

xp SHp——'=coH(Qp —QH )t (4.74)

[cf. Eqs. (2.14) and (2.58)] so that aop=coH(Qp —QH)
follows from Eq . (4.38},and the rate of change of angu-
lar momentum and the rate of heating are related by

THdS (Q Q )dJ (4.75)

In arriving at this result we have nowhere used the
specific form of the perturbing tidal fields. The only
feature of the model which has entered is the fact
By,& IBt = —aopBy, b IBx. The relation in Eq. (4.75)
therefore holds for any perturbing source which is
reflection symmetric in the equatorial plane, and rigidly
rotates around the hole.

C. Freely falling point mass

As a further example of dynamical perturbations of
the horizon we consider a particle freely falling, in the
Rindler background, from rest at z =sp. As in previous
problems we choose the mass m of the particle to be
small so that its tidal influence can be treated perturba-
tively. Here this means that we want distances small
compared to gH '=4M to be in the weak-field region of
the particle, hence we require

dJ
dt

It is useful to reexpress this in terms of the angular ve-
locity

m/M «1 . (4.76)

dJ 1,bcrHy b, t, dA
at 16~

(4.69)

Our Rindler approximation replaces p' by x=coHQ'
=2M/' for an equatorial orbit [cf. Eq. (2.58)] so that
Eq. (4.69}becomes

dJ H ab Vab d~H
dt 16m Bx

But to lowest order in the velocity p we have

(4.70)

for a particle of mass m moving at a FIDO-measured
uniform velocity p at a proper distance so from the hor-
izon, outside a hole of mass M.

We now consider the specific case of a particle moving
in an equatorial orbit, very close to a Kerr hole, with a
small FIDO-measured velocity p. In this case we may
use Eq. (2.55) to write the rate of change of hole angular
momentum as

x=y=o and Z=sp . (4.77}

The FIDO's of course see the particle as moving inward
with decreasing a and increasing velocity. It is easily
verified that the Lorentz factor y, as measured by
FIDO's, and the a position of the particle are related by

CX'1/' =gHSp =Qp (4.78)

Additional constraints required for validity of the per-
turbation approach will be discussed at the end of this
section; initially we shall not impose any constraint on
sp, the height from which the particle falls.

The perturbation calculation is particularly simple
since no constraining ropes are necessary and since, in
Minkowski coordinates [cf. Eq. (2.61}],we can take the
trajectory of the unaccelerated particle to be stationary
at

~3' b ~P b } ~g b

Bx Bg aop
2 ~H
p aab (4.71)

The Minkowski components of the metric perturbations
are easily computed for a stationary particle (see MTW,
Chap. 18):
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t = t+gH 'ln(a/2ap) (4.80)

[cf. Eq. (2.29)] shifted so that t=O corresponds to the
plunge of the particle through the horizon. On or near
the horizon this is related to Minkowski time according
to

gHT=ape [1+O(a lap)) . (4.81)

In terms of this time parameter the transverse com-
Hponents of 8 (not 8 }, on the stretched horizon at aH,

are

28a t
3m(gHsp) e "ip

[1+O(an't lap) ],
a2 [@2+s2(esH 1)2]5/2

(4.82)

We can understand this result physically if we confine
our attention to times near the plunge time, i.e., with

~
gHt

~
&&1, if we use Eq. (4.78), and if we introduce

FIDO proper time ~=aHt on the stretched horizon,

h„„=h =hzz ——hTT ——2m[(Z —sp) +co ] ', (4.79)

where, as in previous problems, we use Q—:x +y .
From the results for h„ it is straightforward and sim-

ple to compute, to first order in h„„, the components of
the Weyl tensor and C;.. To describe the results we
need a time coordinate well behaved near the horizon.
We choose this to be the ingoing time

shifted to give r=O [more precisely O(aH)] when the
particle plunges through the stretched horizon. Aside
from fractional corrections of order g&t and aH the Ã
field components can then be written

3m/ co

[~2+(~ )2]5/2
(4.83)

4m (gtt—sp }tp 5(t )$$ (4.84)

(see Fig. 6).
The horizon shear o and expansion 8 can be found

from Eq. (4.82) with Eqs. (2.25). In these equations the
terms have been omitted which account for stress energy
passing through the horizon so we can apply them only
for

where y, from Eq .(4.78), is the Lorentz factor, at the
stretched horizon, of the particle motion relative to the
FIDO's. This is precisely the form of the Weyl field for
a moving point mass; the "pancaking" of the field inten-
sity into the transverse plane is the same as that for the
electric field of a moving charge. Here we are interpret-
ing ~ as the appropriate local time in the FIDO frame.
Since the FIDO frame has an acceleration of order
gHaH

' the locally flat approximation is valid only
for

~
~~ &&aHgH' or gHt

~
&&l.

The horizon field 3' has components given by Eq.
(4.82) multiplied by aH. The "pancaking" of the field
means that for co « sp, Z + is sizable [of order
m(gHsp) Ico ] only for a time At=col(gttsp) «gIt '.
We may therefore approximate the time dependence of
Ztt, in the region co «sp, with a 5 function; thus,

tp & Rt, ——(radius of particle as it passes through horizon}.

The results are

(4.85)

(gap) g 1 g 2
@ 4'0 g g 3 g3 3

(4.86a)

and

2m 2(gHsp)e

N
8$— co arctan ——+15 c n co g

8 — 2
(4.86b)

with

8a'g—:sp(e "—1) and Q2 g 2+)2 (4.86c)

HO gAA~$$
—477lgHspco e for t & 0-2 8at

0 for t~0, (4.87a)

The meaning of these results is clearer if we limit atten-
tion to the region ip «sp and use Eq. (4.84) to find the
approximations (see Fig. 6)

——4 8a' 8a'32m spgttS e (1—e ) for t &0,
(4.87b)0 for t)0.

These time dependences illustrate the teleological nature
of the response of the horizon; the horizon shear and ex-
pansion grow on a time scale gH

' until, around t =0, the
tidal field pulse hits the horizon.

The time-integrated shear [Eqs. (2.26)] can be found in
closed form, but again it is more instructive to consider
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i0«so and to use the approximation of Eq. (4.84) that
the tidal fields hit the horizon in a sharp pulse. From
Eq. (4.87a) and the conditions X =0 and 8 =0 at
t= —00 we have

dSH H
TH = J8 dA= —

gH J8 coda) .
8n 4 H (4.89)

The rate of heating of the horizon follows from Eq.
(2.46):

and

H H$AP

—4mspco e for t ~0,——2 ga'

—4mspco for t &0

4 gHt gHt
16m s02to e (2—e ) for t &0,
16m spS for t &0 .

(4.88a)

(4.88b)

Since we are omitting the stress energy of the particle we
must limit our calculation to the heating due to tidal
fields in the region 9&RP. For clarity we shall also use
the approximation for 8+ in (4.87b}; this will give an ac-
curate estimate of the heating (outside t0=R~) given the
condition so p&RP. The result is

ds
TH 4(m——/Rt, ) sogtte (1—e ) for t &0 .

As in the model problem of Sec. IVA, initially circular
rings of fiducions are distorted, elongated in the tangen-
tial direction and shortened in the radial direction. As
in that model problem also the first-order transformation
to ' =(1+X )i0 reduces the line element to ds

/co
=dto +co 2dg . The tidal fields produce a deformation
of the (fiducion-tied} comoving coordinates, not of the
intrinsic geometry.

(4.90)

From this the total mass energy deposited in the horizon
by tidal heating for co & Rt, is given by

bM= Ttt dt=2(m/Rt ) sogtt .
0 2 2 (4.91)

We now consider the application of the above results
to a black hole (as contrasted with a Rindler horizon).
The Rindler approximation requires that the source and
the fields be confined to a «1 and 8 &M (see Sec. III C).
For results correct to order of magnitude we choose
ao ——gttso=l. According to Eq. (4.78) this corresponds
to infall with y =1/a, the condition for radial infall into
a Schwarzschild hole from a starting position far outside
the horizon. We have several times used the simplifying
assumption to «so, so that our results are reliable to or-
der of magnitude only for co&sp. For ap=1 however,
this simply means co gH ——4M, a condition that in any
case must be met if the Rindler approximation is to be
used.

Equation (4.91), with ao ——1 and gtt
' ——4M, says that

the increase in hole mass due to tidal heating is of order

hM =8m
P

M
RP

(4.92}

—6. —5 —4- —3 —2. —1

gHt

0.

FIG. 6. The time dependence of horizon fields—
instantaneous expansion, shear, and tidal curvature in (a),
time-integrated shear and expansion in (b)—due to a particle
freely falling near the Rindler horizion. The vertical scales of
these graphs are arbitrary and diFerent for each function. The
curves shown are for ct)/sp=0. 25 for smaller values of Q/sp
the 4 pulse would be narrower and would more closely corre-
spond to the delta-function approximation used in the text.

2 2m ap m=8 =128
tHRP'

'2 ' 2

(4.93)

For our weak-field perturbation approach to be valid on
the horizon at t =0 and i0=Rt, we must have
m /Rz «1. The M/Rt, factor on the right-hand side of
Eq. (4.92) can, on the other hand, be large, suggesting
that hM due to tidal heating could be comparable to or
larger than m. (This of course would be unphysical; the
other contributions to hM, those of the particle's stress
energy and tidal heating for co&RP, will certainly be
positive, and the total increase in hole mass must be less
than m due to gravitational radiation losses outward to
infinity. ) The size of M/R~ must, in fact, be limited for
our calculations to be valid. A condition for validity of
the approach is 8 «gH. [See Eq. (2.23).] From Eq.
(4 87b), 8 has a maximum value (at e =—,

' and
co =Rp) corresponding to
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Our results then are valid only when hM for tidal heat-
ing is much smaller than the particle mass m.

V. SUMMARY

In this paper a point of view has been introduced and
developed for the way to treat distortions, especially per-
turbative distortions, of a black-hole event horizon. The
basic procedure starts with the calculation of the tidal
distorting force (the horizon gravitoelectric field C,b)
With this as a source term, the horizon shear is calculat-
ed via the tidal force equation, and the shear in turn is
used as a source term in the focusing equation to find
the horizon expansion. Finally, from the shear and the
expansion, the time dependence of the horizon metric is
inferred. It has been shown how the dynamics of the
horizon can alternately be viewed as the dynamics of a
two-dimensional Quid membrane.

Both this procedure and the nature of horizon dynam-
ics have been illustrated with model problems based on a
simplifying approximation: that the source of the hor-
izon distortion is very close to the horizon. With this
simplification, spacetime near the horizon can be ap-
proximated with the Rindler metric, and the horizon
gravitoelectric fields can be computed fairly simply as re-
tarded integrals. This approach was first checked by ap-
plying it to the case of a point particle statically
suspended above a Schwarzschild horizon by minimal
constraining forces. In this static case the approximate
result could be compared with the result of a perturba-
tion calculation done in the Schwarzschild geometry.
The comparison not only confirmed the validity of the
Rindler approximation, but also clarified the limits of
this approximation, limits that must be observed in ap-
plying the results of a Rindler calculation to a black
hole. In addition, these calculations suggested that the
effects on the horizon could be ascribed to the particle
alone, without significant contribution from the minimal
constraining forces.

The Rindler approximation was applied to three
specific model problems with point particles: a particle
accelerating at a constant rate away from a horizon, a
particle moving with uniform velocity parallel to a hor-
izon, and a particle freely falling towards a horizon.
These model calculations provided illustrations of hor-
izon phenomena and showed the usefulness of elements
of the membrane formalism (the 3+ I split, the use of
horizon quantities renormalized by powers of the lapse
function a, etc.). Of particular interest in these model
problems were concrete examples of the teleological na-
ture of the horizon; horizon shear and expansion were
seen not to react causally to perturbations, but rather to
anticipate the perturbations. These models also gave ex-
amples of the "heating" of the horizon associated with

time-dependent distortions. Because of the limitations of
the approximation the precise results for heating of the
Rindler horizon could not be applied directly to black
holes. Those results, however, lead to useful estimates of
heating effects for black-hole horizons, and provide in-
sight into the perturbation-induced change in mass and
angular momentum of a Kerr hole.

A major motivation for the present work is to make
horizon dynamics more intuitively accessible. The mod-
el problems did in fact exhibit many effects that could be
understood in terms of familiar physical phenomena.
The horizon distortions in the radially accelerating parti-
cle problem were characterized by a narrow expanding
annulus on the horizon, ' the location of that annulus
could be explained by geometric optics, i.e., by consider-
ing the propagation of disturbances from the particle to
the horizon along null geodesics. For particle motion
parallel to the horizon, the dependence of horizon dis-
tortions (gravitoelectric field, shear, expansion, and
metric) on velocity could be understood as a simple scal-
ing law. For the particle falling freely towards the hor-
izon, the gravitoelectric field hits the horizon as a sud-
den pulse; the detailed form of this pulse could be under-
stood as the appropriately I.orentz transformed field of a
static particle; the pulse hitting the horizon is the result
of the "pancaking" of the fields, similar to the more fa-
miliar pancaking of the electrical field of a rapidly mov-
ing charged particle.

Along with these familiar aspects of the horizon dis-
tortion problems, there were new details that were not so
familiar. Neither could these details be understood on
the basis of electromagnetic interactions with the hor-
izon. Because of the intrinsically more complex nature
of the horizon's gravitational interactions, the effects of
gravitational perturbations are considerably more intri-
cate than the analogous electromagnetic effects. Intui-
tion about the electrical properties of the horizon has
been shown to be useful in achieving a qualitative under-
standing of a complex astrophysical system. ' Consider-
able effort will be required to achieve a comparably well
developed intuition about the gravitational/fluid
mechanical properties of the horizon. This paper
represents some progress toward that goal.
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